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Abstract
An accurate description of anharmonic vibrational frequencies of polyatomic molecules is a challenging task. It requires 
an ab initio method to solve the vibrational Schrödinger equation along with extensive electronic structure calculations to 
generate the quartic potential energy surface (PES) in mass-weighted normal coordinates. The computation of such quartic 
PES is very expensive. Even for a medium-size molecule, highly accurate ab initio methods like CCSD, CCSD(T) become 
formidable. The DFT stands as valuable alternative in this case. In this work, we investigate the performances of several 
commonly used density functionals, namely, B3LYP, BLYP, B3LYPD, M06, M062x, PBE1PBE, B3P86, LC-�PBE, X3LYP, 
B3PW91, and B97D for the evaluation of anharmonic vibrational frequencies of semi-rigid molecules. The quality of the 
results is assessed by the comparison with experimental values. To this end, we used a set of 19 molecules of various sizes 
(4–9 atoms). The vibrational coupled cluster method (VCCM) in bosonic representation is used to solve the vibrational struc-
ture problem. The hybrid functionals B3P86, B3LYP, B3PW91, PBE1PBE, and X3LYP found to give more accurate result 
of the fundamental frequencies than the other functionals. Our results show that the error in the BLYP and B97D calculation 
is due to the inadequate description of the harmonic force field. For the LC-�PBE, M06, and M062x, the anharmonic force 
constants leads to the error. It is found that the comparative performances of the DFT functionals with VCCM are consistent 
with the second-order vibrational perturbation theory.

Keywords  Vibrational coupled cluster method · DFT benchmark · VPT2

1  Introduction

The techniques of vibrational spectroscopy (both IR and 
Raman) have become essential tools to understand the 
structure and dynamics of molecules and now widely used 
in many areas of research [1–3]. A detail understanding of 
the theory of vibrational motions in a molecule is neces-
sary for the analysis and interpretation of the experimen-
tal spectra. The harmonic approximation to the vibrational 
motion has been proved to be a very efficient approximation 
to analyze and assign the vibrational spectra of even large 
molecules. Despite the simplicity of the harmonic oscillator 
approximation, it often fails to describe several features and 
give desirable accuracy of the band positions to study the 
experimental spectra obtained in the modern highly accu-
rate experimental techniques. With the increase in computer 
performances, and development of several cost-efficient 
accurate quantum chemical methods, the calculations of 
vibrational spectra beyond harmonic approximation gained 
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considerable interest over last few years. However, the accu-
rate description of anharmonic vibrations in polyatomic 
molecule is a challenging problem. The effects of anhar-
monicity on the vibrational transitions differ significantly 
from molecule to molecule. Several representations have 
been proposed for the vibrational Hamiltonian in different 
coordinate systems [4–6]. Within the limitations involve in 
them, each coordinate system has some advantages over the 
other depending on the nature of vibrations. Among these, 
the Watson Hamiltonian, represented in the mass-weighted 
normal coordinates, is the most commonly used Hamiltonian 
for the vibrational calculation of the semi-rigid polyatomic 
molecule

Here, qi and Pi are the mass-weighted normal coordinates 
and their conjugate momenta, respectively. VW and VC are the 
Watson mass-dependent term and Coriolis coupling term. 
The potential energy function V(q) is usually represented by 
a quartic polynomial of the Taylor series expansion in the 
mass-weighted normal coordinates

Here, �i is the harmonic frequency of ith vibrational mode. 
These frequencies are obtained as the eigenvalues of the 
Hessian matrix in the mass-weighted Cartesian coordinates. 
The set of eigenvectors of the Hessian matrix defines the 
normal coordinates. fijk and fijkl are the third and fourth 
derivatives of electronic energy with respect to the normal 
coordinates at the equilibrium geometry of molecule. The 
computation of these force constants is a major bottleneck 
in the vibrational calculation. Several algorithms to compute 
them have been proposed, and they are available in many of 
the popular quantum Chemistry packages like Gaussian [7], 
Molpro [8], Gamess [9].

The Watson Hamiltonian with the potential in Eq. 2 is 
a many-body Hamiltonian, and consequently, the exact 
analytic solution of the associated Schrödinger equation is 
not possible. Over the years, several ab initio methods have 
been developed to solve the Schrödinger equation associ-
ated with this Hamiltonian. The vibrational second-order 
perturbation theory is developed and used widely [10–16]. 
Here, the harmonic part of the Hamiltonian is taken as the 
zeroth-order Hamiltonian, and the cubic and quartic terms 
of the potential are treated as perturbations. Alternatively, 
the vibrational self-consistent field (VSCF) method is devel-
oped based on variation principle and used extensively by 
many authors [17–21]. Here, the many-body Hamiltonian 
is approximated as the sum of an effective independent 
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one body Hamiltonian for each mode. The potential of the 
single-particle Hamiltonian is generated by averaging the 
many-body potential over the other modes. Several post-
VSCF methods are developed to account the vibrational 
correlation effects [22–34], that are missing in the VSCF 
description. Among these correlation methods, the vibra-
tional coupled cluster method (VCCM) [24–40] is found to 
be one of the most accurate methods to calculate the vibra-
tional spectra. The VCCM has been successfully applied to 
compute the vibrational transition energies, IR and Raman 
spectra of polyatomic molecules, and the results are found 
to be comparable with the experimental results even with a 
low-order truncation [38, 41, 42].

Given a vibrational structure method, the accuracy of a 
vibrational calculation and its computational cost depend 
on the electronic structure method to generate the quartic 
PES. The use of a highly accurate wave function-based 
method, e.g., CCSD, CCSD(T), improves the computed 
frequencies significantly, and the results are found to be 
close to the experimental values [43]. However, the high 
computational costs of these methods limit their use to 
only small- or medium-size molecules. In this respect, the 
density functional theory provides a valuable alternative. 
The DFT is much cheaper than the wave function-based 
methods for electron correlation and thus is widely used in 
computation especially for the systems of large size where 
the wave function-based methods are intractable. However, 
unlike the wave function-based methods, where the system-
atic improvement is possible by improving the quality of 
wave function (e.g., by including the higher-order terms in 
perturbation analysis, or, including the higher excitations), 
there is no way to improve the DFT results in a systematic 
manner. The exchange part of the density functional formu-
lation is empirical to a great extent. Due to this empirical 
foundation, numerous DFT methods have been proposed. 
The most of the modern developments of the DFT method 
use experimental data from wide range of chemical systems 
to enhance the accuracy of calculation. As a consequence, 
no DFT method gives uniform accuracy for different chemi-
cal properties or systems. This motivated several works that 
illustrated the performance of the DFT methods for differ-
ent properties [44–50]. There have been several studies to 
benchmark the performances of the DFT functionals for the 
anharmonic frequencies [51–55]. However, to the extent of 
our knowledge, such comparative studies have been limited 
to the VPT2 method.

