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Abstract
Site-occupation embedding theory (SOET) is an in-principle-exact multi-determinantal extension of density-functional theory 
for model Hamiltonians. Various extensions of recent developments in SOET (Senjean et al. in Phys Rev B 97:235105, 2018) 
are explored in this work. An important step forward is the generalization of the theory to multiple-impurity sites. We also 
propose a new single-impurity density-functional approximation (DFA) where the density-functional impurity correlation 
energy of the two-level (2L) Hubbard system is combined with the Bethe ansatz local density approximation (BALDA) to the 
full correlation energy of the (infinite) Hubbard model. In order to test the new DFAs, the impurity-interacting wavefunction 
has been computed self-consistently with the density-matrix renormalization group method (DMRG). Double occupation 
and per-site energy expressions have been derived and implemented in the one-dimensional case. A detailed analysis of 
the results is presented, with a particular focus on the errors induced either by the energy functionals solely or by the self-
consistently converged densities. Among all the DFAs (including those previously proposed), the combined 2L-BALDA is 
the one that performs the best in all correlation and density regimes. Finally, extensions in new directions, like a partition-
DFT-type reformulation of SOET, a projection-based SOET approach, or the combination of SOET with Green functions, 
are briefly discussed as a perspective.

Keywords Density-functional theory · Embedding · Strongly correlated electrons · Site-occupation embedding theory · 
One-dimensional Hubbard model

1 Introduction

The accurate and low-cost description of strongly cor-
related materials remains one of the most challenging 
tasks in electronic structure theory. As highly accurate 

wavefunction-based methods are too expensive to be 
applied to the whole system of interest, simplified and 
faster solutions have to be considered. Such solutions 
should ideally not alter the description of strong corre-
lation effects. This is where the challenge stands. Based 
on the cogent argument that strong electron correlation 
is essentially local [1–3] and that the region of interest 
is one part of a much larger (extended) system, embed-
ding approaches are mainly used in practice [4]. The basic 
idea is to map the fully interacting problem onto a so-
called impurity-interacting one. In the Hubbard model, 
the impurity corresponds to an atomic site. Among such 
embedding techniques are the well-established dynamical 
mean-field theory (DMFT) [5–9], its cluster  [10–14] and 
diagrammatic [15] extensions, as well as combinations of 
DMFT with either density-functional theory (DFT) (the 
so-called DMFT + DFT approach  [16]) or the Green-
function-based GW method   [17–22]. Such combina-
tions aim at incorporating non-local correlation effects in 
DMFT. More recently, the self-energy embedding theory 
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(SEET) [23–26], which can be applied to both model and 
ab initio Hamiltonians, has been developed. Let us stress 
that all the aforementioned embedding techniques use the 
frequency-dependent one-particle Green function as basic 
variable.

Alternative frequency-independent approaches like 
the density-matrix embedding theory (DMET) [27–33] 
have emerged in recent years. By construction, standard 
approximate DMET does not describe correlation effects 
in the environment, thus requiring the treatment of more 
than one impurity site in order to obtain reasonably accu-
rate results [27]. More correlation can be incorporated 
into DMET by using an antisymmetrized geminal power 
wavefunction  [34], or, alternatively, by improving the 
description of the boundary between the fragment and the 
bath [35]. Note that Ayral et al. [36] succeeded recently in 
establishing formal connections between DMET, DMFT, 
and the rotationally invariant slave bosons (RISB) the-
ory [37, 38].

This paper deals with another frequency-independ-
ent approach, namely site-occupation embedding theory 
(SOET) [39–41]. While, in conventional Kohn–Sham (KS) 
DFT, the fully interacting problem is mapped onto a non-
interacting one, an auxiliary impurity-interacting system is 
used in SOET for extracting the density (i.e., the site occu-
pations in this context) and, through an appropriate density 
functional for the environment (referred to as bath), the total 
energy. From a quantum chemical point of view, SOET is 
nothing but a multi-determinantal extension of KS-DFT 
for model Hamiltonians [42–44]. In a recent paper [41], 
the authors explained how exact expressions for the double 
occupation and the per-site energy of the uniform Hubbard 
model can be extracted from SOET. They also proposed 
various local density-functional approximations for the bath. 
The latter work suffered from two main weaknesses. First 
of all, the complete self-consistent formulation of the theory 
was done only for a single impurity site, thus preventing a 
gradual transition from KS-DFT (no impurity sites) to pure 
wavefunction theory (no bath sites). Moreover, none of the 
proposed DFAs gave satisfactory results in all correlation 
and density regimes.

We explain in this work how these limitations can be 
overcome. The paper is organized as follows. First, an in-
principle-exact generalization of SOET to multiple impurity 
sites is derived in Sect. 2.1. The resulting expressions for the 
double occupation and the per-site energy in the uniform 
case are given in Sect. 2.2. Existing and newly proposed 
DFAs are then discussed in detail in Sect. 3. Following the 
computational details in Sect. 4, results obtained at half-fill-
ing (Sect. 5.1) and away from half-filling (Sects. 5.2 and 5.3) 
are presented and analyzed. Exact properties of the impurity 
correlation potential are discussed in Sect. 5.4. Conclusions 
and perspectives are finally given in Sect. 6.

2  Theory

2.1  Site‑occupation embedding theory 
with multiple impurities

Let us consider the (not necessarily uniform) L-site Hubbard 
Hamiltonian with external potential � ≡ {vi}0≤i≤L−1,

The hopping operator, which is the analog for model Ham-
iltonians of the kinetic energy operator, reads as follows in 
second quantization,

where t > 0 is the so-called hopping parameter and ⟨i, j⟩ 
means that the atomic sites i and j are nearest neighbors. 
The on-site two-electron repulsion operator with strength 
U and the local external potential operator (which is the 
analog for model Hamiltonians of the nuclear potential) are 
expressed in terms of the spin-density n̂i𝜎 = ĉ

†

i𝜎
ĉi𝜎 and den-

sity n̂i = n̂i↑ + n̂i↓ operators as follows,

and

 respectively.
The exact ground-state energy E(�) of Ĥ(�) can be 

obtained variationally as follows, in complete analogy with 
conventional DFT [45],

where � ≡ {ni}0≤i≤L−1 is a trial collection of site occupations 
(simply called density in the following) and (���) = ∑

i vini . 
Within the Levy–Lieb (LL) constrained-search formal-
ism [46], the Hohenberg–Kohn functional can be rewritten 
as follows in this context,

where the minimization is restricted to wavefunctions Ψ 
with density � . As shown in previous works [39–41], the 
exact minimizing density in Eq. (5) can be obtained from a 
fictitious partially interacting system consisting of interact-
ing impurity sites surrounded by non-interacting ones (the 
so-called bath sites), thus leading to an in-principle-exact 
SOET. While our recent developments focused on the sin-
gle-impurity version of SOET, we propose in the following 
a general formulation of the theory with an arbitrary number 

(1)Ĥ(�) = T̂ + Û + V̂(�).

(2)T̂ = −t
�
⟨i,j⟩

�
𝜎=↑,↓

ĉ
†

i𝜎
ĉj𝜎 ,

(3)Û = U
∑
i

n̂i↑n̂i↓,

(4)V̂(�) =
∑
i

vin̂i,

(5)E(�) = min
�
{F(�) + (�|�)},

(6)F(�) = min
Ψ→�

�⟨Ψ�T̂ + Û�Ψ⟩�,
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of impurity sites. Such a formulation was briefly mentioned 
in Ref. [39] for the purpose of deriving an adiabatic connec-
tion formula for the correlation energy of the bath.

Let us introduce the analog for M impurity sites of the LL 
functional,

where ÛM = U
∑M−1

i=0
n̂i↑n̂i↓ . Note that, for convenience, the 

impurity sites have been labeled as i = 0, 1,… ,M − 1 . If 
we now introduce the complementary Hartree-exchange-
correlation (Hxc) functional for the bath,

the ground-state energy expression in Eq. (5) can be rewrit-
ten as follows,

or, equivalently,

where �Ψ ≡ �⟨Ψ�n̂i�Ψ⟩
�
0≤i≤L−1 , thus leading to the final 

variational expression

The minimizing M-impurity-interacting wavefunction Ψimp

M
 

in Eq. (11) reproduces the exact density profile of the fully 
interacting system described by the Hubbard Hamiltonian 
in Eq. (1). From the stationarity in Ψimp

M
 of the energy, we 

obtain the following self-consistent equation,

where

plays the role of an embedding potential for the M impuri-
ties. In the particular case of a uniform half-filled density 
profile, the embedding potential equals zero in the bath and 
−U∕2 on the impurity sites. This key result, which appears 

(7)F
imp

M
(�) = min

Ψ→�

{⟨
Ψ
|||T̂ + ÛM

|||Ψ
⟩}

,

(8)E
bath

Hxc,M
(�) = F(�) − F

imp

M
(�),

(9)
E(�) = min

�

{
min
Ψ→�

{⟨
Ψ
|||T̂ + ÛM

|||Ψ
⟩}

+E
bath

Hxc,M
(�) + (�|�)

}
,

(10)
E(�) = min

�

{
min
Ψ→�

{⟨
Ψ
|||T̂ + ÛM

|||Ψ
⟩

+E
bath

Hxc,M
(�Ψ) + (�|�Ψ)

}}
,

(11)
E(�) = min

Ψ

{⟨
Ψ
|||T̂ + ÛM

|||Ψ
⟩
+ E

bath

Hxc,M

(
�
Ψ
)
+
(
�|�Ψ)

}
.

