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Abstract An alternative methodology to evaluate two-

electron-repulsion integrals based on numerical approxi-

mation is proposed. Computational chemistry has branched

into two major fields with methodologies based on quan-

tum mechanics and classical force fields. However, there

are significant shadowy areas not covered by any of the

available methods. Many relevant systems are often too big

for traditional quantum chemical methods while being

chemically too complex for classical force fields. Examples

include systems in nanomedicine, studies of metallopro-

teins, etc. There is an urgent need to develop fast quantum

chemical methods able to study large and complex systems.

This work is a proof-of-concept on the numerical tech-

niques required to develop accurate and computationally

efficient algorithms to compute electron-repulsion inte-

grals, one of the most significant bottlenecks in computa-

tional quantum chemistry. All concepts and calculations

were performed for the three-center integral (pxApxB|pxC-
pxC) with all atoms being carbon. Starting with the explicit

analytical formulas, convenient decompositions were tes-

ted to provide smooth 2-dimensional surfaces that were

easily fitted. The approximating algorithm consisted of a

multilayered approach based on multiple fittings of

2-dimensional surfaces. An important aspect of the new

method is its independence on the number of contracted

Gaussian primitives. The basis set of choice was STO-6G.

In future development of this work, larger basis set will be

developed. This work is part of a large effort aimed at

bringing simplified quantum mechanical methods to sys-

tems where accuracy can be sacrificed for speed. An initial

application will be development of quantum mechanical

techniques for molecular recognition.

Keywords Two-electron–electron-repulsion integrals �
Gaussian type functions � Ab initio � Density functional

theory � Quantum chemistry � Computational chemistry

1 Introduction

The field of computational quantum chemistry has expe-

rienced extraordinary progress to date due to advances in

computing power and the development of new algorithms.

While advances have been reached, still there are limita-

tions in the size and/or complexity of the systems that can

be studied. In the second decade of the twenty-first century,

the words of Paul Dirac in 1929 [1] still echo: the under-

lying physical laws necessary for the mathematical theory

of a large part of physics and the whole of chemistry are

thus completely known, and the difficulty is only that the

exact application of these laws leads to equations much too

complicated to be soluble. Today, Dirac’s statement still

remains true and many of the equations governing the

chemical phenomena are still too complex to solve using

today’s computational resources.

To answer complex chemical phenomena, computa-

tional quantum chemistry has suffered multiple numerical

approximations and simplifications. Some are
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approximations to the fundamental equations such as the

Born–Oppenheimer approximation that greatly simplifies

the Schrödinger equation by considering that the much

heavier nuclei remain stationary during the calculation.

Other approximations, for example, empirical and

semiempirical methods, consider simplified forms of the

first-principles underlying equations that are typically fas-

ter to solve. Other classes of methods in computational

chemistry have abandoned the quantum chemical princi-

ples altogether, and classical approximations to the

potential energy surfaces based on empirical force fields

were developed, as they are computationally less intensive

than quantum chemical electronic structure calculations.

Empirical force fields are currently the methods of choice

for studies of large systems in biology and materials sci-

ence, for example conformational studies of proteins or

DNA and protein–ligand binding thermodynamics. How-

ever, empirical force fields have severe limitations: limited

applicability, difficulty in describing complex chemistries,

and inability to describe systems where formation and

breakage of bonds occur. Empirical force fields are highly

parameterized and typically include terms for bonds,

angles, and torsions plus non-bonding terms [2]. Empirical

force fields are limited to the systems used in developing

the parameters (e.g., proteins, lipids, DNA/RNA, etc.) and

the parameterizations usually cover sp, sp2, and sp3

hybridizations. It is extremely difficult to cover complex

chemical spaces with force fields, for example when tran-

sition metals are involved. The harmonic nature of force

fields does not typically allow for breaking and formation

of chemical bonds. In contrast, quantum chemical methods

can describe most systems, but are still limited to small

models, at least when compared to typical systems studied

by classical force fields. QM/MM mix quantum chemical

methods with empirical force fields and, thus, are able to

study large adequate to describe large systems. QM/MM

methods work better when the quantum region is highly

localized but are, in general, inadequate to describe the

dynamics of large systems.