The goal of the present work is to make quantitative 
assessment of different density functionals to generate the 
quartic PES for the calculation of the anharmonic vibra-
tional frequencies using vibrational coupled cluster method. 
For this purpose, we investigate the performance of several 
commonly used density functionals, namely B3LYP, BLYP, 
M06, M062x, PBE1PBE, B3P86, B97D, LC-� , X3LYP, 
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B3PW91, and B3LYPD, to calculate the frequencies of 
vibrational fundamental transitions in semi-rigid molecules. 
The quality of the results is assessed by comparison with 
experimental values. We used a set of 19 semi-rigid mol-
ecules of various sizes (4 atoms–9 atoms). The resultant 
accuracy in the VCCM description of the anharmonic transi-
tion energies with the quartic PES generated by using these 
functionals is analyzed in terms of the different exchange 
and correlation functionals used in the formulation of these 
DFT methods.

Given such a benchmark study on the performance of dif-
ferent functionals to calculate the vibrational transition ener-
gies with VCCM calculations, it is important to see whether 
such assessments of the DFT functionals is specific to only 
VCCM, or holds in general for other vibrational structure 
theories. For this purpose, we investigate the performances 
of the functionals with second-order vibrational perturbation 
theory (VPT2).

The paper is organized as follows. In the next section, we 
give brief discussions of the computational details used in 
this study. In the subsequent section, we discuss the results. 
Finally, the observations are summarized in Summary 
section.

2 � Computational details

2.1 � PES generation

We used Gaussian09.B01 quantum chemistry software to 
calculate the quartic PES. It uses analytic Hessian to com-
pute the harmonic frequencies, and the cubic and quartic 
force constants are evaluated by numerical differentiations 
of the analytic Hessian around equilibrium geometry. The 
geometries of the molecules are optimized with ‘opt=tight’ 
option as recommended by Barone [11]. Recently Martin 
and co-workers found that the DFT functionals, particularly 
the meta-GGA Minnesota functionals, need large number of 
grid points for numerical integrations to compute the quartic 
PES [16, 54]. We used pruned grid (150,974) for molecules 
with second row elements and (225,974) for molecules with 
third row elements. Such large grid leads to convergence of 
fundamental frequencies within 1 cm−1 in the VPT2 cal-
culations, as pointed by Kesharwani et.al. [54]. We used 
6–311++(2d,2p) basis set in all the electronic structure 
calculations. We anticipate that the errors in the resultant 
anharmonic frequencies due to the size of the basis set will 
not be significant.

2.2 � The DFT methods

The development of the generalized gradient approxi-
mation (GGA) [56, 57] for the exchange correlation 

functional made the DFT applicable to chemistry with 
convincing results for molecular geometries and dissocia-
tion energies. However, the major breakthrough came with 
the development of hybrid functional B3LYP [58], where, 
a portion of the Hartree Fock (HF) exchange term was 
combined with the GGA exchange functional of Becke 
(B88) [56] and correlation functional of Lee, Yung and 
Parr (LYP) [59]. The B3LYP functional became incred-
ibly successful and widely used in numerous calculations. 
Following the success of B3LYP, many hybrid functionals 
are proposed and applied extensively for various molecular 
studies. Later on, many other DFT functionals were devel-
oped to overcome the challenges that the conventional 
hybrid functionals face [60], for example, the accurate cal-
culations of dispersion/van der Waals interactions [60–62], 
reaction barriers [63, 64], long-range interactions [65], the 
electronic states with degeneracy or near degeneracy [66]. 
These formalisms involve the use of various percentage 
of HF exchange term, different exchange and correlation 
functionals, kinetic energy-dependent functionals, disper-
sion correction terms. We used following functionals to 
generate the quartic PES for the present study.

BLYP One of the preliminary GGA functional that is 
widely used for electronic structure calculation in molecules. 
It combines B88 exchange functional and LYP correlation 
functional. The LYP functional has both local and non-local 
correlation.

B3LYP The most used density functional in the litera-
ture. This hybrid functional has 20% of ‘exact’ HF exchange 
correlation term. In the Gaussian implementation, three 
unknown parameters were obtained by fitting experimental 
data from G1 data set [67] of Pople and co-workers. The 
final form of the functional is

Here EVWN
C

 is the correlation functional of Vosko, Wilk 
and Nusair [68], often referred as local density correlation. 
ELYP
c

 functional contains only the non-local terms of LYP 
functional.

B3LYPD The B3LYP functional with the inclusion of 
Grimmes dispersion correction (D2 version) [69].

B3P86 Three parameter hybrid functional like B3LYP, 
except the non-local term of LYP functional is replaced by 
the non-local term of Perdew 1986 [70].

B3PW91 Similar to B3LYP and B3P86. The non-local 
correction functional is replaced by the non-local part of 
gradient-corrected Perdew and Wang 1991 correlation func-
tional [71].

PBE1PBE This hybrid functional was developed by 
Adamo and Barone [72] from the pure gradient-corrected 
functional of Perdew, Burke and Ernzerhof (PBE) [57] with 
25% of exact HF exchange and 75% of correlation weighting.

(3)
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B97D This standalone functional includes dispersion 
correction by Grimme [73] over Becke’s ‘mapped reduced 
gradient-dependent auxiliary function’ of 1997 [74].

LC-�PBE Long-range corrected functional form of PBE 
[75]. It contains 0% HF exchange if inter electronic distance 
is less than � and 100% HF exchange if the inter electronic 
distance is more than � . In Gaussian implementation the 
default value for � is 0.4 bohrs.

X3LYP Another hybrid functional (eXtended) [76] with 
LYP correlation term. Here, the exchange functional is a 
combination of B88 and PW91. This contains 21.8% HF 
exchange.

M06 Minnesota functional of Truhlar and co-workers 
[77]. The Minnesota functionals are based on the meta-
GGA approximation. These functionals include terms that 
are dependent on the kinetic energy density. The M06 func-
tional contains 27% HF exchange.

M062x Another Minnesota functional with 54% HF 
exchange [77]. It is found to be more accurate than M06 for 
thermo-chemistry, kinetics, and non-covalent interactions.

