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Abstract
Gas-phase heats of formation of 48 commonly used nitrogen-rich cations in energetic salts composed of H, C, N, and O 
atoms have been calculated at the Gaussian-3 (G3), Gaussian-4 (G4), and G4 (MP2) theories using the atomization reac-
tion. The discrepancies between the predicted and the reported HOFs vary in the range of 0.28–470.78 kJ/mol. The reported 
HOFs for twenty cations were observed within 5 kJ/mol deviation, ten cations within 6–10 kJ/mol deviation, eleven cations 
within 11–50 kJ/mol, five cations within 51–100 kJ/mol, while two cations differed by more than 420 kJ/mol with respect to 
G4 data. The calculated HOFs with the G4 composite method at 298.15 K were recommended for selected cations as being 
more reliable than the reported data.
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1 Introduction

In modern civil and military uses, explosives with high per-
formance with lower sensitivity to thermal shock, friction, 
and electric discharge have been a principal requirement and 
always desirable. However, the combination of performance 
and insensitivity is challenging, complicated, and also mutu-
ally exclusive because improvement in performance brings 
upsurge in sensitivity (e.g., in CL–20) [1, 2] and vice versa. 
One promising approach to overcome this challenge is to 
explore energetic materials based on ionic salts contain-
ing nitrogen-rich compounds with large number of C–N 
and N–N bonds in the chemical structure [3–5]. Ionic salts 
have been established as a diverse class of materials due 
to their possible chemical manipulation to achieve desired 
energetic properties. These salts can be chemically altered 
with selection of cations, anions, functional groups such 
as –NO2, –NH2, and –N3 allowing tuning energy content, 

altering the physical properties, and developing a library of 
compounds with extreme diversity. Performance parameters 
(detonation velocity and pressure) are more relying on the 
heat of formation (HOF) and reflect the energy content of 
explosive, and the density, which indicates amount of mate-
rial that can be packed into the charge. Our specific interest 
is in the design and assessment of new energetic materials 
for which the HOF plays a crucial role in the preliminary 
assessment of energy content, stability, reactivity, and poten-
tial performance. Considering the hazards of explosives, it is 
a complicated and unsafe task to measure HOF experimen-
tally, and hence, theoretical methods have received consider-
able attention. To obtain HOF experimentally, differential 
scanning calorimetry is commonly employed [6]; however, 
these calorimetric measurements are resource consuming 
and difficult due to unknown intermediates and hazardous 
nature of explosives. Several methods have been proposed 
for neutral energetic molecules including group additive 
contributions, isodesmic reactions, atomic or group correc-
tions to Hartree–Fock molecular energies, bond additivity 
corrections, and composite methods [7–25]. For judging the 
energy content of the ionic salts, it is most significant to 
know the HOFs of anion and cation in gas phase. Despite the 
extensive studies on ionic salts, available thermochemical 
data for cations are frequently scarce and reveal significant 
inconsistency among the reported results. In case of ionic 
compounds, Born–Haber energy cycle (Fig. 1) has been 
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used to predict the HOF of salts [26–28] and is given by 
the formula:

where ∆HL is the lattice energy of the salt. The HOFs of 
cations and anions are mostly predicted with isodesmic reac-
tions. Most of the reported salts in the literature [29–46] 
show the variation in anion, while cations are commonly the 
nitrogen-rich compounds. To investigate the HOF of ionic 
salt, knowledge of the reliable HOF of cation and anion is 
an essential requirement. In recent years, there have been 
several accurate first-principle techniques proposed to evalu-
ate the thermochemistry of molecules. In particular, G3, G4, 
and G4 (MP2) theories [47–65] are popular composite theo-
retical techniques which have been successfully applied and 
established as an accurate method to calculate the HOF of a 
wide variety of molecules. Experimental data of HOFs for 
cations are rare, and reliable values are required for quan-
titative interpretation of performance and energetic nature 
of material. In this work, we report the calculation of HOFs 
for commonly used cations in the formation of ionic salts 
by G3, G4, and G4 (MP2) methods. Curtiss et al. [60, 61] 
reported the HOFs for different classes of compounds using 
G3, G4, and G4 (MP2) methods where G4 theory shows 
minimum deviation from experiment values. The calculated 
HOFs of cation were compared with that of reported results 
and recommend in thermochemical models to compute HOF 
of ionic salts precisely.

2  Results and discussion

A set of 48 commonly used CHNO cations belonging to a 
different nitrogen-containing molecules (with –NO2, –NH2, 
–CH3, –N3, –C(O)NH2, –CN, –OH, and five-membered 
heterocycles) were taken from the literature [29–46] and 
studied in this work. All ab initio and density functional 
theory (DFT) computations were performed via the Gauss-
ian 09 package [66]. The structures of selected cations were 
optimized at the B3PW91/6-31G(d,p) level, and the result-
ing structures were used as inputs for further G3, G4, and 
G4 (MP2) calculations. The G3, G4, and G4 (MP2) HOFs 
at 298.15 K were calculated using the atomization reaction 

HOF(ionic salt, 298 K) = HOF(cation, 298 K)

+ HOF(anion, 298 K) − ΔHL

procedures, which includes experimental HOFs of gaseous 
atoms at 0 K and thermal corrections for elements in their 
standard states [50]. The optimized Cartesian coordinates of 
the cations at G3, G4, and G4 (MP2) calculations are sum-
marized in Table S5-148 of Supporting Information.