(12)

�
T̂ + ÛM +

�
i

vemb
M,i

n̂i

�
�Ψimp

M
⟩ =  imp

M
�Ψimp

M
⟩,

(13)vemb
M,i

= vi +
�E

bath

Hxc,M
(�Ψ

imp

M )

�ni

when applying the hole-particle symmetry transforma-
tion to the impurity-interacting LL functional, is proved in 
Appendix 1, thus providing a generalization of Appendix 
C in Ref. [41]. Note that the KS and Schrödinger equations 
are recovered from Eq. (12) when M = 0 and M = L (i.e., 
the total number of sites), respectively. In SOET, M is in the 
range 0 < M < L , thus leading to a hybrid formalism where 
a many-body correlated wavefunction is embedded into a 
DFT potential. In practice, Eq. (12) can be solved, for exam-
ple, by applying an exact diagonalization procedure [40] 
(which corresponds to a full configuration interaction) for 
small rings, or by using the more advanced density-matrix 
renormalization group (DMRG) method which allows for 
the description of larger systems [41].

Let us now return to the expression in Eq. (8) of the com-
plementary Hxc energy for the bath. By using the KS decom-
positions of the fully interacting and M-impurity-interacting 
LL functionals,

and

respectively, where the non-interacting kinetic energy func-
tional reads as follows in this context,

we obtain

If we now separate the Hxc energies into Hx (i.e., mean-
field) and correlation contributions,

and

we obtain the final expression

where

While local density approximations (LDA) based, for exam-
ple, on the Bethe ansatz (BALDA) are available for Ec(�) 

(14)F(�) = Ts(�) + EHxc(�)

(15)F
imp

M
(�) = Ts(�) + E

imp

Hxc,M
(�),

(16)Ts(�) = min
Ψ→�

{⟨Ψ�T̂�Ψ⟩},

(17)E
bath

Hxc,M
(�) = EHxc(�) − E

imp

Hxc,M
(�).

(18)EHxc(�) =
U

4

∑
i

n2
i
+ Ec(�),

(19)E
imp

Hxc,M
(�) =

U

4

M−1∑
i=0

n2
i
+ E

imp

c,M
(�),

(20)E
bath

Hxc,M
(�) =

U

4

∑
i⩾M

n2
i
+ E

bath

c,M
(�),

(21)E
bath

c,M
(�) = Ec(�) − E

imp

c,M
(�).
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in literature [47–49], no DFA has been developed so far for 
modeling the correlation energy of multiple impurity sites. 
Existing approximations for a single impurity are reviewed 
in Sect. 3.2. Newly proposed DFAs will be introduced in 
Sects. 3.3 and 3.4.

2.2  Exact double occupation and per‑site energy 
expressions in the uniform case

In this section, we derive exact SOET expressions for the 
per-site energy and double occupancy in the particular case 
of the uniform Hubbard system ( � = � ) for which the LDA 
decomposition of the full correlation energy in terms of per-
site contributions,

is exact. Thus, we extend to multiple impurities Eqs. (21) 
and (23) of Ref. [41].

For that purpose, let us introduce the following per-site 
analog of Eq. (21),

which, for a uniform density profile n = (n, n,… , n) , gives

Note that, when combining Eqs. (22) and (23) with Eq. (21), 
we obtain the following expression for the bath correlation 
energy,

By inserting the decomposition in Eq.  (24) into the 
exact double site-occupation expression [44] (we denote 
E = E(� = �) for simplicity),

where n = N∕L and N is the total number of electrons, it 
comes from Eq. (19),

By using the fact that, in the particular (uniform) case con-
sidered here, E = F(n) and, according to the Hellmann–Fey-
nman theorem (see Eq. (11)),

(22)Ec(�) =
∑
i

ec(ni),

(23)e
bath

c,M
(�) =

1

M

[(
M−1∑
i=0

ec(ni)

)
− E

imp

c,M
(�)

]
,

(24)e
bath

c,M
(n) = ec(n) −

E
imp

c,M
(n)

M
.

(25)E
bath

c,M
(�) =

∑
i⩾M

ec(ni) +Me
bath

c,M
(�).

(26)d = ⟨n̂i↑n̂i↓⟩ = 1

L

𝜕E

𝜕U
=

n2

4
+

𝜕ec(n)

𝜕U
,

(27)d =
1

M

�E
imp

Hxc,M
(n)

�U
+

�e
bath

c,M
(n)

�U
.

where

for any site i, it comes from the separations in Eqs. (8) and 
(15) that

Finally, combining Eqs. (27), (29) and (30) leads to the fol-
lowing exact expression for the double occupation in SOET 
with multiple impurities,

The expression derived in Ref. [41] in the particular case 
of a single impurity site is recovered from Eq. (31) when 
M = 1 . Note also that the double occupations of the impurity 
sites are in principle not equal to each other in the fictitious 
M-impurity-interacting system, simply because translation 
symmetry is broken, as readily seen from Eq. (12), even 
though the embedding potential restores uniformity in the 
density profile.

Turning to the per-site energy [48],

where ts(n) is the per-site non-interacting kinetic energy 
functional, we can insert Eq. (24) into Eq. (32) and use 
Eqs. (15) and (19), thus leading to

Moreover, applying once more the Hellmann–Feynman the-
orem to the variational energy expression in Eq. (11) gives

or, equivalently,

(28)𝜕E

𝜕U
=

M−1�
i=0

⟨n̂i↑n̂i↓⟩Ψimp

M

+
𝜕E

bath

Hxc,M
(n)

𝜕U
,

(29)
⟨
Ψ

imp

M
||n̂i||Ψimp

M

⟩
= n

(30)

𝜕

𝜕U

�
E − E

bath

Hxc,M
(n)

�
=

M−1�
i=0

⟨n̂i↑n̂i↓⟩Ψimp

M

=
𝜕F

imp

M
(n)

𝜕U

=
𝜕E

imp

Hxc,M
(n)

𝜕U
.

(31)d =
1

M

M−1�
i=0

⟨n̂i↑n̂i↓⟩Ψimp

M

+
𝜕e

bath

c,M
(�Ψ

imp

M )

𝜕U
.

(32)e = E∕L = ts(n) +
U

4
n2 + ec(n),

(33)e = ts(n) +
1

M

(
F
imp

M
(n) − Ts(n)

)
+ e

bath

c,M
(n).

(34)t
𝜕E

𝜕t
=
⟨
Ψ

imp

M

|||T̂
|||Ψ

imp

M

⟩
+ t

𝜕E
bath

Hxc,M
(n)

𝜕t
,
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which, for U = 0 , leads to

As a result, the second term in the right-hand side of Eq. (33) 
can be simplified as follows,

thus leading, according to Eq. (24), to the final exact per-site 
energy expression,

or, equivalently,

Note that the expression in Eq. (39), which is a generaliza-
tion for multiple impurities of the energy expression derived 
in Ref. [41], is convenient for practical (approximate) SOET 
calculations where the density profile calculated self-con-
sistently might deviate significantly from uniformity [41]. 
Finally, as shown in Appendix 2, since the exact per-site 
bath correlation functional fulfills the fundamental relation,

Equation (39) can be further simplified as follows,

(35)
⟨
Ψ

imp

M

|||T̂
|||Ψ

imp

M

⟩
= t

𝜕F
imp

M
(n)

𝜕t
,

(36)Ts(n) = t
�Ts(n)

�t
.

(37)

F
imp

M
(n) − Ts(n) =

�
Ψ

imp

M

���T̂
���Ψ

imp

M

�
− Ts(n)

+ U

M−1�
i=0

⟨n̂i↑n̂i↓⟩Ψimp

M

= t
𝜕E

imp

c,M
(n)

𝜕t
+ U

M−1�
i=0

⟨n̂i↑n̂i↓⟩Ψimp

M

,

(38)
e = ts(n) +

U

M

M−1�
i=0

⟨n̂i↑n̂i↓⟩Ψimp

M

+ t
𝜕ec(n)

𝜕t

− t
𝜕e

bath

c,M
(n)

𝜕t
+ e

bath

c,M
(n),

(39)

e =
1

M

M−1�
i=0

�
ts(n

Ψ
i
) + t

𝜕ec(n
Ψ
i
)

𝜕t
+ U⟨n̂i↑n̂i↓⟩Ψ

������Ψ=Ψimp

M

+

�
e
bath

c,M
(�Ψ) − t

𝜕e
bath

c,M
(�Ψ)

𝜕t

�
���Ψ=Ψimp

M

.

(40)e
bath

c,M
(�) = t

�e
bath

c,M
(�)

�t
+ U

�e
bath

c,M
(�)

�U
,

Let us stress that any approximate density functional of the 
form t × (U∕t,�) fulfills the exact condition in Eq. (40). 
This is the case for all the DFAs considered in this work. 
As a result, switching from Eq. (39) to Eq. (41) brings no 
additional errors when approximate functionals are used.