2.3 � Vibrational coupled cluster method in bosonic 
representation

Over the last decade, extensive works were done for the 
formulation of vibrational coupled cluster method [28, 29, 
32–34, 36, 78, 79]. Two different routes are followed for the 
VCCM formalism. One is the basis set representation, devel-
oped and used by Christiansen and co-workers [28, 29, 78], 
and the other one is the bosonic representation developed by 
Prasad and co-workers [32–34, 36, 79]. We used the bosonic 
representation.

The formulation of the VCCM in bosonic representation 
follows three steps. In step 1, we invoke an effective har-
monic oscillator (EHO) [32, 80] approximation for the vibra-
tional ground-state reference wave function. In the EHO, a 
product of N Gaussian functions

is variationally optimized with respect to the �i and q0
i
 to 

obtain the optimized ground-state function. Here N is the 
number of vibrational degree of freedom in the molecule. 
The harmonic oscillator ladder operators are defined with 
respect to this EHO wave function 

(4)�0 = exp

(
−

N∑

i=1
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i
)2∕2
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1

�i

q

dqi

)
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i
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−

1
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)
.

The EHO wave function, �0 , by definition, is the vacuum 
state for the operator ai.

In step 2, the VCCM wave function for the ground state is 
parametrized with a double-exponential wave operator

Here, 

 We invoke the subsystem embedding condition [81, 82] to 
derive the working equations for S and � matrix elements. 
Under this condition, the equations for the excitation cluster 
matrix elements S are decoupled from the equations for the 
de-excitation cluster matrix elements � . The final working 
equations for the cluster matrix elements S, the ground-state 
energy and the cluster matrix elements � are

Here, �e are excited states. The effective Hamiltonian H1
eff

 
and H2

eff
 are defined as 

We used four-body approximation for the cluster opera-
tor S and � in Eq. 7. Since the Hamiltonian is a four-body 
operator, the effective Hamiltonian H1

eff
 and H2

eff
 are also 

approximated to have at most four-body terms.
In the step 3, the coupled cluster linear response theory 

[83, 84] (CCLRT) is used to calculate the vibrational excita-
tion energies. In this approach, the double similarity trans-
formed effective Hamiltonian, H2

eff
 is diagonalized over the 

configuration space of excited states of EHO. The diagonali-
zation of H2

eff
 gives the excitation energies directly.

In our earlier studies [41, 42], we noted that in the fre-
quency region dominated by CH stretching fundamentals, 
the zeroth-order CH fundamental states mix strongly with 
several higher quanta states due to high-order resonances. 
Due to such heavy mixing of the zeroth-order states, one 
may occasionally get more than one final states that carry 
significantly large contributions from zeroth-order CH fun-
damental states. In this situation, we choose the state that 
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has highest contribution from the zeroth-order fundamental 
as the final fundamental state.

Note that the present calculations exclude the Coriolis 
coupling terms from the Hamiltonian.

2.4 � Second‑order vibrational perturbation theory

The second-order vibrational perturbation theory (VPT2) 
[10–15] is the one of the most widely used method to cal-
culate the anharmonic vibrational spectra of polyatomic 
molecules. In this work, we used Gaussian09.B01 package 
to calculate the VPT2 anharmonic frequencies. A modified 
version of VPT2 method is implemented in Gaussian09 by 
Barone and co-workers [11–13]. In this method, the har-
monic part of the vibrational Hamiltonian is taken as the 
zeroth-order Hamiltonian and the cubic, quartic and Coriolis 
coupling terms are treated as perturbations. The working 
equations for the fundamentals are given by

Here, �i is the harmonic frequency of ith mode, �i are the 
vibrational states, and �0 and �ij are zero point contribution 
and anharmonic constants, respectively, derived from cubic, 
quartic and Coriolis coupling terms of the PES. We note 
that the computations of the anharmonic constants encounter 
singularities if there are strong Fermi resonances present 
between the vibrational modes. To overcome such singular-
ity problem, Barone used variational calculations with the 
modes involving Fermi resonances [11]. We used the default 

(12)
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∑
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(
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1

2
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+
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�ij
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1

2

)(
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1

2

)
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threshold values implemented in Gaussian09 to detect the 
vibrational resonances (10 cm−1 for both Fermi and Dar-
ling–Dennison resonances).

3 � Results and discussions

In Fig. 1, we present the accuracy of VCCM anharmonic 
frequencies for the fundamental transitions with respect to 
the experimental values in terms of the standard deviation 
(SD) and the maximum absolute deviation (MaxAD). The 
standard deviations are calculated using the formula

Here, �exp
i

 and �anh
i

 are the experimental and calculated 
anharmonic frequencies, respectively, and M is the total 
number of fundamental transitions considered in the cal-
culations. Except, for C2H4O [85], C2H4O [85] and Furan 
[86] molecule, all the experimental frequencies are taken 
from NIST database [87]. The fundamentals with known 
experimental frequency (a total of 166 transitions) are used 
to calculate the SD.

The best results are found with the hybrid functionals 
B3PW91, B3P86, and PBE1PBE. These three hybrid DFT 
methods have different versions of correlation functional 
of Perdew and co-workers. The SD values with B3PW91, 
B3P86, and PBE1PBE are 22.1, 22.3 and 22.8 cm−1, 
respectively, and the MaxAD values are about 85, 85, and 

(13)SD =

√√√√ 1

M − 1

M∑

i=1

(�
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i
− �
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)

Fig. 1   The standard devia-
tions of errors (in cm−1 ) in the 
VCCM calculations
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105 cm−1, respectively. Thus, the most accurate results are 
found with B3PW91 functional. However, the accuracy 
with these three functionals are nearly identical.

The B3LYP and X3LYP functionals are found to be less 
accurate than B3PW91, B3P86, and PBE1PBE function-
als. For example, the SD of B3LYP (25.8 cm−1 ) is about 
3.7 cm−1 higher than the most accurate method B3PW91. 
The MaxAD value of B3LYP is about 118, 33 cm−1 higher 
than MaxAD of B3PW91. Thus, our results suggest that 
the correlation functions of Perdew and co-workers 
improve accuracy over the LYP correlation function. We 
note marginal improvement of accuracy with X3LYP func-
tional over the B3LYP. The SD of X3LYP (24.6 cm−1 ) is 
about 1.2 cm−1 less than SD of B3LYP. The MaxAD value 
of X3LYP (114 cm−1 ) is only 4 cm−1 less than MaxAD of 
B3LYP. As mentioned earlier, the X3LYP hybrid func-
tional is a modification of B3LYP functional with the 
inclusion of part of exchange functional of Perdew and 
co-workers. Such modification has marginal effect on the 
final accuracy of anharmonic frequencies with VCCM.

