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Abstract
In this work, we adapt our algorithm for relaxations of periodic systems (Bucko et al. in J Chem Phys 122: 124508, 2005) in 
delocalized internal coordinates of Baker et al. (J Chem Phys 105: 192, 1996) for the use in transition state geometry optimiza-
tions. The abilities of our algorithm are demonstrated on examples of relaxations of atomic positions and cell geometries of 
systems with and without additional geometric constraints that include transition states for reactions of molecules in the gas 
phase, reconnection of H atoms in the one-dimensional periodic chain of H

2
 molecules, proton transfer in zeolite chabazite, 

partial desorption of crotonaldehyde from the MgO surface, and a pure affine shear deformation of Al. A simple approximate 
initial Hessian is suggested, in which only the matrix elements corresponding to atoms actively participating in reaction of 
interest are determined accurately at a DFT level, while remaining elements, typically related to inactive atoms and lattice 
vectors components, are defined on a basis of a simple empirical model. The calculations employing the approximate Hessian 
are shown to be more effective compared to simulations carried out with exact initial Hessian, in which all elements related 
to atomic positions are computed at the DFT level.

Keywords Geometry optimization · Internal coordinates · Transition state · Periodic DFT

1 Introduction

Analysis of potential energy surfaces (PES) provides an use-
ful information about properties of a system at hands. The 
shape of PES in vicinity of important stationary points, such 
as minima (i.e., stable states) and first-order saddle points 
[i.e., transition states (TS)], is as a key ingredient for the cal-
culations based on the harmonic transition state theory [1], 
which is presently the most popular method to study reaction 
kinetics. Furthermore, the relaxations are often performed as 

a first step in the analysis of diverse physical properties of a 
system at hands, and hence they certainly represent one of 
the most common tasks executed by computational chemists. 
A determination of minima is relatively straightforward - in 
principle, one can just follow direction of negative gradient 
to descent from arbitrary initial point to some local mini-
mum. In a first-order saddle point optimization, however, 
energy must be maximized along one and only one direc-
tion parallel with reaction coordinate (RC) and minimized 
along all remaining independent degrees of freedom. The 
fact that the reaction coordinate is usually unknown a priori 
is one of the reasons why the TS relaxations are typically 
much more difficult to perform than the stable states opti-
mizations. Hence the computational algorithms designed for 
the TS optimization require, one way or the other, an initial 
guess for the unstable direction. The algorithms such as the 
quasi-Newton method [2], the partitioned rational function 
optimization [3] (P-RFO), or the geometrical direct inver-
sion in the iterative subspace (DIIS) method [4], receive 
this information from the eigenpairs of the matrix of second 
order partial derivatives of energy with respect to the coor-
dinates of system (Hesse matrix or Hessian), which has to 
be provided, at least for the initial configuration, by the user. 
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The initial unstable direction must be explicitly specified 
also in the dimer method [5], while the nudged elastic band 
method [6] (NEB) optimizes whole RC connecting the initial 
and the final stable states and the user must define several 
intermediate states lying on the guessed initial reaction coor-
dinate. For a detailed review of TS optimization methods, 
the reader is referred e.g., to Ref. [7].

Many chemical reactions and other activated processes of 
technological interest, such as surface diffusion and phase 
transitions, occur in solid state. Due to practical reasons, 
these processes are commonly simulated using periodic 
boundary conditions (PBC). In addition to atomic positions, 
the periodic systems are defined also by the size and shape 
of their unit cells. The methods allowing for a simultane-
ous optimization of atomic and lattice degrees of freedom, 
such as the solid state NEB [8, 9] and the solid state dimer 
methods [10], are surprisingly scarce. In this work, we 
extend our algorithm for periodic systems relaxation [11] 
in delocalized internal coordinates [12], which we briefly 
review in Sect. 2.1, for the use in geometry optimizations of 
transition states. The usefulness of internal coordinates in 
the TS optimizations has already been well documented for 
molecular systems [13–15]. One of the greatest advantages 
of methods based on internal coordinates is the availability 
of simple and reasonable initial Hesse matrix models. In 
Sect. 2.2, we define the Hesse matrix for the use in periodic 
TS optimizations and we suggest a simple model allowing 
for its inexpensive construction. The abilities of our algo-
rithm are demonstrated in Sect. 3, where optimizations of 
various molecular and periodic systems with and without 
additional geometric constraints are discussed. Finally, sum-
mary and conclusions are presented in Sect. 4.

2  Methods

2.1  Delocalized internal coordinates 
for optimization of periodic systems

In this section, we briefly review the use of delocalized inter-
nal coordinates of Baker et al. [12] in optimization of peri-
odic systems, which we proposed in our previous work [11]. 
We note that an alternative formulation of the same problem 
has been reported by Andzelm et al. [16].