3  Local density‑functional approximations 
in SOET

In order to perform practical SOET calculations and compute, 
for example, per-site energies, we need DFAs, not only for the 
per-site correlation energy ec(n) , like in conventional KS-DFT, 
but also for the per-site complementary bath correlation energy 
e
bath

c,M
(�) or, equivalently, for the impurity correlation energy 

E
imp

c,M
(�) (see Eq. (23)). Existing approximations to the latter 

functionals are discussed in Sects. 3.1 and  3.2, respectively. A 
new functional is proposed in Sect. 3.3, and a simple multiple-
impurity DFA is introduced in Sect. 3.4. Let us stress that, in 
all the DFAs considered in this work, we make the approxima-
tion that the impurity correlation functional does not depend 
on the occupations in the bath,

or, equivalently,

where �imp ≡ (n0, n1,… , nM−1) is the collection of densities 
on the impurity sites. The implications of such an approxi-
mation are discussed in detail in Ref. [40].

3.1  Bethe ansatz LDA for e
c
(n)

The BALDA approximation [47–49] to the full per-site cor-
relation energy functional ec(n) is exact for U = 0 , U → +∞ , 
and all U values at half-filling ( n = 1 ). It reads as follows,

where the BALDA density-functional energy equals

(41)

e =
1

M

M−1�
i=0

�
ts(n

Ψ
i
) + t

𝜕ec(n
Ψ
i
)

𝜕t
+ U⟨n̂i↑n̂i↓⟩Ψ

������Ψ=Ψimp

M

+ U
𝜕e

bath

c,M
(�Ψ)

𝜕U

�����Ψ=Ψimp

M

.

(42)E
imp

c,M
(�) → E

imp

c,M
(�imp),

(43)e
bath

c,M
(�) → e

bath

c,M
(�imp),

(44)
eBALDA
c

(U, t, n) = eBALDA(U, t, n)

− eBALDA(U = 0, t, n) −
U

4
n2,

(45)eBALDA(U, t, n ⩽ 1) =
−2t�(U∕t)

�
sin

(
�n

�(U∕t)

)
,
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and

The U/t-dependent function �(U∕t) is determined by solving

where J0 and J1 are zero- and first-order Bessel functions. 
When U = 0 , the BALDA energy reduces to the (one-dimen-
sional) non-interacting kinetic energy functional

which is exact in the thermodynamic limit ( L → +∞).

3.2  Review of existing DFAs for a single impurity

3.2.1  Impurity‑BALDA

The impurity-BALDA approximation (iBALDA), which was 
originally formulated in Ref. [41] for a single impurity site, 
consists in modeling the correlation energy of the impurity-
interacting system with BALDA:

In other words, the iBALDA neglects the contribution of 
the bath to the total per-site correlation energy [see Eq. (23) 
with M = 1],

3.2.2  DFA based on the single‑impurity Anderson model

As shown in Ref. [41], a simple single-impurity correlation 
functional can be designed from the following perturbation 
expansion in U∕Γ of the symmetric single-impurity Anderson 
model (SIAM) correlation energy [50],

where Γ is the so-called impurity level width parameter of 
the SIAM. A density functional is obtained from Eq. (51) 
by introducing the following t-dependent density-functional 
impurity level width,

A rationale for this choice is given in Ref. [41]. Combining 
the resulting impurity correlation functional with BALDA 

(46)
eBALDA(U, t, n ⩾ 1) = eBALDA(U, t, 2 − n)

+ U(n − 1).

(47)

−2�(U∕t)

�
sin

(
�

�(U∕t)

)
= −4∫

∞

0

dx
J0(x)J1(x)

x(1 + exp(Ux∕2t))
,

(48)ts(n) = −4t sin(�n∕2)∕�,

(49)E
imp

c,M=1
(�)

iBALDA
�����������������������������→ eBALDA

c
(n0).

(50)e
bath

c,M=1
(�)

iBALDA
�����������������������������→ 0.

(51)ESIAM
c,U∕Γ→0

(U,Γ) =
U2

�Γ

[
−0.0369 + 0.0008

(
U

�Γ

)2
]
,

(52)Γ(t, n) = t

(
1 + cos(�n∕2)

sin(�n∕2)

)
.

gives the so-called SIAM-BALDA approximation [41]. In 
summary, within SIAM-BALDA, we make the following 
approximations,

and

3.3  Combined two‑level/Bethe ansatz LDA 
functional

As shown in Ref. [40], in the particular case of the two-level 
(2L) Hubbard model (also referred to as the Hubbard dimer) 
with two electrons, the full density-functional correlation 
energy E2L

c
(U, n) is connected to the impurity one by a simple 

scaling relation,

where n0 is the occupation of the impurity site. In this case, 
the bath reduces to a single site with occupation n1 = 2 − n0 . 
Combining Eq. (55) with BALDA gives us a new single-
impurity DFA that will be referred to as 2L-BALDA in the 
following. In summary, within 2L-BALDA, we make the 
following approximations,

and

In our calculations, the accurate parameterization of Carras-
cal et al. [51, 52] has been used for E2L

c
(U, n).

3.4  DFA for multiple impurity sites

As pointed out in Sect. 2.1, in SOET, one can gradually move 
from KS-DFT to pure wavefunction theory by increasing the 
number M of impurities from 0 to the number L of sites. Let 
us, for convenience, introduce the following notation,

or, equivalently,

where  = M∕L is the proportion of impurity sites in the 
partially interacting system. In the thermodynamic limit,  

(53)E
imp

c,M=1
(�)

SIAM-BALDA
������������������������������������������������→ ESIAM

c,U∕Γ→0

(
U,Γ(t, n0)

)
,

(54)
e
bath

c,M=1
(�)

SIAM-BALDA
������������������������������������������������→ eBALDA

c
(n0)

− ESIAM
c,U∕Γ→0

(
U,Γ(t, n0)

)
.

(55)Eimp,2L
c

(U, n0) = E2L
c
(U∕2, n0),

(56)E
imp

c,M=1
(�)

2L-BALDA
��������������������������������������→ E2L

c
(U∕2, n0),

(57)
e
bath

c,M=1
(�)

2L-BALDA
��������������������������������������→ eBALDA

c
(n0)

− E2L
c
(U∕2, n0).

(58)e
bath

c,M
(�) = �

bath

c,M∕L
(�),

(59)�
bath

c,(�) = e
bath

c,L(�),
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becomes a continuous variable and, if the number of impu-
rity sites is large enough, the following Taylor expansion 
can be used,

As readily seen from Eqs. (6), (7), (8), (20), and (25), when 
 = 1 or, equivalently, M = L , we have

If, for simplicity, we keep the zeroth-order term only in 
Eq. (60), we obtain a generalization of iBALDA for M impu-
rities, which is denoted as iBALDA(M) in the following. The 
exploration of first- and higher-order corrections in Eq. (60) 
is left for future work. In summary, within iBALDA(M), we 
make the following approximations,

and

4  Computational details

The various DFAs discussed in Sect. 3 and summarized 
in Table 1 have been applied to the L-site uniform one-
dimensional Hubbard model with an even number N of 
electrons and L = 32 . Periodic ( ̂aL𝜎 = â0𝜎 ) and antiperi-
odic ( ̂aL𝜎 = −â0𝜎 ) boundary conditions have been used 
when (N∕2) mod 2 = 1 [i.e., N/2 is an odd number] and 
(N∕2) mod 2 = 0 [i.e., N/2 is an even number], respec-
tively. In all the SOET calculations [note that, in the fol-
lowing, they will be referred to by the name of the DFA that 

(60)
�
bath

c,(�) = �
bath

c,=1
(�) +

��
bath

c,(�)

�
|||||=1

× ( − 1)

+ (( − 1)2
)
.

(61)�
bath

c,=1
(�) = 0.

(62)e
bath

c,M
(�)

iBALDA(M)
�����������������������������������������→ 0,

(63)E
imp

c,M
(�)

iBALDA(M)
�����������������������������������������→

M−1∑
i=0

eBALDA
c

(ni).

is employed (see the first column of Table 1)], the DMRG 
method [53–57] has been used for solving (self-consistently 
or with the exact uniform density) the many-body Eq. (12). 
The maximum number of renormalized states (or virtual 
bond dimension) was set to m = 500 . Standard DMRG cal-
culations (simply referred to as DMRG in the following) 
have also been performed on the conventional uniform Hub-
bard system for comparison. For analysis purposes, exact 
correlation energies and their derivatives in t and U have 
been computed in a smaller 8-site ring. Technical details 
are given in Appendix 3. The performance of the various 
DFAs has been evaluated by computing double occupa-
tions and per-site energies according to Eqs. (31) and (41), 

Table 1  Summary of the single- and multiple-impurity Hxc DFAs used in this work for the bath

See Sect. 3 for further details

SOET method DFA used for E
bath

Hxc,M
(�)

Correlation functionals

iBALDA(M) L−1∑
i=M

[
U

4
n
2

i
+ e

BALDA

c
(n

i
)
] Eqs. (44)–(47)

SIAM-BALDA L−1∑
i=0

[
U

4
n
2

i
+ e

BALDA

c
(n

i
)
]
−
U

4
n
2

0
− E

SIAM

c,U∕Γ→0

(
U,Γ(t, n0)

) Eqs. (44)–(47), (51) and 
(52)

2L-BALDA L−1∑
i=0

[
U

4
n
2

i
+ e

BALDA

c
(n

i
)
]
−

U

4
n
2

0
− E

2L

c
(U∕2, n0)

Eqs. (44)–(47) and (110)
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Fig. 1  Accurate single-impurity ( M = 1 ) correlation density-func-
tional energies computed at the DMRG level in the half-filled case. 
Results obtained for L = 64 are shown in black dashed lines. See text 
for further details
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respectively. This required the implementation of various 
DFA derivatives. Details about the derivations are given in 
Appendices 4, 5, and 6. Note that the hopping parameter has 
been set to t = 1 in all the calculations.