The inclusion of Grimme’s dispersion correction 
term to the B3LYP method reduces the accuracy of the 
anharmonic frequencies with VCCM method. The SD 
of B3LYPD (29 cm−1 ) is about 3 cm−1 higher than SD 
of B3LYP. The MaxAD of the B3LYPD is about 6 cm−1 
higher than MaxAD of the B3LYP.

The Minnesota family functionals M06 and M062x that 
give accurate results for thermo-chemistry, are found to 
perform poorly for the anharmonic frequency calculations 
compared to the standard hybrid functionals B3PW91, 
B3P86, PBE1PBE, X3LYP and B3LYP. The SD values 
of M06 and M062x are 33.7 and 31.8 cm−1, respectively, 
and the MaxAD values are 112 and 133 cm−1, respectively. 
Both the SD and MaxAD values of M06 and M062x are 
significantly higher than the SD and MaxAD values of 
five hybrid functionals. For example, the SD of M06 
and M062x are about 12 and 10 cm−1 higher than SD of 
B3PW91, respectively. Between M06 and M062x, we find 
that M062x gives marginally better results than M06 in 
terms of the SD values. However, the MaxAD of M06 is 
about 20 cm−1 less than MaxAD of the M062x.

Our results suggest that the long-range corrected LC-�
PBE is significantly less accurate than the standard hybrid 
functionals and Minnesota functionals for VCCM frequen-
cies. The SD of LC-�PBE (41.4 cm−1 ) is almost twice of 
SD of B3PW91, and about 1.5 times of B3LYP. Again, the 
MaxAD value of LC-�PBE (162 cm−1 ) is almost double 
of MaxAD value of B3PW91, and about 45 cm−1 higher 
than MaxAD value of B3LYP calculations. Compared to 
Minnesota functionals, e.g., M062x, the SD value of LC-�
PBE is about 10 cm−1 higher. Similar pattern is also found 
in the MaxAD values.

Among all the functionals studied here, the pure func-
tional BLYP is found to be the most inaccurate method for 
anharmonic frequencies. The SD value of BLYP is as high 
as 79.9 cm−1 , and the MaxAD value is 267 cm−1 . This SD 
is about three times less than its hybrid counterpart B3LYP. 
Again, the MaxAD of BLYP is almost double of B3LYP. 
Thus, the inclusion of HF exchange improves the accuracy 
of the PES significantly.

We observed large error in the VCCM frequencies 
with B97D functional. The SD and MaxAD values with 
B97D functional are 70.7 and 228 cm−1, respectively. Like 
BLYP, the HF exchange term is absent in the B97D func-
tional. Thus, such large errors highlight the importance of 
HF exchange term in the DFT functional for the accurate 
description of anharmonicities of polyatomic molecules. 
Moreover, the presence of dispersion correction in the func-
tional may attribute to the errors in the B97D calculations, 
as we noticed the deterioration of accuracy with B3LYPD 
over B3LYP.

The deviations between the VCCM and experimental 
frequencies are more for high frequency CH(D) and NH(D) 
fundamentals for the most of the functionals. We noticed that 
the most of the MaxAD values are from CH(D) or NH(D) 
stretching fundamentals. (In Table S1 of the supplementary 
materials, the MaxAD value and the corresponding vibra-
tional mode and molecule is given). As a consequence, we 
find a significant reduction of SD values if we exclude these 
high-energy modes from the SD calculations. For exam-
ple, the SD value with BLYP calculation is as high as 79.9 
cm−1 , when all the modes are involved in the calculation. 
This error reduces to 58.9 cm−1 if the calculation excludes 
the CH(D) and NH(D) stretching frequencies. However, we 
notice exceptions with the PBE1PBE, M062x and LC-�PBE 
functionals. The SD with and without CH(D) and NH(D) 
stretching frequencies with these three functionals are nearly 
identical. These functionals give comparatively more accu-
rate results for CH(D) and NH(D) fundamentals than others. 
The MaxAD values are from the N-N stretching mode of 
trans-N2D2 molecule for these three methods.

In Fig. 2, we present the SD and MaxAD values of VPT2 
calculations. We find that the patterns of the VCCM and 
VPT2 results are very similar. The standard hybrid func-
tional B3LYP, B3P86, B3PW91, PBE1PBE, and X3LYP 
give more accurate results than other functionals. These five 
functionals show similar accuracy for VPT2 frequencies. 
The differences of the SD values of error with these five 
functionals lie within 3 cm−1 and their MaxAD values differ 
by at most 30 cm−1 . However, unlike VCCM, we do not find 
any systematic improvement of final accuracy with Perdew’s 
correlation functional over LYP correlation functional.

The inclusion of Grimme’s dispersion correction to the 
B3LYP functional reduces the accuracy of the VPT2 results 
also. The SD of B3LYP, 23.3, increases to 30.4 cm−1 with 
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B3LYPD method. The MaxAD value of B3LYPD (162 
cm−1 ) is significantly higher than the MaxAD value of 
B3LYP (70 cm−1).

With the VPT2 method also, the pure functional BLYP, 
B97D and long-range corrected LC-�PBE give poor results. 
The maximum errors are found with BLYP followed by 
B97D. The magnitudes of errors with these three functionals 
are significantly higher than the errors with other function-
als. For example, the SD of BLYP, B97D and LC-�PBE are 
as high as 75.8, 64.5 and 46.4 cm−1, respectively, compared 
to the SD of B8P86 (21.7 cm−1).

The Minnesota functionals M06 and M062x are found 
to be significantly less accurate than the standard hybrid 
functionals in the VPT2 calculations. This trend is consistent 
with the VCCM results. However, unlike in VCCM, where 
M062x is found to be marginally more accurate than M06 
method, here M06 gives better results than M062x. The SD 
of the M06 results is 30.2 cm−1 , whereas it is 33.6 cm−1 
with M062x in the VPT2 calculations. Although the M062x 
functional has double amount of HF exchange compared to 
the M06 functional, we do not find any correlation between 
the amount of HF exchange terms and the accuracy of anhar-
monic frequencies for this class of functionals.

Next, we discuss the performance of the functionals for 
the individual molecules. In Tables 1 and 2, we present the 
SD and MaxAD from the VCCM calculations for all the 
molecules of our study. The good performance of the stand-
ard hybrid functionals, B3LYP, B3P86, B3PW91, X3LYP, 
and PBE1PBE are consistent in all the molecules. The SD 
as well as MaxAD values of these hybrid functionals are 
significantly smaller than the other functionals for almost all 
the molecules. These numbers are nearly equal for B3P86, 

B3PW91, and PBE1PBE calculations. For example, the 
SD values for 1,1-C2H2F2 molecule are 17.9, 19.3 and 17.6 
cm−1, respectively, with B3P86, B3PW91, and PBE1PBE 
methods, and the MaxAD values are about 29, 31 and 28 
cm−1, respectively. This pattern is reflected in the overall 
accuracy of these methods, as noted in Fig. 1.