Let us consider a periodic system consisting of Nat 
atoms contained within a single unit cell formed by three 
lattice vectors a1 , a2 , and a3 , which we arrange in the 
matrix h = [a1, a2, a3] . It is convenient to define positions 
of atoms within the unit cell by fractional coordinates 
s = {sa

�
;a = 1,… ,Nat;� = 1 ≡ a1, 2 ≡ a2, 3 ≡ a3} , which, 

by convention, fulfill the condition 0 ≤ sa
𝛼
< 1 , and which 

are related to Cartesian coordinates of the same set of atoms 
r = {ra

�
;a = 1,… ,Nat;� = 1 ≡ x, 2 ≡ y, 3 ≡ z} shifted by the 

L = (l1, l2, l3) multiples of the lattice vectors by the follow-
ing linear transformation:

Primitive internal coordinates ( q ) for any connected set of 
atoms are defined by collecting all interatomic distances 
within expected bond-lengths. Subsequently, bond-lengths 
are combined to define bond-angles and dihedral angles. 
Note that for the optimization of periodic systems, both the 
intra-cell (i.e., those defined by atoms from the same unit 
cell) and inter-cell (i.e., those defined by atoms from dif-
ferent cells) coordinates must be taken into account. Due to 
the translational symmetry, however, only the coordinates 
which are defined via at least one atom located in a reference 
cell (i.e., L = 0 ) have to be considered. Having accumulated 
the information on connectivity of individual atoms, mutu-
ally unconnected molecular fragments can be identified and 
interconnected using suitable coordinates, such as inverse-
power distances [17]. The number of internal coordinates 
generated in such a way is typically much greater than the 
number of independent degrees of freedom of the system 
(e.g., 3Nat + 3 for an unconstrained three-dimensional peri-
odic system). Baker et al. [12] proposed to replace such a 
redundant set of internal coordinates by a non-redundant set 
of delocalized internal coordinates ( ̃q ), related to q via the 
following transformation:

where the transformation matrix U is formed by eigenvectors 
associated with nonzero eigenvalues of the matrix BBt . In 
the case of a molecular system, the Wilson’s B-matrix [18] 
B is defined as the matrix of derivatives of q with respect 
to the Cartesian coordinates of all atoms (i.e., �q = B�r ). 
As suggested in our previous work [11], the definition of B 
can be generalized for the use in optimizations of periodic 
systems as follows:

where the blocks Bqs and Bqh are defined by the following 
equations:

and
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The gradient vector f  used in optimizations of periodic sys-
tems must involve contributions from the energy derivatives 
with respect to the fractional coordinates:

as well as those with respect to the lattice vectors 
components:

where Ω = |a1 ⋅ (a2 × a3)| is the volume of unit cell, and 
� is the stress tensor. The gradients expressed in terms of 
delocalized internal coordinates ( � ) can be obtained from 
f  using the relation:

with At being a Moore–Penrose pseudoinverse of matrix 
B =

(
Bqs Bqh

)
:

Upon determining the geometry optimization step in the 
space of delocalized internal coordinates by using an appro-
priate relaxation algorithm, the corresponding set of frac-
tional coordinates and lattice vectors components is obtained 
in an iterative procedure:

where q̃opt are the delocalized internal coordinates deter-
mined by the optimization algorithm, and q̃i are the delocal-
ized internal coordinates calculated using the coordinates 
si and hi from the iteration i, and the iteration is initialized 
using the values of coordinates from the previous optimiza-
tion step.

The geometric constraints can be implemented in a 
straightforward way within the framework of delocalized 
internal coordinates [12]. The essential point is that the 
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matrix B =
(
Bqs Bqh

)
 must be modified in such a way that 

the vectors Bj corresponding to coordinates free to relax are 
made orthogonal to all vectors Bc corresponding to con-
strained coordinates, i.e., the vectors Bj must be modified 
according to formula:

where the summation is over all constrained coordinates. 
The delocalized internal coordinates generated using the 
modified matrix B̄ correspond to linear combinations of 
either constrained or active coordinates but the two types 
are never mixed in a definition of individual q̃ . The energy 
gradients for q̃ defined via constrained coordinates are then 
set to zero and the relaxation proceeds as in an unconstrained 
case. In principle, any coordinate with well defined first 
order derivatives with respect to atomic positions and lat-
tice vectors components (e.g., bonds, angles, torsions, frac-
tional, and Cartesian coordinates, lengths of lattice vectors 
and angles between them, cell volume, lattice vector com-
ponents...) can be constrained in such a way.

2.2  Hesse matrix for transition state optimization

In our optimization program gadget [11], the optimization 
methods that employ the Hesse matrix ( H ) are implemented. 
The matrix H used in the TS optimizations should have one 
and only one negative eigenvalue with the corresponding 
eigenvector being approximately parallel with the reaction 
coordinate. Ideally, the Hesse matrix should be computed 
in every optimization step but such a procedure would be 
too time-consuming when performed for an extended sys-
tem at ab initio level. When a finite-differences algorithm is 
used (as is often the case when a periodic DFT code is used 
in simulations), for instance, at least 3Nat additional gradi-
ent evaluations are needed for the H calculation, and the 
related computational cost increases the total cost of opti-
mization. A commonly used strategy to tackle this problem 
[14, 15] is to determine H only for the initial structure and 
update it for the use in the next relaxation steps by employ-
ing the information on positions and gradients accumulated 
during the optimization. Out of the Hesse matrix updating 
schemes suitable for the transition state optimizations, we 
chose the scheme proposed by Bofill [19], which is based 
on a weighted combination of Murtagh–Sargent [20] and 
Powell-symmetric-Broyden [21] formulae.