5  Results and discussion

5.1  Half‑filled case

In this work, SOET is applied to a relatively small 32-site 
ring. Nevertheless, as illustrated in the following, the num-
ber of sites is large enough so that there are no substantial 
finite-size errors in the calculation of density-functional 
energies. This can be easily seen in the half-filled case 
( n = 1 ) where the exact embedding potential in Eq. (12) 
equals zero in the bath and −U∕2 on the impurity sites (see 
Appendix 1). The resulting impurity correlation density-
functional energy [see Appendix 3 for further details] calcu-
lated at the DMRG level is shown in Fig. 1. The convergence 
toward the thermodynamic limit ( L → +∞ ) is relatively fast. 
Note that the results obtained for L = 32 and L = 64 are 
almost undistinguishable.

Let us now focus on the calculation of double occupations 
which has been implemented according to Eq. (31) for vari-
ous approximate functionals. Results are shown in Fig. 2. 
While, in the weakly correlated regime and up to U∕t = 5 , 
SIAM-BALDA gives the best results, it dramatically fails in 
stronger correlation regimes, as expected [41]. In the par-
ticular strongly correlated half-filled case, SIAM-BALDA 
can be improved by interpolating between the weakly and 
strongly correlated regimes of the SIAM [41]. Unfortunately, 
generalizing such an interpolation away from half-filling is 

not straightforward [41]. On the other hand, 2L-BALDA 
performs relatively well for all the values of U / t. Turning 
to the multiple-impurity iBALDA approximation, the accu-
racy increases with the number of impurities, as expected, 
but the convergence toward DMRG is slow. Switching from 
two to three impurities slightly improves on the result, which 
is still less accurate than the (single-impurity) 2L-BALDA 
one. Interestingly, the same pattern is observed in DMET 
when the matching criterion involves the impurity site occu-
pation only [see the non-interacting (NI) bath formulation 
in Ref. [29] and Fig. 2 therein]. While our results would 
be improved by designing better M-dependent DFAs than 
iBALDA(M), the performance of multiple-impurity DMET 
is increased when matching not only diagonal but also non-
diagonal density-matrix elements [27, 29]. Further connec-
tions between SOET and DMET are currently investigated 
and will be presented in a separate work.

Returning to the single-impurity DFAs ( M = 1 ), it is quite 
instructive to plot the derivative in U of the various function-
als in order to analyze further the double occupations shown 
in Fig. 2. According to Eqs. (24) and (31), both full ec(n) and 
impurity correlation energy derivatives should in principle 
be analyzed. However, at half-filling, and for any U and t 
values, BALDA becomes exact for ec(n) when approaching 
the thermodynamic limit, by construction [48]. As a result, 
approximations in the impurity correlation functional will be 
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the major source of errors which are purely functional-driven 
in the half-filled case, since the exact embedding potential is 
known (i.e., the correct uniform density profile is obtained 
when solving Eq. (12) in this case). Results are plotted with 
respect to the density in Fig. 3, thus providing a clear pic-
ture not only at half-filling but also around the latter density 
regime. The exact results obtained by Lieb maximization for 
the 8-site ring are used as reference [see the technical details 
in Appendix 3]. Let us recall that, within iBALDA(M = 1), 
the impurity correlation energy is approximated with the full 
per-site correlation one ec(n) , which is then modeled at the 
BALDA level of approximation. The substantial (negative) 
difference between the exact full per-site and impurity corre-
lation energy derivatives at half-filling (see Fig. 3), which is 
missing in iBALDA(M = 1), explains why the latter approxi-
mation systematically overestimates the double occupation. 
Interestingly, the derivative obtained with iBALDA(M = 1) 
at n = 1 , which is nothing but the derivative of the BALDA 
per-site correlation energy at half-filling, is essentially on 
top of its exact 8-site analog, thus confirming that finite-size 
effects are negligible. Turning to SIAM-BALDA, the deriva-
tive in U of the impurity correlation energy turns out to be 
relatively accurate at n = 1 for U∕t = 1 and U∕t = 5 , thus 
leading to good double occupations in this regime of cor-
relation. The derivative deteriorates for the larger U∕t = 10 
value, as expected [41]. Note finally that 2L-BALDA, where 
the impurity correlation functional is approximated by its 
analog for the Hubbard dimer, is the only approximation 
that provides reasonable derivatives in all correlation and 
density regimes. The stronger the correlation is, the more 
accurate the method is.

Let us finally discuss the per-site energies which have 
been computed according to Eq. (41) for the various DFAs. 
Results obtained at half-filling are shown in Fig. 4. The 

discussion on the performance of each DFA for the double 
occupation turns out to hold also for the energy. This is sim-
ply due to the fact that the per-site non-interacting kinetic 
energy expression in Eq. (48) is highly accurate (it becomes 
exact in the thermodynamic limit), like the BALDA per-site 
correlation energy at half-filling (and therefore its derivative 
with respect to t). It then becomes clear, when comparing 
Eqs. (31) and (41), that, at half-filling, the only source of 
errors in the per-site energy is, like in the double occupation, 
the derivative in U of the impurity correlation functional.

5.2  Functional‑driven errors away from half‑filling

Away from half-filling, the exact embedding potential is 
not uniform anymore in the bath [41], thus reflecting the 
dependence in the bath site occupations of the impurity cor-
relation energy or, equivalently, of the per-site bath correla-
tion energy [see Eqs. (12), (23), and (25)]. Such a depend-
ence is neglected in all the DFAs used in this work, which 
induces errors in the density when the impurity-interacting 
wavefunction is computed self-consistently according to 
Eq. (12). This generates so-called density-driven errors in 
the calculation of both the energy and the double occupa-
tion [58]. The latter are analyzed in detail in Sect. 5.3.

In this section, we focus on the functional-driven errors. 
In other words, all density-functional contributions are cal-
culated with the exact uniform density, like in Sect. 5.1. The 
corresponding per-site energies are shown in Fig. 5. Only the 
most challenging range of fillings (i.e., 0.6 ⩽ N∕L ⩽ 1 [41]) 
is shown. It clearly appears that iBALDA(M = 1), while fail-
ing dramatically in the half-filled strongly correlated regime, 
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performs relatively well away from half-filling in all correla-
tion regimes. It is the best approximation in this regime of 
density. Increasing the number of impurities has only a sub-
stantial effect on the energy when approaching half-filling for 
large U / t values. SIAM-BALDA performs reasonably well 
in the weakly correlated regime but not as well as the other 
functionals. In the same regime of correlation, 2L-BALDA 
stands in terms of accuracy between iBALDA and SIAM-
BALDA in the lower density regime while giving the best 
result when approaching half-filling. The latter statement 
holds also in the strongly correlated regime.

In order to further analyze the performance of each func-
tional, let us consider the derivative in U of the single-impu-
rity correlation functional shown in Fig. 3. Away from half-
filling and in the strongly correlated regime, the full per-site 
and impurity correlation energies give the same derivative 
so that neglecting the last term in the right-hand side of 
Eq. (41), which is done in iBALDA(M), is well justified. 
Interestingly, this feature is well reproduced by 2L-BALDA, 
where the impurity correlation energy obtained from the 
Hubbard dimer is combined with the per-site BALDA cor-
relation energy [compare 2L-BALDA with iBALDA(M = 
1) curves in the bottom panel of Fig. 3]. Obviously, SIAM-
BALDA does not exhibit the latter feature which explains 
why it fails in this regime of correlation and density. Let 
us finally stress that, since BALDA provides an accurate 

description of the full per-site correlation energy in the 
strongly correlated regime, the second term in the right-
hand side of Eq. (41) is expected to be well described in 
all the DFAs considered in this work (since they all use 
BALDA for this contribution). As shown in Fig. 6, this is 
actually the case [ �eexact

c
(n)∕�t should be compared with the 

iBALDA(M = 1) derivative].
Turning to the weaker U∕t = 1 correlation regime, 

iBALDA(M = 1) underestimates the derivative in t of the 
full per-site correlation energy [compare �eexact

c
(n)∕�t with 

iBALDA(M = 1) in Fig. 6] away from half-filling while 
setting to zero the derivative in U of the per-site bath cor-
relation functional whose accurate value is actually nega-
tive [compare �eexact

c
(n)∕�U with the exact impurity curve 

in Fig. 3]. The cancelation of errors leads to the relatively 
accurate results shown in Fig. 5. Turning to SIAM-BALDA 
in the same density and correlation regime, the (negative) 
derivative in U of the per-site bath correlation energy is 
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significantly overestimated [compare iBALDA(M = 1) 
with SIAM-BALDA in the top panel of Fig. 3], thus giv-
ing a total per-site energy lower than iBALDA(M = 1), as 
can be seen from the upper curves in Fig. 5. Interestingly, 
the latter derivative in U is less overestimated when using 
2L-BALDA. This explains why it performs better than 
SIAM-BALDA but still not as well as iBALDA(M = 1) 
which benefits from error cancelations.