Currently, many systems in biophysics, biochemistry,

materials science, nanomedicine, etc., cannot be described

using existing methodologies. These systems have huge

chemical spaces that are impossible to cover using existing

empirical force field methods and are too big for current

quantum mechanics (QM) techniques, even the best linear

scaling methods. There is a clear ‘‘capabilities gap’’ in

existing computational methodologies that need to be

urgently addressed. Not only emerging fields such as

nanomedicine or materials science would benefit from new

computational methodologies based on QM. Traditional

applications of classical force field methods would benefit

as well. For example, it is estimated that half of all proteins

are metalloproteins [3]. Simulations of metalloproteins

would greatly benefit from fast QM methods since existing

classical force fields have problems describing such

systems.

In summary, new computational methodologies are

needed to bridge the ‘‘capabilities gap’’ between current

quantum chemical methods and classical force fields. In the

base Hartree–Fock method, the major contributors to the

cost of the calculation are the computation of the two-

electron-repulsion integrals (ERIs), with a formally quar-

tically scaling O(N4), although for large systems the scaling

asymptotically approaches O(N2), diagonalization of the

Fock matrix with a cubically scaling O(N3), and the self-

consistent field (SCF) procedure that typically adds more

than ten iterations for small systems. Development of new

computational methodologies based on QM will have to

address each of the restrictions in order to achieve

acceptable speeds. The aim of the current work is to

develop an alternative technique, based on accurate

numerical approximations, for the fast computation of

ERIs.

It was already apparent in the 1950s that calculations of

polyatomic systems based on Slater-type orbitals would be

intractable. The breakthrough occurred when Boys pro-

posed basis functions based on Cartesian Gaussian func-

tions [4]. Importantly, it was found that linear

combinations of Gaussians, designated as contracted

Gaussians, could approximate atomic orbitals with great

accuracy. Ever since, contracted Gaussians have been the

basis set of choice, being used in all of the major program

packages.

Computation of ERIs has a long history. Initially, all

molecular integrals were calculated explicitly since closed

formulas for integrals over Gaussians were easily derived.

The explicit analytical formulas being specific to each

integral do not allow the systematic calculation of integrals

of higher angular momentum. Several recursive method-

ologies were then developed and gained acceptance in

modern computational quantum chemistry programs. In

this category are included the methods of Rys polynomials

[5, 6], McMurchie and Davidson [7] and Obara and Saika

[8]. More recently, approximated methodologies have been

developed to speed up the computation of ERIs, for

example, approaches using density fitting or the Cholesky

decomposition. A very good and recent review of the

calculation of ERIs has been published by Reine et al. [9].

The methodology to compute ERIs proposed in this

work differs in concept and praxis relative to previous and

current approaches. Existing methodologies need to be

generic and applicable to any basis set. In contrast, the

method being proposed approximates a predetermined

basis set and is designed to be fast using simple linear

algebra operations. The new computational methodology

will use single-f (double-f for transition metals) basis sets.

112 Page 2 of 13 Theor Chem Acc (2017) 136:112

123



This paper is a proof-of-concept on the development of

accurate numerical approximations to the explicit analyti-

cal formulas for ERIs. The work will focus on the integral

ðpxApxBjpxCpxCÞ with atoms A, B, and C being carbon. The

choice of three-center integrals offers significant advan-

tages. The numerical approximations are simpler in three-

center ERIs than in four-center ERIs because fewer coor-

dinates are required for the approximations. By keeping all

elements the same, significant symmetry relationships are

introduced and smaller domains for the coordinates can be

considered (see Sect. 4; Fig. S1), thus reducing the number

of target points that are required for the numerical

approximations. Three-center ERIs are very important

within density fitting approaches, in particular ERIs of the

type ð/A/BjgCÞ, where gC is used in the expansion of the

product /CðrÞ/DðrÞ [9]. The four-center integrals will be

approximated using a different approach and will be the

subject of a different publication.