The computed HOFs for cations using G3, G4, and G4 
(MP2) methods are compared in Table 1 together with 
the reported values from the literature. To the best of our 
knowledge, HOFs from quantum-chemical calculations for 
these nitrogen-rich cations are not available in the literature. 
Figure 2 shows Bland–Altman plot of the calculated HOFs 
using G4 method and reported data. Figures S1 and S2 in 
Supporting Information represent the Bland–Altman plots 
using G3 and G4 (MP2) methods, respectively. 2,2′-Car-
bonyldihydrazinium and 2,2-dimethyltriazan-2-ium appear 
as an outlier for which all three methods consistently cal-
culate lower values of the HOF at 298.15 K. In general, the 
agreement between the calculated HOFs using G3, G4, and 
G4 (MP2) methods is extremely good. In Table 1, the HOFs 
computed from G3, G4, and G4 (MP2) atomization reaction 
are compared and reveal that the HOFs obtained from G3 
and G4 (MP2) methods are always overestimated than that 
of the G4 method. Inspection of Table 1 shows that G3 val-
ues differ by 0.84–15.09 kJ/mol and G4 (MP2) values vary 
from 2.05 to 12.97 kJ/mol relative to G4 HOFs. Overall, 
the close agreement can be seen in HOFs calculated using 
G3 and G4 (MP2) methods with the results of G4 level and 
provides support to assume that G4 method with the atomi-
zation reaction will be capable of calculating the accurate 
HOFs for cations.

The G4 HOFs derived in this work for  C+ and  N+ contain-
ing cations (1–2, 3–5, 6–7, and 8–9) show similar results, 
while HOFs for cations 10–11, 12–13, and 14–15 differ from 
each other by 2–37 kJ/mol. As shown in Table 1, the HOFs 
obtained using G4 method for twenty cations (1–7, 10, 20, 
26, 27, 29, 30, 35, 38–41, 46, and 47) show variation within 
0.4–5 kJ/mol and close agreement with reported values, 
while the reported values show 6–10 kJ/mol deviation for 
ten cations and 11–50 kJ/mol difference for eleven cations 
concerning to those calculated with the G4 method. The 
uncertainty in reported values is greater than 50 kJ/mol for 
seven cations. The HOF obtained for cation 14 and 19 in the 
present work shows deviation of 55–68 kJ/mol compared to 
the values reported by Klapotke et al. [30].

Fig. 1  Born–Haber cycle for the 
formation of energetic salts
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Table 1  HOF (kJ/mol) of various cations computed using G3, G4, and G4 (MP2) methods
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Table 1  (continued)
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Table 1  (continued)
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Table 1  (continued)
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The HOFs for cations 12, 14, and 15 predicted in the pre-
sent work are higher (by 52–66 kJ/mol) than the values of 
Shreeve et al. [32–34]. Similarly, Huang et al. [37] reported 
HOF for cation 36 to be 73 kJ/mol higher than the G4 value. 
The HOFs of cation 16 (1721 kJ/mol) and 22 (775 kJ/mol) 
obtained by Shreeve et al. [39, 40] are substantially higher 
(> 420 kJ/mol) than calculated in this work. The reason for 
this considerable disagreement is not quite clear. In sum-
mary, the values of HOF obtained by G3, G4, and G4 (MP2) 
theories with atomization reaction method are very close. 
Therefore, the obtained G4 HOFs for cations for which no 
experimental data are available may be used to calculate the 
energy content of energetic ionic salts and it is hoped that 
our computed HOFs will serve as reliable estimates.

3  Conclusions

Gas-phase HOFs for a set of widely used nitrogen-rich cati-
ons were calculated with a number of methods; G4 performs 
best against experiment and recommended for calculations. 
Taking into account the available inconsistent HOF values 
of cations, significant errors can occur in the HOF calcula-
tions for energetic salts. The HOFs computed in the present 
work will help to avoid significant errors in the calculation 
of energy content and precisely compute HOF-dependent 
performance parameters. The major differences between the 
HOF values for fourteen cations calculated by G4 method 
and reported results are above 15 kJ/mol. The results of the 
present calculations is supported by G3 and G4 (MP2) calcu-
lations, which shows that the predicted values are consistent 
and can give reasonable estimations.

4  Supporting information

Deviation in predicted HOFs with G3 and G4 (MP2) meth-
ods and reported data from G4 values for selected cations 
is listed in Table S1. Tables S2 to S4 contain the calculated 
energies at 0 and 298.15 K for selected cations at G3, G4, 
and G4 (MP2) level, respectively. Cartesian coordinates 
(Å) of the cations studied in the present work at the G3, 
G4, and G4 (MP2) level are summarized in Table S5-S148. 
Table S149 lists the experimental HOFs (in kcal/mol) and 
enthalpy corrections of the atomic elements. Total G3, G4, 
and G4 (MP2) energies (in hartrees) of atomic species are 
summarized in Table S150-152. Figures S1 and S2 show the 
Bland–Altman plots between calculated HOFs using G3 and 
G4 (MP2) methods and reported data.

Table 1  (continued)

Fig. 2  Bland–Altman analysis: correlation between calculated HOFs 
using G4 method and reported data
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