5.3  Self‑consistent results

We discuss in this section the results obtained by solving the 
density-functional impurity problem self-consistently [see 
Eq. (12)], thus accounting for not only functional-driven but 
also density-driven errors [58]. Self-consistently converged 
densities obtained on the impurity site(s) for various DFAs 
are shown in Figs. 7 and 8. Note that, at half-filling ( n = 1 ), 

the exact embedding potential has been used, thus providing, 
for this particular density, the exact uniform density pro-
file. Away from half-filling, approximate density-functional 
embedding potentials have been used, thus giving a density 
profile that is not strictly uniform anymore. Interestingly, 
for all the DFAs except SIAM-BALDA, the deviation from 
uniformity is more pronounced when approaching the half-
filled strongly correlated regime. In the case of iBALDA, 
we notice that errors in the density are attenuated when 
increasing the number of impurities, as expected. On the 
other hand, SIAM-BALDA generates huge density errors for 
almost all fillings when the correlation is strong.

Turning to the weaker U∕t = 1 correlation regime, we 
note that, in contrast to iBALDA, both self-consistent SIAM-
BALDA and 2L-BALDA calculations hardly break the exact 
uniform density profile (see the top panel of Fig. 7). This 
can be rationalized by plotting the various impurity correla-
tion potentials (see Fig. 9). Let us first stress that, for all the 
DFAs considered in this work, the correlation contribution 
to the embedding potential on site i reads [see Eqs. (12), 
(21) (22), and (42)]

The latter potential will therefore be equal to zero on the 
impurity sites if iBALDA is used. It will be uniform and 
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equal to �ec(n)∕�n (at least in the first iteration of the self-
consistent procedure as we start with a uniform density 
profile) in the bath. As shown in the top panel of Fig. 9 
[see the iBALDA(M = 1) curve], in the weakly corre-
lated regime, the latter potential, which is described with 
BALDA, is strongly attractive for densities lower than 0.6. 
This will induce a depletion of the density on the impurity 
sites, as clearly shown in the top panels of Figs. 7 and 8. 
The opposite situation is observed for densities in the range 
0.6 ⩽ n ⩽ 1 , as expected from the strongly repulsive char-
acter of the potential. Note that this charge transfer process, 
which is completely unphysical [59], is due to the incorrect 
linear behavior in U of the BALDA correlation potential 
away from the strongly correlated regime [41]. As readily 
seen from the first-order expansion in U given in Eq. (32) of 
Ref. [41], the latter potential is expected to change sign at 
n = (2∕�) arcsin

(
8∕�2

)
≈ 0.6 , which is in complete agree-

ment with the top panel of Fig. 9. Returning to Eq. (64), for 
the single-impurity DFAs SIAM-BALDA and 2L-BALDA, 
the correlation contribution to the embedding potential 
reads �ec(n)∕�n − �E

imp
c (n0)∕�n0 on the impurity site and 

still �ec(n)∕�n in the bath. As shown in the top panel of 
Fig. 9, SIAM-BALDA and 2L-BALDA impurity correlation 
potentials do not deviate significantly from zero and, unlike 
iBALDA, they do not exhibit unphysical features in the 
weakly correlated regime, which explains why both DFAs 
give relatively good densities. Turning to iBALDA(M=3) in 
the strongly correlated regime (middle and bottom panels of 
Fig. 8) and in the vicinity of half-filling, the impurity site 1 
better reproduces the physical occupation N / L than its near-
est impurity neighbors (sites 0 and 2). It can be explained 
as follows. Site 1 is the central site of the (M=3)-impurity-
interacting fragment, while sites 0 and 2 are directly con-
nected to the (non-interacting and therefore unphysical) 
bath. As a consequence, site 1 “feels” the bath less than 
sites 0 and 2. It is, like in the physical system, surrounded by 
interacting sites. Interestingly, a similar observation has been 
made by Welborn et al. [35] within the Bootstrap-Embed-
ding method, which is an improvement of DMET regarding 
the interaction between the fragment edge and the bath.

Let us now refocus on the poor performance of SIAM-
BALDA in the strongly correlated regime. As shown in the 
middle and bottom panels of Fig. 9, the correlation part of 
the embedding potential on the impurity site [which cor-
responds to the difference between iBALDA(M = 1) and 
SIAM-BALDA curves] is, in this case, repulsive for den-
sities lower than about 0.25 and strongly attractive in the 
range 0.25 ⩽ n ⩽ 1 . The latter observation explains the large 
increase of density on the impurity site in the self-consistent 
procedure, as depicted in the bottom panel of Fig. 7.

Finally, as shown in Fig. 5, using self-consistently con-
verged densities rather than exact (uniform) ones can induce 
substantial density-driven errors on the per-site energy, 

especially in the strongly correlated regime. Interestingly, 
both functional- and density-driven errors somehow com-
pensate for 2L-BALDA around half-filling (see the lower 
curves in Fig. 5). This is not the case anymore exactly at 
half-filling since we used the exact embedding potential, 
thus removing density-driven errors completely. Regard-
ing SIAM-BALDA, the large error in the converged density 
obtained for N∕L = 0.6 at U∕t = 5 (see the middle panel of 
Fig. 7) is reflected on the per-site energy. In this case, errors 
just accumulate. For larger fillings, SIAM-BALDA gives a 
better density on the impurity site, but the functional-driven 
errors remain substantial.

5.4  Derivative discontinuity at half‑filling

As illustrated in Ref. [41] in the special case of the atomic 
limit (i.e., t = 0 or, equivalently, U → +∞ ), the impurity 
correlation potential on the impurity site should undergo 
a discontinuity at half-filling in the thermodynamic limit 
(even for finite values of U). This feature has fundamental 
and practical implications, in particular for the calculation of 
the fundamental gap. The latter quantity plays a crucial role 
in the description of the metal-insulator transition which, in 
the one-dimensional Hubbard model, appears as soon as the 
on-site repulsion is switched on ( U > 0) [60].

As shown in Fig. 9, it is present in the iBALDA and 
SIAM-BALDA functionals, as a consequence of the hole-
particle symmetry condition used in their construction. For 
the former functional, the feature is simply inherited from 
BALDA. On the other hand, even though the 2L-BALDA 
impurity correlation potential, which is extracted from the 
Hubbard dimer, also fulfills the particle-hole symmetry con-
dition, it smoothly tends to 0 when approaching n = 1 . As a 
consequence, the potential exhibits no derivative discontinu-
ity (DD) at half-filling when U / t is finite. It only does when 
U∕t → +∞ [40]. As discussed by Dimitrov et al. [61], this 
is due to the fact that the dimer functional reproduces an 
intra-system steepening and not an inter-system DD. In other 
words, the change in density in the functional does not corre-
spond to a change in the total number of electrons. The latter 
is indeed fixed to 2 in the dimer. Only the number of electrons 
on the impurity site varies. The problem becomes equivalent 
to describing an inter-system DD only when the impurity can 
be treated as an isolated system, which is indeed the case in 
the atomic (or, equivalently, strongly correlated) limit.

Note finally that, from a practical point of view, exhibit-
ing a DD is not necessarily an advantage as convergence 
problems may occur around half-filling [48]. In this work, 
this problem has been bypassed by using the exact embed-
ding potential at half-filling. Also, given that only 32 sites 
are considered, the closest uniform occupation to half-filling 
is obtained for 30 electrons, i.e., n = 0.9375 , which is far 
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enough from the strictly half-filled situation. Convergence 
issues are expected to arise when approaching the thermo-
dynamic limit since the density can then be much closer to 
1. The practical solutions to this problem, which have been 
proposed for conventional KS calculations and use either 
a finite temperature [62] or ad-hoc parameters  [63–65], 
could in principle be implemented in SOET. This is left 
for future work. Note finally that, despite the absence of 
DD in the 2L-BALDA impurity correlation potential, the 
BALDA correlation potential is still employed for the bath 
within 2L-BALDA, which means that convergence issues 
will appear as soon as occupations in the bath are close to 1.

6  Conclusions and perspectives

Several extensions of a recent work [41] on site-occupation 
embedding theory (SOET) for model Hamiltonians have been 
explored. Exact expressions for per-site energies and dou-
ble occupations have been derived for an arbitrary number 
of impurity sites. A simple M-impurity embedding density-
functional approximation (DFA) based on the Bethe ansatz 
local density approximation (BALDA) and referred to as 
iBALDA(M) has been proposed and tested on the one-dimen-
sional Hubbard Hamiltonian. A new single-impurity DFA 
[referred to as 2L-BALDA] which combines BALDA with the 
impurity correlation functional of the two-level (2L) Hubbard 
system [40] has also been proposed. Finally, the performance 
of an existing DFA based on the single-impurity Anderson 
model (SIAM) and BALDA [41], hence its name SIAM-
BALDA, has been analyzed in further details in all correlation 
regimes. Both functional- and density-driven errors have been 
scrutinized. Among all the single-impurity DFAs, 2L-BALDA 
is clearly the one that performs the best in all density and cor-
relation regimes. Unfortunately, the convergence of the (too) 
simple iBALDA approximation in the number of impurities 
toward the accurate DMRG results was shown to be slow. Bet-
ter DFAs for multiple impurities are clearly needed. This is 
left for future work.