We have seen in Fig. 1 that the overall accuracy of B3LYP 
method is less than these three functionals with Perdew’s 
correlations. For the individual molecules also, such pattern 
is noticeable in the VCCM calculations. For the most of the 
molecules, the SD as well as MaxAD values are higher in 
B3LYP compared to B3P86, B3PW91, and PBE1PBE. For 
example, the SD of CD2Cl2 molecule with B3LYP func-
tional is about 24.4 cm−1 , whereas they are 12.1, 12.3, and 
9.3 cm−1 with B3P86, B3PW91, and PBE1PBE functionals, 
respectively. The MaxAD for this molecule is about 50 cm−1 
in the B3LYP calculations and 20, 22, and 19 cm−1 in the 
B3P86, B3PW91, and PBE1PBE calculations, respectively. 
Thus, the results of the individual molecules also suggest the 
better performance of Perdew’s correlation functionals over 
LYP correlation functional. Notably, the marginal improve-
ment of accuracy with X3LYP method over B3LYP is also 
consistent for almost all the molecules studied here. In the 
same example of CD2Cl2 molecule, the SD and MaxAD val-
ues in the X3LYP are 21.7 and 46 cm−1, respectively, less 
than B3LYP.

We noticed that the inclusion of dispersion correc-
tion to the B3LYP method reduces the overall accuracy 
of the anharmonic vibrations. The results in Tables 1,  2 
show that such effect is consistent in all the individual 
molecules. Both the SD and MaxAD values for B3LYPD 
are systematically higher than B3LYP. However, the 

Fig. 2   The standard deviations 
of errors (in cm−1 ) in the VPT2 
calculations
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differences are not very large. This is expected since there 
is no weak intermolecular interaction in our systems of 
interest, the effect of dispersion should not be significant. 

It was noted earlier by Kozuch and Martin [88] that the 
second derivatives of the dispersion corrections are 
neglected in the frequencies calculations in Gaussian09. 

Table 1   The standard deviations in fundamental frequencies (in cm−1 ) by VCCM method with respect to the experimental values for each mol-
ecule of the studied set

Molecule B3LYP B3LYPD B3P86 B3PW91 BLYP B97D M06 M062x LC-�PBE PBE1PBE X3LYP

11-C
2
H

2
F
2

22.07 22.48 17.91 19.30 76.68 67.73 29.23 25.18 29.68 17.57 19.21
C
2
D

4
16.51 18.69 14.82 14.55 57.62 50.59 23.58 24.72 40.81 17.10 16.17

C
2
D

4
O 14.67 25.98 9.77 10.92 66.91 59.29 29.02 27.16 39.25 15.18 11.73

C
2
H

4
26.52 30.03 22.64 25.11 82.14 73.88 38.81 21.74 33.70 20.79 24.03

C
2
H

4
O 47.20 52.22 35.17 37.67 109.96 98.96 50.29 32.03 41.18 27.41 44.11

CD
2
Cl

2
24.39 27.66 12.12 12.26 64.01 61.63 21.47 16.29 34.89 9.25 21.66

CH
2
Cl

2
34.87 37.73 26.70 26.89 80.02 74.92 38.22 28.57 44.50 24.96 30.51

cis-C
2
D

2
F
2

17.90 19.87 14.08 14.15 64.80 54.78 18.85 24.78 31.69 17.33 16.05
cis-C

2
H

2
F
2

24.91 25.92 18.91 20.08 84.61 73.91 45.02 39.37 32.39 17.89 21.91
Cl

2
CO 26.31 27.89 22.57 21.64 64.27 52.39 36.60 40.43 52.58 29.67 25.06

D
2
CO 23.17 24.88 27.34 27.34 72.03 91.60 41.76 46.43 48.33 31.71 23.11

D
2
CS 8.34 11.10 10.53 9.67 49.21 40.46 14.55 29.28 50.44 15.70 8.98

F
2
CO 33.55 35.07 20.52 22.15 100.93 74.80 33.25 37.28 30.58 21.50 29.12

F
2
CS 28.03 30.33 10.69 12.79 90.93 66.47 13.28 23.94 30.45 13.51 23.42

Furan 20.09 28.58 24.60 15.01 77.67 61.53 36.18 18.47 29.34 20.79 26.97
H

2
CO 25.72 26.40 29.08 29.60 140.97 129.38 48.53 55.28 56.65 33.66 24.69

H
2
CS 10.67 18.43 13.90 14.72 78.10 93.29 32.79 32.82 57.85 18.30 8.94

trans-N
2
D

2
32.95 32.95 40.10 39.31 90.68 71.94 46.21 64.67 84.77 49.14 33.94

trans-N
2
H

2
47.38 47.96 45.31 45.82 133.96 109.75 41.60 66.24 88.31 48.72 45.09

Table 2   The maximum deviations in fundamental frequencies (in cm−1 ) by VCCM method with respect to the experimental values for each mol-
ecule of the studied set