In our TS optimizations, we define the initial Hesse 
matrix as follows. First, we approximate the Hesse matrix 
in primitive internal coordinates ( Hq ) by a simple diago-
nal matrix [12] in which the force-constants for all bonds, 
angles, and torsions are set to 0.5 a.u., 0.2 a.u., and 0.1 a.u., 
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∑
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respectively. We note that more sophisticated models, such 
as those by Lindh [22] or Fischer [23], can also be used 
for this purpose. Next, the Hq is transformed into the {s,h} 
coordinates using the approximate relation that neglects the 
contribution of terms involving the second order derivatives 
of primitive internal coordinates with respect to the atomic 
positions [14] and the lattice vectors components:

where Hs and Hh , are the blocks corresponding to second 
order derivatives of energy with respect to fractional coordi-
nates and lattice vectors components, respectively, and Hsh is 
the block with mixed second order derivatives with respect 
to components of s and h . Next, either the whole blocks Hs 
and Hsh or their rows and columns involving coordinates of 
’active’ atoms (a), i.e., those with presumably significant 
contribution to reaction coordinate, are replaced by the cor-
responding terms computed from the second order deriva-
tives with respect to Cartesian coordinates determined at the 
DFT level (e.g., via finite differences):

and

We note that the idea of treating contributions of active 
and inactive atoms to the Hesse matrix at different levels 
of theory has been reinvented by several different authors 
[24–27]. It is only in special cases of processes with reaction 
coordinate determined solely by the lattice vectors compo-
nents (such as the martensitic transformation discussed in 
Sect. 3.6), when the components of block Hh:

need to be determined accurately. In all other cases dis-
cussed in this work, the block Hh is approximated by the 
simple model described above.

The correct eigenvalue spectrum of the Hesse matrix is 
then ensured by its spectral decomposition and replacing the 
eigenvalues ( �i ) by their absolute values for all modes ( ui ) 
except of the one representing the unstable mode ( u1 ) that is 
approximately parallel with the reaction coordinate:
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In the cases where the initial H matrix has multiple nega-
tive eigenvalues, the appropriate unstable mode is selected 
by a visual inspection of the corresponding vibrational 
modes. Finally, the matrix Hq̃ used in the relaxation in 
delocalized internal coordinates is obtained by the follow-
ing transformation:

The procedure of Eq. 16 is applied after every H update 
performed during the relaxation. We note that a similar treat-
ment has been used also in the previous work [25, 27].

3  Numerical tests

3.1  Simulation details

The energy and force calculations have been performed 
using the periodic DFT code vasp [28–31]. The Kohn–Sham 
equations have been solved variationally in a plane-wave 
basis set using the projector-augmented-wave (PAW) method 
of Blöchl [32], as adapted by Kresse and Joubert [33]. The 
PBE exchange-correlation functional in the generalized 
gradient approximation proposed by Perdew et al. [34] was 
used. For the purposes of our tests, high-quality forces were 
essential. Hence the calculations have been carried out with 
dense FFT grids (set automatically via the input parame-
ter PREC=Accurate), and projection operators have been 
evaluated in reciprocal space. In order to reduce the Pulay 
stress possibly biasing the cell geometry optimizations, large 
plane-wave cutoffs have been used in calculations of peri-
odic systems, see Table 1. In each self-consistent field cycle, 
the electronic wave function was converged to 1 × 10−7 eV/
cell. In order to reduce the effect of periodic boundary con-
ditions in relaxations of molecular systems (see Sect. 3.2), 
the size of each unit cell has been chosen such as to ensure 
that the minimal distance between any two atoms located 
each at a different periodic image of the molecule was at 
least 10 Å.

(17)Hq̃ = UtAt

(
Hs Hsh

(Hsh)t Hh

)
AU.

Table 1  Summary of important simulation parameters used in this 
study

System k-Point mesh Plane-wave 
cutoff (eV)

Molecular systems 1 × 1 × 1 400
1D H2-chain 50 × 1 × 1 1000
H transfer in CHAB 2 × 2 × 2 1000
Crotonaldehyde desorption from MgO 1 × 1 × 1 1000
Pure affine shear deformation of Al 31 × 25 × 15 600
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The geometry optimizations were carried out using the 
external optimizer gadget [11], which reads the geometry, 
energy, and forces from the vasp output, and, until conver-
gence, sets up internal coordinates, estimates an optimal 
move, calculates the new set of lattice parameters and frac-
tional coordinates, and starts a new vasp calculation. In our 
tests, the P-RFO method [3] has been used but a similar per-
formance has been achieved also by using the geometrical 
DIIS method [4] or a quasi-Newton method [2]. The maxi-
mal size of optimization step performed in primitive inter-
nal coordinate space (i.e., bonds, angles, and torsions) has 
been limited to 0.1 a.u. The optimizations have been con-
sidered to be converged when the maximal Cartesian force 
acting on each atom and, in the case of the cell geometry 
optimizations, also the maximal force acting on the lattice 
vectors, was smaller than 5 × 10−3 eV/Å. Except of the test 
described in Sect. 3.6, two types of initial Hesse matrices 
have been used in simulations, both constructed as described 
in Sect. 2.2. In ’exact’ initial Hessian, all elements of blocks 
Hs and Hsh were computed at the DFT level via finite dif-
ferences, while only rows and columns corresponding to 
the elements related to a relatively small number of active 
atoms (i.e., those with presumably significant contribution 
to RC) were determined at the DFT level in ’approximate’ 
H . The input and selected output files from all calculations 
presented in this work are provided as electronic supplemen-
tary material (see Online Resource 1).