2 Theoretical background

2.1 Revisit the explicit analytical calculation of two-

electron-repulsion integrals

In the early years of computational chemistry, ERIs were

calculated using explicit analytical formulas [10]. The

notation used for the explicit expressions of ERIs over

Cartesian Gaussian functions is kept as close as possible to

the one used by Clementi [11]. An important concept in

molecular orbital theory is the expansion of the basis

functions /iðAÞ as liner combinations of primitive Carte-

sian Gaussian type functions (GTFs):

/iðAÞ ¼
XN

a¼1

ci;agaðAÞ ð1Þ

Cartesian GTFs are composed of a radial Gaussian

function multiplied by Cartesian coordinates x, y, and z

with exponents li, mi, and ni.

giðAÞ ¼ xliAy
mi

A zniA �air
2
A

� �
ð2Þ

The basic steps required to derive the explicit analytical

formula of ðpxApxBjpxCpxCÞ are briefly described. Testing

the novel numerical algorithms on three-center ERIs is

important because they are significantly simpler than the

four-center counterparts, due to having fewer degrees of

spatial freedom, while still requiring the same techniques

to perform the approximation. ERIs over basis functions

are themselves written as linear combinations of the

primitive GTFs:

/A/Bj/C/Dð Þ ¼
X

a;b;c;d

cacbcccd gAgBjgCgDð Þ ð3Þ

The advantage of using GTFs stemming from the

Gaussian product rule is that the product of two GTFs is

another GTF. In Eq. (3), the product of the first pair cen-

tered at A and B results in the general formula:

g a1;A; l1ð Þg a2;B; l2ð Þ ¼ exp �a1a2AB
2
=c1

� �

�
Xl1þl2

i¼0

fi l1; l2; PAx; PBx

� �
xiP exp �c1x

2
P

� �

�
Xm1þm2

j¼0

fj m1;m2; PAy; PBy

� �
y
j
P exp �c1y

2
P

� �

�
Xn1þn2

k¼0

fk n1; n2; PAz; PBz

� �
zkP exp �c1z

2
P

� �

ð4Þ

with

c1 ¼ a1 þ a2 ð5Þ

and

P ¼ a1Aþ a2B
c1

ð6Þ

Similar equations can be derived for the second pair

with:

c2 ¼ a3 þ a4 ð7Þ

and

Q ¼ a3Cþ a4D
c2

ð8Þ

The functions fi, …, fk0 appearing in Eq. (4) result from

the application of the binomial theorem to the products of

Gaussian functions. Their generic formula is:

fi l1; l2;A;Bð Þ ¼
Xmin i;l1ð Þ

j¼max 0;i�l2ð Þ

l1!l2!A
l1�jBl2�iþj

j! l1 � jð Þ! i� jð Þ! l2 � iþ jð Þ! :

ð9Þ

Explicit values of the function fiðl1; l2;A;BÞ are given in

Table 1 up to l1 ? l2 = 4. Substituting the pairs

gða1;A; l1Þgða2;B; l2Þ and gða3;C; l3Þgða4;D; l4Þ into

Eq. (3) results in the formal formula for the explicit ana-

lytical calculation of ERIs (Eq. 10) where the normaliza-

tion factors are written as Na.
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/A/Bj/C/Dð Þ ¼
X