Molecule B3LYP B3LYPD B3P86 B3PW91 BLYP B97D M06 M062x LC-�PBE PBE1PBE X3LYP

11-C
2
H

2
F
2

48.80 49.67 29.37 30.62 125.72 113.94 58.76 48.32 56.96 28.33 42.52
C
2
D

4
27.65 34.46 36.18 32.55 90.37 81.46 43.42 55.17 79.06 42.24 29.39

C
2
D

4
O 30.06 58.92 17.17 20.46 100.24 108.60 59.58 66.19 83.85 34.83 25.85

C
2
H

4
59.25 67.15 41.59 48.10 146.67 134.16 65.04 60.76 82.54 44.99 54.15

C
2
H

4
O 118.33 124.17 75.64 79.68 203.68 194.72 108.97 72.08 90.01 67.63 113.81

CD
2
Cl

2
50.22 58.88 20.40 22.26 108.20 105.16 32.81 33.64 47.11 19.30 45.73

CH
2
Cl

2
61.89 70.16 55.99 57.44 125.82 121.34 83.93 57.26 84.39 52.97 57.02

cis-C
2
D

2
F
2

38.02 40.25 24.22 24.26 99.94 84.74 40.68 53.04 67.20 32.13 33.05
cis-C

2
H

2
F
2

54.84 58.13 42.68 46.94 134.04 128.16 111.70 72.87 75.29 31.28 49.33
Cl

2
CO 47.89 51.15 43.28 39.87 110.59 96.32 74.29 84.82 89.99 60.34 41.55

D
2
CO 37.15 36.13 56.10 52.90 101.80 177.44 74.83 88.96 90.61 68.14 42.63

D
2
CS 13.08 15.43 14.12 12.85 78.45 70.60 23.80 38.12 66.13 21.22 15.07

F
2
CO 67.30 69.40 33.93 40.90 167.35 128.76 65.00 73.31 63.95 42.82 58.93

F
2
CS 48.04 51.17 14.20 19.79 150.55 111.00 21.36 32.04 36.31 20.73 39.37

Furan 53.68 86.71 85.47 40.63 143.48 97.57 86.13 39.01 66.08 70.39 88.50
H

2
CO 37.67 36.99 60.07 56.53 267.19 255.84 89.13 96.84 98.99 73.93 43.74

H
2
CS 16.44 36.94 27.00 24.61 112.27 162.80 44.35 48.87 83.29 36.96 11.03

trans-N
2
D

2
54.75 54.06 83.17 80.00 157.39 133.67 82.19 132.56 162.29 104.65 62.87

trans-N
2
H

2
100.52 102.51 80.46 85.27 243.98 210.73 59.01 96.09 127.15 73.19 91.82
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Thus the differences between the B3LYP and B3LYPD 
frequencies may be due to the anomalous behavior of the 
derivatives of the damping functions [88].

The results in Tables 1 and  2 suggest that the overall 
poor performance of the pure functionals BLYP, B97D, and 
long-range corrected functional LC-�PBE are the reflection 
of large errors for the individual molecules. Both the SD and 
MaxAD values for these three functionals are much higher 
than the other functionals. For example, the SD for D2CS 
molecule in BLYP calculations (49.2 cm−1 ) is almost six 
times of SD in B3LYP (8.3 cm−1 ) calculations. The SD for 
B97D and LC-�PBE are 40.6 and 50.4 cm−1, respectively.

Although the overall SD value with M062x is less than 
the SD value with M06 functional in the VCCM calcula-
tions, the results are quite scattered for the individual mol-
ecules. In about half of the molecules, the SD values are 
less for M06 compared to M062x. The magnitude of dif-
ferences of SD values between these two methods are quite 
significant for some molecules. Similar pattern is found for 
the MaxAD values. For example, the SD of C2H4O of M06 
(50.3 cm−1 ) is almost 18 cm−1 more than the SD of M062x 
(32.0 cm−1 ). On the other hand, for trans-N2H2 molecule, 
the SD of M06 (41.6 cm−1 ) is about 25 cm−1 less than SD 
of M062x (66.2 cm−1 ). Such pattern of results makes it 
difficult to judge which method is more accurate over the 
other. It is also noted earlier that the overall accuracies with 
these two functionals are contradictory in VPT2 and VCCM 
calculations.

We present the SD values of the individual molecules 
with VPT2 calculations in Table 3. The MaxAD values from 
all the VPT2 calculations are given in the supporting infor-
mation (S2). The accuracy patterns of these DFT functionals 
with VPT2 method are very similar to the VCCM results 
for the individual molecules also. The hybrid functionals 
B3P86, B3PW91, B3LYP, X3LYP, and PBE1PBE give 
more accurate results than other types of functionals. The 
differences of SD as well as MaxAD values among B3P86, 
B3PW91, and PBE1PBE functionals are very small for the 
individual molecules in the VPT2 results. This reflects the 
close behavior of these three functionals with Perdew’s cor-
relation terms for the anharmonic frequency calculations. 
Like VCCM calculations, the X3LYP functional improves 
the accuracy over B3LYP marginally for almost all the mol-
ecules. The dispersion corrected B3LYPD results are sys-
tematically less accurate than B3LYP for all the molecules 
with VPT2 calculations.

The VPT2 frequencies with pure functionals BLYP, 
B97D, and long-range corrected LC-�PBE are the most 
inaccurate among the functionals for all the individual mol-
ecules. The SD values in these three functionals are signifi-
cantly higher than the SD values with the other functionals, 
consistent with the VCCM results. Thus, we may say that the 
large errors with these functionals are not the artifacts of the 
vibrational methods used or cancelations of errors among 
the different molecules, they are rather due to limitations of 
PES generated by these three functionals.

Table 3   The standard deviations in fundamental frequencies (in cm−1 ) by VPT2 method with respect to the experimental values for each mol-
ecule of the studied set

Molecule B3LYP B3LYPD B3P86 B3PW91 BLYP B97D M06 M062x LC-�PBE PBE1PBE X3LYP

11-C
2
H

2
F
2

20.04 20.82 14.15 15.01 69.76 51.62 20.57 27.05 34.26 16.12 17.64
C
2
D

4
15.37 16.55 16.04 14.54 51.82 45.10 17.67 28.83 44.89 19.47 16.10

C
2
D

4
O 12.57 67.99 9.43 9.40 65.41 53.62 28.13 30.56 41.40 15.32 10.71

C
2
H

4
23.51 23.87 17.79 18.27 68.96 60.62 27.10 25.50 42.77 19.35 22.54

C
2
H

4
O 29.94 53.42 21.15 23.25 85.93 73.65 42.26 34.31 51.11 24.56 28.77

CD
2
Cl

2
23.77 27.31 11.67 11.59 63.00 60.81 19.89 17.85 35.88 9.30 21.71

CH
2
Cl

2
30.63 34.20 23.99 23.76 76.57 72.90 34.09 28.62 44.69 22.26 28.86

cis-C
2
D

2
F
2

19.59 21.37 15.57 15.07 63.48 53.67 19.30 26.61 32.81 18.50 17.20
cis-C

2
H

2
F
2

20.13 21.37 33.76 36.98 78.88 67.65 43.42 33.36 30.65 31.94 18.36
Cl

2
CO 26.89 28.48 23.20 22.29 64.45 52.80 37.24 41.14 66.50 29.79 25.69

D
2
CO 24.06 26.07 27.68 27.80 97.79 90.65 42.36 45.84 47.70 31.91 24.04

D
2
CS 13.30 15.97 14.47 13.91 49.15 41.68 17.04 31.58 54.07 18.92 13.99

F
2
CO 37.40 35.81 22.97 22.94 101.78 75.57 36.14 36.87 34.40 26.47 29.88

F
2
CS 29.28 31.64 11.37 13.54 91.90 67.52 13.42 23.58 30.23 13.54 24.78

Furan 9.72 13.59 7.71 6.02 64.22 54.28 15.50 22.17 42.19 13.62 7.85
H

2
CO 29.33 77.67 31.41 32.26 136.80 127.96 52.31 51.05 53.11 35.47 28.43

H
2
CS 33.06 37.10 33.79 34.78 86.27 75.37 24.20 40.71 76.87 36.11 32.11

trans-N
2
D

2
35.69 35.64 42.08 41.38 92.08 73.84 49.95 66.31 82.83 50.65 36.55

trans-N
2
H

2
47.63 47.51 47.93 47.93 142.98 115.88 54.88 78.29 99.02 53.94 46.98
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We note that the irregular behavior of SD and MaxAD 
values of M062x and M06 functionals for the individual 
molecules for the VPT2 method also. The SD and MaxAD 
of M06 is less than M062x for some molecules, and other-
wise for the rests.