3.2  Molecular systems

In this section, we compare the performance of exact and 
approximate initial model Hesse matrices (see Sect. 3.1) 
in relaxation of atomic positions at fixed cell geometry in 
transition states of selected gas-phase reactions from the 
benchmark set of Baker and Chan [13]. Clearly, such a test 

is meaningful only for sufficiently large systems, where a 
significant fraction of atoms with negligible contribution to 
RC can be identified. For this reason, only systems consist-
ing of ten or more atoms have been considered, whereby the 
number of active atoms ranged from 2 to 8 (see Table 2). 
The active atoms have been selected on the basis of visual 
inspection of unstable vibrational modes.

The numbers of optimization steps (i.e., gradient calcula-
tions) needed to fulfil the relaxation criterion are compiled 
in Table 2. We note that relaxations performed for the same 
system using different methods converged to the same states 
with the energies that were identical within 0.1 meV (see the 
data in Online Resource 1). As evident, the optimization is 
strongly affected by the quality of initial H and the number 
of steps needed to achieve convergence in all seven systems 
is almost doubled (257 vs. 130) when exact H is replaced by 
the approximate Hessian. Importantly, however, the number 
of gradient evaluations needed to construct the approximate 
H is significantly smaller than that for the exact Hessian 
and this fact should be also considered when comparing the 
computational cost of these two sets of simulations. Tak-
ing all gradient evaluations into account, it is evident that 
the optimizations with the approximate H (total of 349 gra-
dient evaluations) are actually slightly more efficient than 
those employing the exact Hesse matrix (373 evaluations). 
One can expect that the use of approximate H will be even 
more effective in optimizations of large systems where the 
ratio of active to inactive atoms is small. This should hold 
true especially in the cases where the initial configuration is 
very different from the relaxed structure and hence the Hes-
sian can be expected to change significantly in the course 
of optimization. Our results presented in Sect. 3.4 and 3.5 
support this expectation.

In order to illustrate the efficiency of the optimization 
algorithm used in this work, additional calculations have 

Table 2  The number of steps needed to relax the atomic positions 
in transition states of selected reactions from the benchmark set 
of Baker and Chan [13] using the method employed in this work 
(P-RFO) in combination with exact (exact) and approximate (approx.) 
initial Hesse matrices. The numbers in parentheses indicate the total 
number of gradient calculations performed in optimizations and 

Hesse matrix calculations. The number of atoms ( Ntot ) in each system 
and the number of active atoms ( Nact ) used to compute the approxi-
mate initial Hesse matrix are also indicated. For sake of comparison, 
the number of relaxation steps needed to achieve convergence using 
the improved dimer method [5, 35] (IDM) is also shown

Reaction Relaxation steps Ntot Nact

P-RFO (exact) P-RFO (approx.) IDM

Ring opening bicyclo[1.1.0.]butane TS 1 11 (41) 48 (60) 277 (307) 10 4
Ring opening bicyclo[1.1.0.]butane TS 2 44 (74) 55 (70) Failed 10 5
1,2-migration -(formyloxy) ethyl 9 (39) 29 (35) 344 (374) 10 2
Butadiene + ethylene ↔ cyclohexene 30 (78) 40 (58) 645 (693) 16 6
Trans-butadiene ↔ cis-butadiene 14 (44) 19 (42) Failed 10 8
CH2CHCH2-O-CHCH2 ↔ CH2CHCH2CH2CHO 11 (53) 26 (38) 449 (491) 14 4
SiH2 + CH3CH3 ↔ SiH3CH2CH3 11 (44) 40 (46) 1008 (1041) 11 2
Total 130 (373) 257 (349) > 2723 (2906)
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been performed using the improved dimer method (IDM) 
[5, 35], which is one the standard TS optimization methods 
implemented in vasp. A default computational setting for 
the IDM calculations has been used and the initial dimer 
vector was defined as the unstable eigenvector of the exact 
Hesse matrix. Unlike the P-RFO method, the IDM failed to 
converge in two out of seven systems (see Table 2). The per-
formance of IDM in optimization of remaining systems (as 
measured in number of steps needed to achieve convergence) 
is significantly worse than that of the P-RFO combined with 
the delocalized internal coordinates. This result is, however, 
not surprising as the dimer method in its present implemen-
tation does not make use of the full information encoded 
in the Hesse matrix, and a large part of steps performed by 
the IDM corresponds to auxiliary calculations, such as the 
determination of curvature along the unstable direction or 
rotation of the dimer axis, rather than to actual optimization.

3.3  1D H
2
‑chain

As a first example of TS optimization of periodic systems, a 
simple reaction of one-dimensional chain of H2 molecules is 
considered, in which the atoms are reconnected as shown in 
Fig. 1. The unit cell contains only two atoms and the system 
can be fully described by just two geometric parameters, 
e.g., the difference in distances between an arbitrary H atom 
and its two neighbors ( r1 − r2 ), and the length of the lattice 
vector parallel with the chain (a) shown Fig. 1. As dictated 
by symmetry, the structure of TS corresponds to an infinite 
chain of H atoms with equidistant separation between near-
est neighbours (i.e., r1 − r2 = 0).