SOET can be extended further in many directions. First of 
all, substituting a Green function calculation for a many-body 
wavefunction one like DMRG is expected to reduce the com-
putational cost of the method. From a formal point of view, 
this would also enable us to connect SOET with the dynamical 
mean-field theory (DMFT) (see, for example, Ref. [36]). Note 
that the current formulation of SOET is canonical. It would be 
interesting to remap (density wise) the original fully interacting 
Hubbard problem onto an open impurity system, in the spirit 
of the density-matrix embedding theory (DMET). This may 
be achieved, in principle exactly, by combining SOET with 
partition DFT [66], or, in a more approximate way, by project-
ing the whole impurity-interacting problem in SOET onto a 
smaller embedded subspace. A Schmidt decomposition could 

be employed in the latter case [27]. Finally, an important step 
forward would be the exploration of SOET in higher dimen-
sions. Work is currently in progress in all these directions.

Let us finally mention that the basic idea underlying SOET, 
which consists in extracting site (or orbital) occupations from 
a partially interacting system, can be extended to an ab ini-
tio quantum chemical Hamiltonian by using, for example, its 
simplified seniority-zero expression [67–69]. This will be pre-
sented in a separate work.
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Appendix 1: Exact embedding potential 
at half‑filling for multiple impurities

Let us consider any density � ≡ {ni}i summing up to a num-
ber N =

∑
i ni of electrons. Under hole-particle symmetry, 

this density becomes (2 − �) ≡ {2 − ni}i and the number of 
electrons equals 2L − N where L is the number of sites. We 
will prove that these two densities give the same correlation 
energy for the M-impurity-interacting system. Since, for any 
local potential � , the variational principle in Eq. (5) reads as 
follows for an impurity-interacting system,

which gives, for any density �,

thus leading to the Legendre–Fenchel transform expression,

By applying a hole-particle symmetry transformation to 
Eq. (67) [we will now indicate the number of particles in 
the impurity-interacting energies for clarity], we obtain

where  imp,2L−N

M
(�) is the ( 2L − N)-particle ground-state of 

the following M-impurity-interacting Hamiltonian:

(65) imp

M
(�) = min

�

{
F
imp

M
(�) + (�|�)

}
,

(66)F
imp

M
(�) ≥  imp

M
(�) − (�|�),

(67)F
imp

M
(�) = sup

�

{ imp

M
(�) − (�|�)

}
.

(68)F
imp

M
(2 − �) = sup

�

{
 imp,2L−N

M
(�) − 2

∑
i

vi + (�|�)
}

,
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Applying the hole-particle transformation to the creation and 
annihilation operators,

to the M-impurity-interacting Hamiltonian in Eq. (69) leads 
to

or, equivalently,

Then, by substituting and shifting the potential as follows,

we finally obtain

As readily seen from Eqs. (69) and (74), the (2L − N)-elec-
tron ground-state energy  imp,2L−N

M
(�) of Ĥimp

M
(�) is connected 

to the N-electron ground-state energy  imp,N

M
(�̃�) of Ĥimp

M
(�̃�) by

(69)

Ĥ
imp

M
(�) = −t

∑
i𝜎

(
ĉ
†

i𝜎
ĉi+1𝜎 + H.c.

)
+
∑
i𝜎

viĉ
†

i𝜎
ĉi𝜎

+ U

M−1∑
i=0

ĉ
†

i↑
ĉi↑ĉ

†

i↓
ĉi↓.

(70)
ĉi𝜎

† → b̂
†

i𝜎
= (−1)iĉi𝜎 ,

ĉi𝜎 → b̂i𝜎 = (−1)iĉ†
i𝜎
,

(71)

Ĥ
imp

M
(�) = −t

∑
i𝜎

(
b̂
†

i𝜎
b̂i+1𝜎 + H.c.

)
+
∑
i𝜎

vib̂i𝜎 b̂
†

i𝜎

+ U

M−1∑
i=0

b̂i↑b̂
†

i↑
b̂i↓b̂

†

i↓
,

(72)

Ĥ
imp

M
(�) = − t

∑
i𝜎

(
b̂
†

i𝜎
b̂i+1𝜎 + H.c.

)

+ 2
∑
i

vi −
∑
i𝜎

vib̂
†

i𝜎
b̂i𝜎

+ UM − U

M−1∑
i=0

∑
𝜎

b̂
†

i𝜎
b̂i𝜎

+ U
∑
i

b̂
†

i↑
b̂i↑b̂

†

i↓
b̂i↓.

(73)ṽi = −vi − U

M−1∑
j=0

𝛿ij

(74)

Ĥ
imp

M
(�̃�) = −t

∑
i𝜎

(
b̂
†

i𝜎
b̂i+1𝜎 + H.c.

)

+ 2
∑
i

vi +
∑
i𝜎

ṽib̂
†

i𝜎
b̂i𝜎

+ UM + U
∑
i

b̂
†

i↑
b̂i↑b̂

†

i↓
b̂i↓.

Introducing Eq. (75) into Eq. (68) leads to

Note that the maximizing potential in Eq. (76), denoted by 
ṽemb
M

(�) , is nothing but the exact embedding potential vemb
M

(�) 
which restores the exact density profile � , by definition:

According to the shift in Eq. (73), this maximizing potential 
is related to the maximizing one in Eq. (68), denoted by 
�
emb
M

(2 − �) , by

From equality (77), it comes

thus leading to, at half-filling,

Appendix 2: Fundamental relation 
between derivatives in t and U 
of the complementary bath per‑site 
correlation energy for multiple impurities

If we denote �emb
M

(�) the maximizing potential in the Leg-
endre–Fenchel transform of Eq. (67), we deduce from the 
linearity in t and U of the impurity-interacting Hamiltonian 
that [the dependence in t and U is now introduced for clarity]

(75) imp,2L−N

M
(𝐯) =  imp,N

M
(�̃�) + 2

∑
i

vi +MU.

(76)

F
imp

M
(2 − �) = sup

�

{ imp,N

M
(�̃) + (�|�)

}
+MU

= sup
�̃

{ imp,N

M
(�̃) − (�̃|�)

}
+ U

(
M −

M−1∑
i=0

ni

)

= F
imp

M
(�) + U

(
M −

M−1∑
i=0

ni

)
.

(77)ṽemb
M,i

(�) = vemb
M,i

(�).

(78)ṽemb
M,i

(�) = −vemb
M,i

(2 − �) − U

M−1∑
j=0

𝛿ij.

(79)vemb
M,i

(2 − n) = −vemb
M,i

(n) − U

M−1∑
j=0

�ij

(80)vemb
M,i

(1) = −
U

2

M−1∑
j=0

�ij.

(81)

F
imp

M
(t,U, �) =

[
t
� imp

M
(t,U, �)

�t

+U
� imp

M
(t,U, �)

�U

]|||||�=�emb
M

(�)

,
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thus leading to the fundamental relation

as a consequence of the stationarity condition fulfilled 
by �emb

M
(�) . Since both the non-interacting kinetic energy 

[which is obtained when U = 0 ] and the impurity Hx func-
tional [first term in the right-hand side of Eq. (19)] fulfill 
the same relation, we conclude from the decomposition in 
Eq. (15) that

We finally obtain, by combining Eqs. (23), (83) and (101), 
the fundamental relation in Eq. (40).

Appendix 3: Lieb maximization 
and correlation energy derivatives 
for a single impurity

The impurity-interacting LL functional in Eq. (7) [we con-
sider the particular case of a single impurity ( M = 1 ) in the 
following] can be rewritten as a Legendre–Fenchel trans-
form  [39, 40],

where  imp(t,U, �) is the ground-state energy of 
T̂ + Un̂0↑n̂0↓ +

∑
i vin̂i . Note that the dependence in both 

t and U of Fimp(�) and  imp(�) has been introduced for 
clarity. The so-called Lieb maximization  [70] proce-
dure described in Eq. (84) has been used in this work in 
order to compute accurate values of Fimp(t,U,�) and 
Ts(t,�) = Fimp(t,U = 0,�) for a 8-site ring. The impurity-
interacting energy  imp(t,U, �) has been obtained by per-
forming an exact diagonalization calculation based on the 
Lanczos algorithm [71]. The impurity correlation energy is 
then obtained as follows,

Since �Fimp(t,U,�)∕�U = dimp(t,U,�) is the impurity site 
double occupation obtained for the maximizing potential in 

(82)
F
imp

M
(t,U, �) = t

�F
imp

M
(t,U, �)

�t

+ U
�F

imp

M
(t,U, �)

�U
,

(83)
E
imp

c,M
(t,U, �) = t

�E
imp

c,M
(t,U, �)

�t

+ U
�E

imp

c,M
(t,U, �)

�U
.

(84)Fimp(t,U, �) = sup
�

{ imp(t,U, �) − (�|�)},

(85)Eimp
c

(t,U, �) = Fimp(t,U, �) − Ts(t, �) −
U

4
n2
0
.