The performance of the DFT functionals under study fol-
lows similar pattern in both VCCM and VPT2 calculations. 
We present the plot of ( �VCCM − �

VPT2 ) values against the 
VCCM frequencies in Fig. 3 for the B3LYP PES. We find 
that the VPT2 frequencies in our study are higher than the 
VCCM frequencies for the most of the fundamental transi-
tions. These pattern is consistent for the all DFT functionals 
used here. (The plots of �VCCM − �

VPT2 values against the 
VCCM frequencies for the rest of the PESs are given in Fig-
ure S1 and S2 of Supplementary Materials). As mentioned 
before, the VCCM method due to its exponential parametri-
zation of the ground-state wave function, accounts the corre-
lation effects in a very accurate manner. In terms of perturba-
tive analysis, it can be shown that the coupled cluster method 
sums up all the connected diagrams up to infinite order for a 
given approximation in the cluster operator [89]. Thus, the 
VCCM treats anharmonic effect more accurately than the 
VPT2. We find that differences between VCCM and VPT2 
results are more prominent for the C–Cl and C–F stretching 
fundamentals (frequency range 1500–2000 cm−1 ) and the 
high-energy C–H or N–H fundamentals (frequency range 
2700–3400 cm−1 ). These modes are highly anharmonic and 
strongly affected by Fermi and several higher-order reso-
nance effects. For example, the CH and NH stretching fun-
damental states are usually strongly coupled with several 
higher quanta excited states. In the VPT2 calculations, the 
effects of Fermi resonances are estimated by a variational 

calculation with the states involving the Fermi coupling. The 
effects of the higher-order couplings are still missing in its 
description. On the other hand, in the VCCM, a vibrational 
configuration interaction method like diagonalization of 
the effective Hamiltonian is invoked to describe the excited 
states. Thus, it gives a better description of the vibrational 
resonance effects present in the molecules.

We note that the effect of the Coriolis coupling and Wat-
son term are included in the VPT2 calculations, while they 
are absent in the VCCM calculations. The Coriolis coupling 
effects may be quite significant for the small molecules like, 
H2CO . These also contribute to the differences between the 
VPT2 and VCCM results. A detail study on the compari-
son between the VCCM and VPT2 methods in terms of the 
Coriolis coupling, different resonance effects should bring 
some more physical insights about these two methods. An 
accurate quartic PES like CCSD(T)/CBS is required to find 
quantitative estimation of the differences between these two 
methods. However, such study is out of the scope of the 
presented work.

In Figure S3 of the supplementary materials, we present 
the standard deviations and the corresponding MaxAD of 
the differences between the VCCM and VPT2 frequencies 
for all the DFT functionals. These SD values lie in between 
14 and 25 cm−1 and the MaxAD values lie in between 70 and 
220 cm−1 . The SD of differences in the VPT2 and VCCM 
frequencies are highest for the B3LYPD functional and mini-
mum for the M06 functional. We found that except for B97D 
and B3LYPD functionals, both the SD and MaxAD do not 
differ much between the DFT functionals. The dispersion 
corrections in the B97D and B3LYP functionals increases 
the differences between VCCM and VPT2 results.

Fig. 3   The differences between 
the VCCM frequencies and 
the VPT2 frequencies for the 
B3LYP PES
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Next, we turn our attention to analyze the source of the dis-
crepancies of the DFT methods for the anharmonic description 
of the vibrational frequencies, in terms of the harmonic and 
anharmonic force field description by these methods. We cal-
culate the errors in the harmonic and anharmonic frequencies 
with VCCM method with respect to the experimental values 
as follows, 

(14a)�
Method
harm

=�exp − �
Method
harm

 In Fig. 4, we present the comparison of these errors for the 
most widely used functional B3LYP, its dispersion corrected 
functional B3LYPD, and the pure functional BLYP. These 
three DFT methods have same type of exchange and cor-
relation functionals. In Fig. 5, we compare the errors with 
other functionals.

(14b)�
Method
anh

=�exp − �
Method
VCCM

.

Fig. 4   The errors in the har-
monic (green lines) and anhar-
monic frequencies (red lines) 
with respect to the experimental 
values for B3LYP, B3LYPD and 
BLYP methods
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Fig. 5   The errors in the 
harmonic (green lines) and 
anharmonic frequencies (red 
lines) with respect to the experi-
mental values for different DFT 
functionals
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From Fig. 4, we note that the B3LYP and B3LYPD have 
similar pattern for the errors �harm as well as �VCCM . The 
�harm values are negative. Except for the region 1500–2000 
cm−1 , the anharmonic corrections reduce the frequency val-
ues to a large extent and they are overestimated compared to 
the experimental numbers. This is more visible for the high-
energy CH or NH stretching region 2700–3400  cm−1 . The 
large negative �harm values for these modes become signifi-
cantly positive after anharmonic corrections. We note that 
for the fundamentals in frequency region 1500–2000 cm−1 , 
the �VCCM values are negative for these two functionals. 
These vibrational frequencies belong to C–F or C–Cl stretch-
ing. These two hybrid functionals underestimate the anhar-
monicities for these vibrational modes.

Figure 4 suggests that the large deviations of the anhar-
monic frequencies compared to the experimental numbers 
with the pure functional BLYP are due to relatively smaller 
values of the harmonic frequencies. Except for the CH(D) 
or NH(D) stretching fundamentals, the most of the harmonic 
frequencies are less than experimental values. Even for the 
CH(D) or NH(D) fundamentals, the �BLYP

harm
 are less negative 

compared to its hybrid counterpart B3LYP. The anharmonic 
corrections bring them down to a greater extent. Thus, we 
get large positive numbers for �BLYP

VCCM
 . The same pattern is 

found for the B97D functional. From Fig. 5, we find that the 
large errors for the VCCM frequencies with B97D functional 
is due to the overestimation of the harmonic frequencies 
compared to the experimental values.