The geometry of simulation cell in the initial struc-
ture was given by the lattice parameters a = 2.7 Å , 
b = 10.0 Å c = 10.0 Å , � = � = � = 90◦ , and the value of 
the coordinate r1 − r2 was set to 0.54 Å. The geometry was 
allowed to relax only in direction parallel with the lattice 
vector a, while the lattice vectors b and c as well as the 
corresponding fractional coordinates of atoms were fixed. 

Maximal Cartesian component of gradient computed for 
the initial structure was 3.94 eV/Å and the internal pres-
sure of 0.9 GPa indicated that the initial structure was 
expanded with respect to the equilibrium structure. Owing 
to the dimensionality of this system, only relaxation with 
exact initial H matrix has been performed (see Sect. 3.1). 
The geometry optimization of atomic positions at fixed cell 
geometry converged in 9 steps and the correct TS geom-
etry (i.e., r1 − r2 = 0 Å ) has been obtained. We note that 
the relatively large number of optimization steps in this 
truly one-dimensional problem was caused partly by the step 
limitation (see Sect. 3.1) consistently applied in all calcula-
tions discussed in this work. The simultaneous relaxation 
of atomic positions and lattice parameter a converged in 16 
steps and the geometry with r1 − r2 = 0 Å and a = 1.977 Å 
has been obtained. As the value of r1 − r2 in TS follows from 
symmetry, the predicted TS geometry can be easily checked 
by a set of single-point calculations with varied value of a 
and fixed r1 − r2 = 0 Å . As shown in Fig. 2, the position 
of relaxed TS fits the minimum on the energy versus a plot 
perfectly, as it should.

3.4  Proton transfer in chabazite

In the next example, we discuss the transition state optimi-
zation of an unconstrained 3D system. The reaction that we 
consider is a proton shift between two oxygen atoms next 
to aluminum in zeolite chabazite (see Fig. 3). This reaction 
has been studied theoretically [36, 37] in the context of het-
erogeneous catalysis. The unit cell with 37 atoms and the 
following initial values of lattice parameters has been used 
in calculations: a = b = c = 9.291 Å , � = � = � = 93.9◦ , 
V = 796.1 Å3 . We note that the rhombohedral symmetry of 
cell is valid for higly siliceous chabazite or for a structure 
with a random distribution of Al and H atoms [38] and the 
use of a relatively small simulation cell creating an artificial 

(a) (b) (c)

Fig. 1  Initial (a), transition (b), and final (c) states of reconnection 
reaction of atoms in one-dimensional H

2
 chain. The solid lines repre-

sent the unit cell used in calculations
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Fig. 2  Energy of the one-dimensional chain of H atoms with 
r
1
− r

2
= 0 Å as a function of the cell parameter a (see Fig. 1b). Red 

triangle represents the result of TS optimization with variable a 
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regular pattern in the Al and H positions can be expected to 
break this symmetry. The maximum component of Cartesian 
gradient determined for the initial structure was as large as 
7.71 eV/Å and the internal pressure was negative ( −1.9 GPa ) 
indicating that this structure was compressed.

The relaxation of atomic degrees of freedom at fixed 
lattice geometry converged in 88 steps when the exact ini-
tial Hessian was used. With the same H , the full relaxa-
tion of atomic and lattice degrees of freedom converged 
in 67 steps, yielding the structure with the following lat-
tice parameters: a = 9.367 Å , b = 9.480 Å , c = 9.206 Å , 
� = 92.0◦ , � = 93.2◦ � = 93.8◦ , V = 813.8 Å3 . Despite the 
relatively large expansion and deformation of lattice in the 
relaxation, the internal degrees of freedom contributing to 
the RC most significantly, namely the distances H-O1 and 
H-O2 (see Fig. 3), differ only by < 0.01 Å from the val-
ues determined in relaxation of atomic positions only. This 
result is a consequence of the fact that this TS geometry is 
primarily determined by strong Coulomb interactions of H+ 
with the neighboring O atoms possessing a partial negative 
charge. The stabilization of TS due to the lattice relaxation 
is relatively modest (0.153 eV/cell).

In the next test, we examine the performance of the 
approximate Hessian (see Sect. 3.1) whereby only the atoms 
H, O1, and O2 (see Fig. 3) are considered as active. Both 
the atomic only and the full relaxations performed with 
the approximate initial H converged to the same structures 
as the relaxations performed with the exact initial H . The 
number of relaxation steps needed to achieve convergence 
increased significantly (132 steps for the relaxation of atoms 
and 98 steps for the full relaxation) but taking into account 
the minimal number of gradient evaluations needed for the 
H calculation (111 for the exact and only 9 for the approxi-
mate Hessian), the relaxation with the approximate H turns 
out to be more efficient than that employing the exact initial 
Hessian.