Eq. (84) (see Eq. (30) and Eq. (A5) in Ref. [41]), it comes 
from Eq. (85),

Moreover, since

is the impurity-interacting kinetic energy obtained for the 
maximizing potential in Eq. (84) (see Eq. (35) and Eq. (B6) 
in Ref.  [41]), which gives in the non-interacting case 
t �Ts(t,�)∕�t = Ts(t,�) , we recover from Eq. (85) the expres-
sion in Eq. (B8) of Ref. [41],

which can be further simplified as follows,

Interestingly, the derivatives in t and U are connected as 
follows, according to Eq. (86),

Thus we recover Eq. (83) in the particular single-impurity 
case.

Similarly, in the fully interacting case, the LL functional 
can be rewritten as follows, as a consequence of Eq. (5),

where the t- and U-dependence in both F(�) and E(�) is now 
made explicit. From the correlation energy expression,

and the expressions for the LL functional derivatives in t 
and U [those and their above-mentioned impurity-interacting 
analogs are deduced from the Hellmann–Feynman theorem],

(86)�E
imp
c (t,U, �)

�U
= dimp(t,U, �) −

n2
0

4
.

(87)
t
�Fimp(t,U, �)

�t
= T imp(t,U, �)

= Fimp(t,U,�) − Udimp(t,U,�)

(88)�E
imp
c (t,U, �)

�t
=

T imp(t,U, �) − Ts(t, �)

t
,

(89)

�E
imp
c (t,U, �)

�t
=

E
imp
c (t,U, �)

t

+
U

t

[
n2
0

4
− dimp(t,U, �)

]
.

(90)

�E
imp
c (t,U, �)

�t
=

E
imp
c (t,U, �)

t

−
U

t

�E
imp
c (t,U, �)

�U
.

(91)F(t,U, �) = sup
�

{E(t,U, �) − (�|�)},

(92)Ec(t,U, �) = F(t,U, �) − Ts(t, �) −
U

4

∑
i

n2
i
,

(93)
�F(t,U, �)

�U
=
∑
i

di(t,U, �),
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and

it comes

and

Note that di(t,U, �) and T(t,U, �) , which have been intro-
duced in Eqs. (93) and (94), denote the site i double occupa-
tion and the total (fully interacting) kinetic energy, respec-
tively. Both are calculated for the maximizing potential in 
Eq. (91). For a uniform density profile n , the per-site cor-
relation energy reads

Since, in this case, di(t,U, n) = d(t,U, n) is site-independent, 
we finally obtain from Eqs. (94), (95), and (96),

and

By analogy with Eq. (89), the latter expression can be sim-
plified as follows,

or, equivalently (see Eq. (98)),

Appendix 4: Derivatives of BALDA

Derivative with respect to U and t

As readily seen in Eq. (31), the derivative of the comple-
mentary bath per-site correlation energy functional with 

(94)
t
�F(t,U, �)

�t
= T(t,U, �)

= F(t,U, �) − U
∑
i

di(t,U, �),

(95)
�Ec(t,U, �)

�U
=
∑
i

di(t,U, �) −
1

4

∑
i

n2
i
,

(96)
�Ec(t,U, �)

�t
=

T(t,U, �) − Ts(t, �)

t
.

(97)
ec(t,U, n) =

Ec(t,U, n)

L

=
1

L

(
F(t,U, n) − Ts(t, n)

)
−

U

4
n2.

(98)
�ec(t,U, n)

�U
= d(t,U, n) −

n2

4
,

(99)
�ec(t,U, n)

�t
=

F(t,U, n) − Ts(t, n)

tL
−

U

t
d(t,U, n).

(100)
�ec(t,U, n)

�t
=

ec(t,U, n)

t
+

U

t

[
n2

4
− d(t,U, n)

]
,

(101)
�ec(t,U, n)

�t
=

ec(t,U, n)

t
−

U

t

�ec(t,U, n)

�U
.

respect to U is necessary to compute double occupation in 
SOET. According to Eq. (24), it implies the derivative of 
the conventional per-site correlation energy, modeled with 
BALDA, which reads

and then for n > 1:

where ��(U∕t)∕�U = (��(U∕t)∕�(U∕t))∕t , is computed 
with finite differences by solving Eq. (47) for �(U∕t).

The derivative with respect to t is calculated according to 
Eq. (101).

Derivative with respect to n

To get the correlation embedding potential, the derivatives of 
the correlation functionals with respect to n is necessary. The 
derivative of the convention per-site density-functional cor-
relation energy reads

and

Appendix 5: Derivatives of SIAM‑BALDA

The derivatives of the SIAM-BALDA impurity correlation 
functional [Eq. (51)] are given with respect to U for n ⩽ 1 as 
follows,

(102)

�eBALDA
c

(n ⩽ 1,U∕t)

�U
=

��(U∕t)

�U[
−2t

�
sin

(
�n

�(U∕t)

)

+
2tn

�(U∕t)
cos

(
�n

�(U∕t)

)]
−

n2

4
,

(103)

𝜕eBALDA
c

(n > 1,U∕t)

𝜕U
=

𝜕𝛽(U∕t)

𝜕U[
−2t

𝜋
sin

(
𝜋(2 − n)

𝛽(U∕t)

)
+

2t(2 − n)

𝛽(U∕t)
cos

(
𝜋(2 − n)

𝛽(U∕t)

)]

+ (n − 1) −
n2

4

(104)

�eBA
c
(n ⩽ 1)

�n
= −2t cos

(
�n

�(U∕t)

)

+ 2t cos
(
�n

2

)
−

Un

2
,

(105)

𝜕eBA
c

(n > 1)

𝜕n
= 2t cos

(
𝜋(2 − n)

𝛽(U∕t)

)

− 2t cos

(
𝜋(2 − n)

2

)
+ U −

Un

2
.
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The derivative with respect to t is given according to 
Eq. (90). Then, the impurity correlation potential is deter-
mined by the derivative of the functional with respect to the 
occupation number n:

where

and

If n > 1 , the particle-hole formalism imposes to use 
Γ(t, 2 − n) instead of Γ(t, n) . The derivatives with respect to 
n should be changed accordingly.

Appendix 6: Derivatives of 2L‑BALDA

Parametrization of the correlation energy 
of the dimer

In this section, we summarize the parametrization of the 
Hubbard dimer correlation energy by Carrascal and co-work-
ers [51, 52], necessary to understand the following derivations. 
The equations coming from their paper are referred to as (& 

(106)

�ESIAM
c,U∕Γ→0

(U,Γ(t, n))

�U
= −

2 × 0.0369

�

(
U

Γ(t, n)

)

+
4 × 0.0008

�3

(
U

Γ(t, n)

)3

.

(107)

�ESIAM
c,U∕Γ→0

(U,Γ(t, n))

�n

=
�Γ(t, n)

�n

�ESIAM
c,U∕Γ→0

(U,Γ)

�Γ

|||||Γ=Γ(t,n)
,

(108)

�ESIAM
c,U∕Γ→0

(U,Γ)

�Γ
=

0.0369

�

(
U

Γ

)2

−
3 × 0.0008

�3

(
U

Γ

)4

,

(109)

�Γ(t, n)

�n

= t

⎛⎜⎜⎝

−
�

2
sin2(�n∕2) − (1 + cos(�n∕2))

�

2
cos(�n∕2)

sin2(�n∕2)

⎞⎟⎟⎠
= −

�t

2

�
1 + cos(�n∕2)

sin2(�n∕2)

�
= −

�Γ(t, n)

2 sin(�n∕2)
.

N), where N is the number of the equation. We start from the 
definition of the correlation energy, where n is the occupation 
of the site 0 and u = U∕2t is a dimensionless parameter,

where 2L refers to “two-level”, and

To account for particle-hole symmetry of the functional, the 
variable � = |n − 1| is used rather than n directly. We now 
simply follow the guidelines from Eq.(& 102) to (& 107), 
leading to

and

Then, they proposed a first approximation to g(�, u) , denoted 
by the label 0:

where

and

Plugging g = g0(�, u) into f (g, �) leads to the first parametri-
zation of E2L

c
(n) in Eq. (110). In this work, we implemented 

the more accurate parametrization, given in Eq.(& 114) [52]:

and where q(�, u) is given in Eq. (& 115) by [52]:

(110)E2L
c
(U, n) = f (g, �)

||||| g = g(�, u)

� = |n − 1|
− Ts(n) − EHx(U, n),

(111)
Ts(n) = −2t

√
n(2 − n), EHx(U, n) = U

�
1 − n

�
1 −

n

2

��
.

(112)f (g, �) = −2tg + Uh(g, �),

(113)h(g, �) =
g2
�
1 −

√
1 − �2 − g2

�
+ 2�2

2(g2 + �2)
.

(114)g0(�, u) =

√
(1 − �)(1 + �(1 + (1 + �)3ua1(�, u)))

1 + (1 + �)3ua2(�, u)
,

(115)ai(�, u) = ai1(�) + uai2(�), i = 1, 2

(116)
a21(�) =

1

2

√
�(1 − �)

2
, a12(�) =

1

2
(1 − �),

a11(�) = a12

(
1 +

1

�

)
, a22(�) =

a12(�)

2
.