From Fig. 5, we find that the errors in the harmonic and 
anharmonic frequencies with the hybrid functionals B3P86, 
B3PW91 and X3LYP follow similar pattern as of B3LYP 
results. The �harm are negative with these functionals. Except 
for the region 1500–2000 cm−1 , the �VCCM values are posi-
tive due to overestimation of anharmonic effects. The anhar-
monic descriptions for the region 1500–2000 cm−1 are not 
sufficient to counter the negative �VCCM values of C–F and 
C–Cl stretching modes with these hybrid functionals.

The overall SD and the SD for the individual molecules 
suggest that the accuracy of the anharmonic frequencies 
with PBE1PBE functional are close to B3P86 and B3PW91. 
However, Fig. 5 suggests that the pattern of the �PBE1PBE

VCCM
 

values deviates from �B3P86
VCCM

 and �B3PW91
VCCM

 . For the CD or ND 
stretching modes (2000–2500 cm−1 ), the �PBE1PBE

VCCM
 values are 

positive, whereas the �B3P86
rmVCCM

 and �B3PW91
VCCM

 are negative. For 
the frequency region 1500–2000 cm−1 , we find larger nega-
tive errors in the anharmonic frequencies with PBE1PBE 
compared to B3P86 and B3PW91. For the low frequency 
modes in the range 300–1500 cm−1 , �B3P86

VCCM
 and �B3PW91

VCCM
 

numbers are mostly positive, whereas, �PBE1PBE
VCCM

 numbers are 
distributed over both sides of the zero axis. Thus, signifi-
cant cancelation of errors in this region reduces the overall 
SD value for PBE1PBE functional. On the other hand, the 

anharmonic corrections are more systematic for the hybrid 
functionals B3PW91 and B3P86.

We find different pattern of the harmonic and anharmonic 
errors between the M06 and M062x methods. The errors in 
the harmonic calculations are negative for both these meth-
ods. However, the absolute �M06

harm
 values are less than the 

absolute �M062x
harm

 values. For the low energy modes of the 
frequency range 300–1500 cm−1 , the �M06

VCCM
 values are posi-

tive and the �M062x
VCCM

 values are negative. Thus, M06 overes-
timates and M062x underestimates the anharmonic effects 
for this range. For the frequency range 1500–2000  cm−1 , 
both the methods underestimate the anharmonicities. Again, 
for the CD or ND stretching modes in the frequency range 
2000–2500 cm−1 , M06 overestimates and M062x underes-
timates the anharmonic effects. For the high energy range 
2700–3400 cm−1 , the �M06

VCCM
 values are positive, and the 

�
M062x
VCCM

 values are scattered over both sides of the zero axis. 
Thus, the accurate description of the high-energy CH(D) or 
NH(D) modes with M062x method is the consequence of 
cancelation of errors in the anharmonic descriptions. From 
�
M062x
VCCM

 and �M062x
harm

 values, we can say that the large SD for the 
overall results is due to inadequate account of anharmonic 
effect in the M062x PESs, that is unable to bring down the 
large deviations of the harmonic frequencies. On the other 
hand, the overestimations of anharmonicities in the M06 
PESs are responsible for the corresponding large SD value.

In case of LC-�PBE functional, the resultant inaccuracy 
of this functional arises from both harmonic part and anhar-
monic part of the PES. The most of the �LC−�PBE

harm
 values 

are more negative than in any functionals studied here. The 
anharmonic corrections are not able to bring down these 
errors significantly. As a result, we get large SD values for 
the individual molecules as well as for the overall standard 
deviation calculation.

4 � Summary

In this work we analyze the performance of several com-
monly used density functionals to generate the quartic PES 
for the VCCM calculations. To this end, we compute the 
anharmonic frequencies for the fundamental transitions of 
nineteen molecules. The comparative study on these DFT 
methods is performed in terms of the standard deviations 
and the maximum absolute deviations of the resultant anhar-
monic fundamental frequencies with respect to the experi-
mental values. The important observations from this work 
can be summarized as

1.	 The hybrid functionals B3P86, B3PW91, PBE1PBE, 
B3LYP, and X3LYP give more accurate results than the 
other functionals studied here.
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2.	 The correlation functionals of Perdew and co-workers 
perform marginally better than the Lee–Yang–Parr cor-
relation functional for the hybrid DFT method if the 
VCCM is used to calculate the fundamental frequencies. 
However, no such trend is found in the VPT2 results.

3.	 The hybrid functionals give far better description 
than the standalone functionals BLYP and B97D. The 
HF exchange term in the hybrid density functionals 
improves the accuracy of the quartic PES significantly. 
The harmonic frequencies with B97D and BLYP func-
tionals are significantly smaller compared to the har-
monic frequencies with other functionals. The harmonic 
frequencies of B97D and BLYP are in fact close to the 
experimental values, and consequently, we get large 
error in the anharmonic frequencies with VCCM.

4.	 Grimme’s dispersion correction to the hybrid func-
tional B3LYP reduces the accuracy of the results. The 
B3LYPD results are systematically less accurate than the 
B3LYP results for all the molecules studied here.

5.	 The Minnesota functionals M06 and M062x, which 
give accurate results for thermo-chemistry, are found 
to be less accurate for anharmonic vibrations. There 
is no systematic trend found between the results with 
these two functionals. The M062x gives more accurate 
results than M06 for VCCM calculations, whereas for 
the VPT2 calculations, the M06 is more accurate. The 
SD values of the individual molecules also do not fol-
low any trend in both VCCM and VPT2 calculations. 
Although the M062x is a modification of M06 with the 
double amount of HF exchange term, it does not lead 
to systematic improvement or deterioration of accuracy 
over M06.

6.	 The long-range corrected functional LC-�PBE accounts 
poor description of the anharmonic frequencies. The 
harmonic frequencies with this functional are higher 
than the harmonic frequencies with other function-
als. The anharmonicities in the resultant PESs are not 
adequate to compensate the large error in the harmonic 
calculations.

5 � Supporting information

The maximum absolute deviations for each method and the 
corresponding vibrational modes are given in Table S1. The 
maximum absolute deviations of the individual molecules 
with respect to the experimental values in the VPT2 calcu-
lations are given in Table S2. The VCCM frequencies for 
the fundamental transitions are compared with the experi-
mental values for all the molecules in the study (Table S3 to 
Table S21). In Figure S1 and S2, the differences between the 
VCCM and VPT2 frequencies are plotted against the VCCM 
frequencies. Figure S3 contains the standard deviations and 

maximum absolute deviations of the differences of VCCM 
and VPT2 frequencies.
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