3.5  Partial desorption of crotonaldehyde 
from the MgO surface

In this section, we consider partial desorption of crotonal-
dehyde from the MgO surface, which is a part of a catalytic 

transformation of ethanol to 1,3-butadiene, recently studied 
by Taifan et al. [39]. As shown in Fig. 4, the reaction con-
sists of rotation of a relatively large molecular fragment with 
respect to the substrate (see also Online Resource 2 showing 
animation of the full transformation path). As it is typical for 
this kind of motion, the imaginary frequency of the unstable 
vibrational mode is relatively soft (173 i cm−1 in the initial 
and 93 i cm−1 in the final structures, respectively) making 
the determination of this TS rather challenging. Following 
Ref. [39], the initial geometry of simulation cell was defined 
by the lattice parameters a = 12.746 Å , b = 17.020 Å , 
c = 19.255 Å , � = � = � = 90◦ , V = 4183.1 Å3 , and the 
fractional coordinates of atoms of the bottommost layer were 
fixed at their bulk values in all simulations discussed here, 
i.e., 82 out of the total of 130 atoms were allowed to relax. In 
relaxations involving the lattice components, additional con-
straints fixing the length of the lattice vector c , which is per-
pendicular to the slab, and all lattice angles were introduced 
as described in Sect. 2.1. The maximal Cartesian component 
of gradient computed for the initial structure was 2.22 eV/Å 
and the stress-tensor components �xx , and �yy (supposed to 
be relaxed out in the lattice optimization) were −2.5 GPa , 
and −3.7 GPa , respectively.

The relaxations of atomic positions performed with the 
exact initial Hessian converged in 50 steps. The stress-tensor 
components �xx and �yy determined for the final structure 
( −2.4 GPa and −3.7 GPa , respectively) changed only little 
compared to those computed for the initial configuration 
and their numerical values indicate that the structure is sig-
nificantly stretched in directions parallel with the surface 
plane. Indeed, the lengths of lattice vectors a and b shrank 
in the full relaxation to 12.426 Å and 16.314 Å, respectively, 
decreasing thus the energy by 3.018 eV/cell. Due to the rela-
tively large cell geometry relaxation, the full optimization 
required significantly larger number of steps (84) than the 
optimization of atomic positions only. As mentioned above, 
the reaction involves rotation of whole crotonaldehyde mol-
ecule with respect to the MgO surface, hence all 11 atoms 
forming the molecule plus 4 substrate atoms have been con-
sidered as active (displayed as spheres in Fig. 4) when con-
structing the approximate H matrix for the initial structure. 

(a) (b) (c)

Fig. 3  Initial (a), transition (b), and final (c) states of the proton 
transfer in acid chabazite. Atoms H, O1, and O2 were considered as 
active in construction of approximate initial Hesse matrix

(a) (b) (c)

Fig. 4  Initial (a), transition (b), and final (c) states of partial desorp-
tion of crotonaldehyde from the MgO surface with a stepped kink. 
The atoms represented by spheres were considered as active in con-
struction of approximate initial Hesse matrix
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With this approximate H , the atomic only and the full relax-
ations converged in 95 and 193 steps, respectively, yield-
ing the same structures as those obtained using the exact 
Hessian. When the minimal number of gradient evaluations 
needed for the H calculation is taken into account (246 for 
the exact and 45 for the approximate Hessian), the relaxation 
with the approximate H is, again, found to be more efficient 
than that employing the exact initial Hessian.

3.6  Pure affine shear deformation of Al

As our final example, we discuss a transformation taking 
place entirely in the space of lattice vectors components 
hi,� , namely the ⟨112̄⟩{111} pure affine shear deformation 
of Al, previously studied by Jahnátek et al. [40]. As shown 
in Fig. 5, this transformation is realized via sliding the Al 
layers parallel with the (111) plane and the final structure 
is symmetry equivalent to the initial one. The deformation 
causes a variation of the lattice degrees of freedom while 
the fractional coordinates of atoms remain intact because 
the corresponding net forces are zero by symmetry. As this 
process is reversible (implying that the transformation path 
must be continuous), the maximum energy structure can 
be found by using our TS optimization technique. Alterna-
tively, the same structure can be identified as the configura-
tion corresponding to the maximum on the energy versus � 
plot obtained in a series of constrained relaxations, where � 
stands for the angle between two lattice vectors parallel with 
the [112̄] and the [111] directions defined with respect to the 
conventional body-centered cubic cell of Al [40].

Our simulation setup was similar to that reported in Ref. 
[40], albeit the plane-wave cutoff was increased in order 
to reduce the biasing effect of Pulay stress in the full TS 
relaxation. A minimal unit cell with lattice vectors parallel 
with the [112̄] , [11̄0] , and [111] directions has been chosen 
containing six Al atoms (i.e., three independent Al layers, 
see Fig. 5). The following cell geometry has been used in the 
initial guess for the maximum energy structure: a = 2.854 Å , 

b = 4.949 Å , c = 7.282 Å , � = 74.1 ◦ , � = 90 ◦ , � = 90◦ , 
V = 98.9 Å3 . The components of the initial Hesse matrix 
corresponding to the lattice degrees of freedom (i.e., the 
block Hh ) have been determined numerically at the DFT 
level while all remaining blocks were approximated by the 
model described in Sect. 2.2. The TS geometry converged 
in just nine steps and the structure with the following cell 
geometry has been obtained: a = 2.809 Å , b = 4.924 Å , 
c = 7.781 Å , � = 71.6 ◦ , � = 90.0◦ , � = 90.0◦ , V = 102.1 Å3 . 
The internal pressure of 2.3 GPa determined for the initial 
structure has been eliminated entirely and all stress-tensor 
components vanished upon relaxation. The computed struc-
ture is perfectly consistent with that corresponding to the 
maximum on the energy vs. � profile (see Fig. 6) determined 
in a series of constrained relaxations.