(117)g1(�, u) = g0(�, u) +

(
u
�h(g, �)

��

|||||g=g0(�,u)
− 1

)
q(�, u),

(118)q(�, u) =
(1 − �)(1 + �)3u2[(3�∕2 − 1 + �(1 + �)3ua2(�, u))a12(�) − �(1 + (1 + �)3ua1(�, u))a22(�)]

2g0(�, u)(1 + (1 + �)3ua2(�, u))
2

.
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The accurate pametrization of E2L
c
(n) is obtained by plugging 

this g1(�, u) into f (g, �) , instead of g0(�, u).
In order to obtain the impurity correlation energy, a sim-

ple scaling of the interaction parameter U has to be applied 
on the conventional correlation energy, as demonstrated in 
Ref. [40] and given in Eq. (55), leading to

Derivative with respect to U and t

We compute the derivative with respect to the dimensionless 
parameter u = U∕2t . The � - and u- dependence of g(�, u) 
will be omitted for readability. Besides, many functions will 
be introduced, aiming to make the implementation and its 
numerical verification easier. Starting with

the impurity correlation functional reads, according to 
Eq. (119),

with

The derivative of h(g, �) is quite easy, as its only u-depend-
ence is contained in g, so that:

with

(119)

Eimp, 2L
c

(U, n) = E2L
c
(U∕2, n)

= f (g, �)
||||| g = g(�, u∕2)

� = |n − 1|
− Ts(n) − EHx(U∕2, n).

(120)

�E2L
c
(n)

�U
=

1

2t

�f (g, �)

�u

||||| g = g(�, u)

� = |n − 1|
−

(
1 + n

(
1

2
n − 1

))
,

(121)

�E
imp,2L
c (n)

�U
=

1

4t

�f (g, �)

�u

||||| g = g(�, u∕2)

� = |n − 1|
−

1

2

(
1 + n

(
1

2
n − 1

))
,

(122)
�f (g, �)

�u
= −2t

(
�g

�u
− h(g, �) − u ×

�h(g, �)

�u

)
.

(123)
�h(g, �)

�u
=

�g

�u

�h(g, �)

�g
,

(124)
�h(g, �)

�g
= g

g4 + 3g2�2 + 2�2
(
�2 − 1 − Y(g, �)

)

2
(
g2 + �2

)2
Y(g, �)

,

where the function Y(g, �) =
√
1 − g2 − �2 has been intro-

duced. For the first approximation, g = g0 and

where G(�, u) = N(�, u)∕D(�, u) and

and

Their respective derivative with respect to u reads

and

with

Turning to the second approximation g = g1 implemented in 
this work, one get from the derivative of Eq. (117),

For convenience, we introduce two functions w(g, u) and 
v(g, u) so that

with

and

(125)
�g0(�, u)

�u
=

�
√
G(�, u)

�u
=

�G(�, u)∕�u

2
√
G(�, u)

,

(126)N(�, u) = (1 − �)
[
1 + �

(
1 + (1 + �)3ua1(�, u)

)]
,

(127)D(�, u) = 1 + (1 + �)3ua2(�, u).

(128)

�N(�, u)

�u
= (1 − �)�(1 + �)3

(
a1(�, u) + u

�a1(�, u)

�u

)

(129)
�D(�, u)

�u
= (1 + �)3

(
a2(�, u) + u

�a2(�, u)

�u

)
,

(130)
�a2(�, u)

�u
= a22(�),

�a1(�, u)

�u
= a12(�).

(131)

�g1

�u
=

�g0

�u
+

(
�h(g, u)

�g

|||||g=g0
+ u

�

�u

(
�h(g, u)

�g

|||||g=g0

))

q(�, u) +

(
u
�h(g, u)

�g

|||||g=g0
− 1

)
�q(�, u)

�u
.

(132)

�

�u

(
�h(g, u)

�g

)
=

(
�w(g, u)

�u
v(g, u)

−w(g, u)
�v(g, u)

�u

)/
w(g, u)2,

(133)w(g, u) = g
[
g4 + 3g2�2 + 2�2

(
�2 − 1 − Y(g, �)

)]
,

(134)v(g, u) = 2Y(g, �)
(
g2 + �2

)2
,



Theoretical Chemistry Accounts (2018) 137:169 

1 3

Page 19 of 21 169

Finally, the last term in Eq.  (131) reads, for 
q(�, u) = j(�, u)k(�, u)∕l(�, u):

with

and

and their derivative with respect to u:

and

The derivative with respect to t is given according to 
Eq. (90).

(135)

�w(g, u)

�u
=

�g

�u

[
g4 + 3g2�2 + 2�2

(
�2 − 1 − Y(g, �)

)

quad + g

(
4g3 + 6g�2 +

2�2g

Y(g, �)

)]
,

(136)

�v(g, u)

�u
= g

(
g2 + �2

)�g
�u[

−2
(
g2 + �2

)
Y(g, �)

+ 8Y(g, �)

]
.

(137)�q(�, u)

�u
=

(
�j(�, u)

�u
k(�, u) + j(�, u)

�k(�, u)

�u

)
l(�, u) − j(�, u)k(�, u)

�l(�, u)

�u

l(�, u)2

(138)j(�, u) = (1 − �)(1 + �)3u2,

(139)
k(�, u) =

(
3�∕2 − 1 + �(1 + �)3ua2(�, u)

)
a12(�)

− �
(
1 + (1 + �)3�ua1(�, u)

)
a22(�),

(140)l(u) = 2g0(u)
[
1 + (1 + �)3�ua2(�, u, �)

]2
,

(141)
�j(�, u)

�u
= 2(1 − �)(1 + �)3�u,

(142)

�k(u)

�u
= a12(�)

[
�(1 + �)3

(
a2(�, u) + u

�a2(�, u)

�u

)]

− a22(�)

[
�(1 + �)3

(
a1(�, u) + u

�a1(�, u)

�u

)]
,

(143)

�l(u)

�u
= 4g0(u)

[
1 + (1 + �)3ua2(�, u)

]
(1 + �)3

(
a2(�, u) + u

�a2(�, u)

�u

)

+ 2
�g0

�u

[
1 + (1 + �)3�ua2(�, u)

]2
.

Derivative with respect to n

Regarding the derivative with respect to n which is necessary 
to get the embedded correlation potential, it comes

where ��∕�n = sign(n − 1) and

We start with

where, for the first parametrization using g = g0(�, u),

with

and

(144)

�E
imp,2L
c (n)

�n
=

��

�n

f (g, �)

��

||||| g = g(�, u∕2)

� = |n − 1|
−

�s(n)
�n

−
U

2

(145)
�s(n)
�n

= −
2t(1 − n)√
n(2 − n)

.

(146)
�f (g, �)

��
= −2t

�g

��
+ U

�h(g, �)

��
,

(147)
�g0

��
==

1

2g0D(�, u)

(
�N(�, u)

��
− g2

0

�D(�, u)

��

)
,

(148)

�N(�, u)

��
= −1 + (1 − 2�)

(
1 + (1 + �)3ua1(�, u)

)

+ �u(1 − �)(1 + �)2(
3a1(�, u) + (1 + �)

�a1(�, u)

��

)
,

(149)

�D(�, u)

��
= u(1 + �)2

(
3a2(�, u) + (1 − �)

�a2(�, u)

��

)
,

(150)

�a1(�, u)

��
=

�a11(�)

��
+ u

�a12(�)

��
,

�a2(�, u)

��
=

�a21(�)

��
+ u

�a22(�)

��
,
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Then, the right term in the right-hand side of Eq. (146) is 
derived as:

Turning to the second parametrization g = g1 , the derivative 
with respect to � leads to

with

(151)

�a12(�)

��
= 2

�a22(�)

��
= −

1

2
,

�a21(�)

��
=

1 − 2�

2
√
(1 − �)�∕2

,

�a11(�)

��
=

�a21(�)

��

�
1 +

1

�

�
−

1

�2
a21(�).

(152)

�h(g, �)

��
=

1

2(g2 + �2)(
4� + 2g

�g

��
(1 − Y(g, �)) + g2

g(�g∕��) + �

Y(g, �)

)

−
g(�g∕��) + �

(g2 + �2)2

(
2�2 + g2(1 − Y(g, �))

)
.

(153)

�g1

��
=

�g0

��
+

(
u
�h(g, �)

�g

|||||g=g0
− 1

)
�q(�, u)

��

+ u
�

��

(
�h(g, �)

�g

|||||g=g0

)
q(�, u)

(154)

�

��

(
�h(g, �)

�g

)
=

−(�g∕��)(g2 + �2) + 4g(g(�g∕��) + �)

(g2 + �2)3(
2�2 + g2(1 − Y(g, �))

)

−
g

(g2 + �2)2

(
4� + 2g

�g

��
(1 − Y(g, �)) + g2

g(�g∕��) + �

Y(g, �)

)

−
g(�g∕��) + �

(g2 + �2)2

(
2g(1 − Y(g, �)) +

g3

Y(g, �)

)

+
1

2(g2 + �2)

(
2
�g

��
(1 − Y(g, �)) +

2g�

Y(g, �)

+
5g2(�g∕��)

Y(g, �)
+ g3

g(�g∕��) + �

Y(g, �)3

)
.

Finally,

with

and
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