4  Conclusions

In this work, our algorithm [11] for structural optimizations 
of periodic systems in delocalized internal coordinates [12] 
has been adapted for the use in relaxations of transition 
states. The presented method allows for simultaneous relaxa-
tions of atomic positions and cell geometry with or without 
additional geometric constraints. The performance of the 
method has been demonstrated on several different real-
world examples covering the most important cases occurring 
in practice. In particular, a full unconstrained TS relaxation 
of a system with three-dimensional periodicity has been 
demonstrated on example of the proton exchange reaction 
in zeolite chabazite. As examples of relaxations with addi-
tional geometric constraints including fractional coordinates 

(a) (b) (c)

Fig. 5  Initial (a), transition (b), and final (c) states of the transforma-
tion of Al under the ⟨112̄⟩{111} pure affine shear deformation. Full 
lines represent the unit cell employed  in calculations and different 
colors are used to distinguish different layers of Al atoms parallel 
with the (111) plane. Note that the structures a and c are equivalent 
by symmetry
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Fig. 6  Change in energy of Al with variation of angle ( � ) between 
lattice vectors parallel with the [112̄] and the [111] directions defined 
with respect to the conventional body-centered cubic cell of Al (cf. 
Fig. 5). The result of the transition state optimization (full relaxation) 
is shown to coincide with maximum of the curve obtained from a 
series of constrained relaxations with fixed �
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of selected atoms and lattice degrees of freedom (such as 
the lengths of lattice vectors and the lattice angles), the TS 
optimizations of one-dimensional chain of H2 molecules and 
the partial desorption of crotonaldehyde from MgO surface 
have been discussed. Finally, a relaxation of transition state 
defined entirely in the space of lattice vectors components 
has been demonstrated on example of the pure affine shear 
deformation of Al. The full TS relaxation involving both 
the atomic positions and the lattice vectors components was 
found to represent a relatively modest overhead compared 
to usual TS relaxations involving atomic positions only. 
The performance of the TS relaxations initialized using an 
approximate Hesse matrix was examined, in which a rela-
tively small fraction of matrix elements corresponding to 
active atoms directly participating in the reaction of inter-
est were determined accurately at the DFT level, while a 
major part of elements, typically related to inactive atoms 
and lattice vectors components, was defined on the basis 
of a simple empirical model. When a total number of gra-
dient evaluations used in relaxations and Hessian calcula-
tions was taken into account, the TS geometry optimizations 
initialized with the approximate Hesse matrix was found 
to outperform the simulations carried out with exact initial 
Hessian, in which all elements related to atomic positions 
were computed at the DFT level.

Acknowledgements TB is deeply indebted to Dr. János Gábor Ángyán 
for introducing him into the subject discussed in this work and for a 
long, fruitful, and always very pleasant collaboration on ’anything that 
was interesting’. This work was supported by the Slovak Research and 
Development Agency under the Contract No. APVV-15-0105. Calcula-
tions were performed using the supercomputing infrastructure of Com-
puting Center of the Slovak Academy of Sciences acquired in projects 
ITMS 26230120002 and 26210120002 supported by the Research and 
Development Operational Program funded by the ERDF.

References

 1. Jensen F (1997) Introduction to computational chemistry. Wiley, 
Chichester

 2. Press WH, Teukolsky SA, Vetterling WT, Flannery BP (2007) 
Numerical recipes: the art of scientific computing, 3rd edn. Cam-
bridge University Press, New York, NY

 3. Banerjee A, Adams N, Simons J, Shepard R (1985) Search for 
stationary-points on surface. J Phys Chem 89(1):52–57

 4. Császár P, Pulay P (1984) Geometry optimization by direct inver-
sion in the iterative subspace. J Mol Struct 114:31–34

 5. Henkelman G, Jónsson H (1999) A dimer method for finding sad-
dle points on high dimensional potential surfaces using only first 
derivatives. J Chem Phys 111(15):7010

 6. Henkelman G, Jónsson H (2000) Improved tangent estimate in the 
nudged elastic band method for finding minimum energy paths 
and saddle points. J Chem Phys 113(22):9978–9985

 7. Henkelman G, Jóhannesson G, H J (2005) Methods for finding 
saddle points and minimum energy paths. In: Schwartz SD (ed) 
Theoretical methods in condensed phase chemistry. Progress in 

theoretical chemistry and physics, Springer, Dordrecht, vol 5, 
pp 269–302

 8. Caspersen KJ, Carter EA (2005) Finding transition states for 
crystalline solid–solid phase transformations. Proc Natl Acad 
Sci 102(19):6738–6743. https ://doi.org/10.1073/pnas.04081 
27102 

 9. Sheppard D, Xiao P, Chemelewski W, Johnson DD, Henkelman 
G (2012) A generalized solid-state nudged elastic band method. J 
Chem Phys 136(7):074103

 10. Xiao P, Sheppard D, Rogal J, Henkelman G (2014) Solid-state 
dimer method for calculating solid–solid phase transitions. J 
Chem Phys 140(17):174104

 11. Bucko T, Hafner J, Angyan JG (2005) Geometry optimization 
of periodic systems using internal coordinates. J Chem Phys 
122(12):124508

 12. Baker J, Kessi A, Delley B (1996) The generation and use of 
delocalized internal coordinates in geometry optimization. J Chem 
Phys 105(1):192–212

 13. Baker J, Chan FR (1996) The location of transition states: a com-
parison of cartesian, z-matrix, and natural internal coordinates. J 
Comput Chem 17(7):888–904

 14. Peng C, Ayala PY, Schlegel HB, Frisch MJ (1996) Using redun-
dant internal coordinates to optimize equilibrium geometries and 
transition states. J Comput Chem 17(1):49–56

 15. Bakken V, Helgaker T (2002) The efficient optimization of molec-
ular geometries using redundant internal coordinates. J Chem 
Phys 117(20):9160–9174

 16. Andzelm J, King-Smith RD, Fitzgerald G (2001) Geometry opti-
mization of solids using delocalized internal coordinates. Chem 
Phys Lett 335(3):321–326

 17. Baker J, Pulay P (1996) Geometry optimization of atomic micro-
clusters using inverse-power distance coordinates. J Chem Phys 
105(24):11100–11107

 18. Wilson EBJ, Decius JC, Cross PC (1955) Molecular vibrations. 
The theory of infrared and Raman vibrational spectra. Dover, New 
York

 19. Bofill JM (1994) Updated Hessian matrix and the restricted 
step method for locating transition structures. J Comput Chem 
15(1):1–11

 20. Murtagh BA, Sargent RWH (1972) Comput J 13:185
 21. Powell MJD (1971) Math Prog 1:26
 22. Lindh R, Bernhardsson A, Karlstrom G, Malmquist PA (1995) 

On the use of a hessian model function in molecular-geometry 
optimizations. Chem Phys Lett 241(4):423–428

 23. Fischer TH, Almlof J (1992) General methods for geometry and 
wave function optimization. J Phys Chem 96(24):9768–9774

 24. Bučko T (2004) Structure, acidity, and chemical reactivity of zeo-
lites. In: Thesis, University of Vienna, Vienna

 25. Bucko T, Hafner J, Benco L (2004) Active sites for the vapor 
phase beckmann rearrangement over mordenite: an ab initio study. 
J Phys Chem A 108(51):11388–11397

 26. Pu J, Truhlar DG (2005) Use of block hessians for the optimiza-
tion of molecular geometries. J Chem Theory Comput 1(1):54–60

 27. Rabi S (2014) Transition-state optimization methods using inter-
nal coordinates. In: Thesis. McMaster University

 28. Kresse G, Hafner J (1993) Ab-initio molecular-dynamics for open-
shell transition-metals. Phys Rev B 48(17):13115–13118

 29. Kresse G, Hafner J (1994) Norm-conserving and ultrasoft pseu-
dopotentials for first-row and transition-elements. J Phys Condens 
Matter 6(40):8245–8257

 30. Kresse G, Furthmüller J (1996) Efficiency of ab-initio total energy 
calculations for metals and semiconductors using a plane-wave 
basis set. Comput Mater Sci 6(1):15–50

 31. Kresse G, Furthmüller J (1996) Efficient iterative schemes for 
ab initio total-energy calculations using a plane-wave basis set. 
Phys Rev B 54(16):11169–11186

https://doi.org/10.1073/pnas.0408127102
https://doi.org/10.1073/pnas.0408127102


 Theoretical Chemistry Accounts (2018) 137:164

1 3

164 Page 10 of 10

 32. Blöchl PE (1994) Projector augmented-wave method. Phys Rev 
B 50:17953–17979

 33. Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the 
projector augmented-wave method. Phys Rev B 59(3):1758–1775

 34. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient 
approximation made simple. Phys Rev Lett 77:3865–3868

 35. Heyden A, Bell A, Keil F (2005) Efficient methods for finding 
transition states in chemical reactions: comparison of improved 
dimer method and partitioned rational function optimization 
method. J Chem Phys 123(22):224101

 36. Fermann JT, Auerbach S (2000) Modeling proton mobility in 
acidic zeolite clusters: II. Room temperature tunneling effects 
from semiclassical rate theory. J Chem Phys 112(15):6787–6794

 37. Sierka M, Sauer J (2001) Proton mobility in chabazite, faujasite, 
and ZSM-5 zeolite catalysts. comparison based on ab initio cal-
culations. J Phys Chem B 105(8):1603–1613

 38. Smith LJ, Davidson A, Cheetham AK (1997) A neutron diffraction 
and infrared spectroscopy study of the acid form of the alumino-
silicate zeolite, chabazite (H- SSZ-13). Catal Lett 49(3):143–146

 39. Taifan WE, Bučko T, Baltrusaitis J (2017) Catalytic conversion of 
ethanol to 1,3-butadiene on MgO: a comprehensive mechanism 
elucidation using DFT calculations. J Catal 346:78–91

 40. Jahnatek M, Hafner J, Krajci M (2009) Shear deformation, ideal 
strength, and stacking fault formation of FCC metals: a density-
functional study of Al and Cu. Phys Rev B 79:224103


	Transition state optimization of periodic systems using delocalized internal coordinates
	Abstract
	1 Introduction
	2 Methods
	2.1 Delocalized internal coordinates for optimization of periodic systems
	2.2 Hesse matrix for transition state optimization

	3 Numerical tests
	3.1 Simulation details
	3.2 Molecular systems
	3.3 1D -chain
	3.4 Proton transfer in chabazite
	3.5 Partial desorption of crotonaldehyde from the MgO surface
	3.6 Pure affine shear deformation of Al

	4 Conclusions
	Acknowledgements 
	References