a;b;c;d

cacbcccd gAgBjgCgDð Þ

¼
X

a;b;c;d

cacbcccdNaNbNcNd

� exp �a1a2AB
2
=c1

� �
exp �a1a2CD

2
=c1

� �

�
Xl1þl2

i¼0

fi l1; l2;PAx;PBx

� � Xm1þm2

j¼0

fj m1;m2; PAy;PBy

� �

�
Xn1þn2

k¼0

fk n1; n2;PAz;PBz

� �

�
Xl3þl4

i
0 ¼0

fi0 l3; l4;QCx;QDx

� � Xm3þm4

j
0¼0

fj0 m3;m4;QCy;QDy

� �

�
Xn3þn4

k
0 ¼0

fk0 n3; n4;QCz;QDz

� �

�
ZZ

xiP1
y
j
P1
zkP1

xi
0

Q2
y
j0

Q2
zk

0

Q2

1

r12
exp �c1r

2
P1

� c2r
2
Q2

� �
dV1dV2

ð10Þ

A simplified notation, fxiP1
y
j
P1
zkP1

jxi0Q2
y
j0

Q2
zk

0
Q2
g; is intro-

duced for the integral
RR
xiP1

y
j
P1
zkP1

xi
0

Q2
y
j0

Q2
zk

0

Q2

1
r12

expð�c1r
2
P1

� c2r
2
Q2
ÞdV1dV2 in the remaining of the text.

Calculation of ERIs according to Eq. (10) requires

repeated evaluations of fxiP1
y
j
P1
zkP1

jxi0Q2
y
j0

Q2
zk

0
Q2
g, ‘‘f’’ func-

tions, normalization factors, and the two exponential

functions expð�a1a2AB
2
=c1Þ and expð�a3a4CD

2
=c2Þ over

multiple loops. There are loops over the contraction coef-

ficients, ca, cb, cc, and cd, and the indices i, j, etc. The

indices i, j, etc., determine the ‘‘f’’ functions and the inte-

grals fxiP1
y
j
P1
zkP1

jxi0Q2
y
j0

Q2
zk

0

Q2
g. The index i runs between zero

and l1 þ l2 and similarly for j, k, i0, …, which depend on

m1 þ m2, n1 þ n2, l3 þ l4, etc. When the exponents i, j, …
are zero, the corresponding xiP1

, y
j
P1

terms are indicated as

‘‘1’’ in fxiP1
y
j
P1
zkP1

jxi0Q2
y
j0

Q2
zk

0
Q2
g.

Although the complexity of the integrals

fxiP1
y
j
P1
zkP1

jxi0Q2
y
j0

Q2
zk

0

Q2
g increases with larger values of l1, l2,

…, each is a well-defined function of P and Q, through the

distance PQ and the corresponding nonzero projections

along the Cartesian axis PQx, PQy, and PQz. Recalling the

definitions of P and Q from Eqs. (6) to (8), respectively,

the integrals fxiP1
y
j
P1
zkP1

jxi0Q2
y
j0

Q2
zk

0
Q2
g are functions of the

coordinates of A, B, C, and D (A, B, and C in the three-

center case).

The main purpose of this work is to illustrate how the

three-center integrals ðpxApxBjpxCpxCÞ, when carbon atoms

are placed at the centers A, B, and C, can be calculated

accurately through numerical approximation. In the fol-

lowing Sections, the specific simplifications introduced by

considering a three-center ERI and the mathematical

details of the numerical approximations are discussed.

2.2 Numerical fitting of three-center two-electron-

repulsion integrals (pxApxB|pxCpxC)

Calculation of the three-center ERI ðpxApxBjpxCpxCÞ
involves significant simplifications resulting from many of

the ‘‘f’’ factors becoming null, according to Table 1. After

the null terms are omitted, Eq. (10) can be rewritten as:

pxApxBjpxCpxCð Þ ¼
X

a;b;c

cacbc
2
cNaNbN

2
c � exp �a1a2AB

2
=c1

� �

� PAxPBx 111jx2Q2
11

n o
þ PAx þ PBx

� �h

� xP1
11jx2Q2

11
n o

þ x2P1
11jx2Q2

11
n oi

ð11Þ

Table 1 Possible values of the f function as a function of the quan-

tum numbers l1, l2 and generic parameters A and B

fi l1; l2;A;Bð Þ ¼
Xmin i;l1ð Þ

j¼max 0;i�l2ð Þ

l1!l2!A
l1�jBl2�iþj

j! l1 � jð Þ! i� jð Þ! l2 � iþ jð Þ!

A 6¼ 0;B 6¼ 0 A ¼ 0;B ¼ 0

l1 = 2, l2 = 2

i = 0 A2B2 0

i = 1 2AB2 ? 2A2B 0

i = 2 B2 ? 4AB ? A2 0

i = 3 2B ? 2A 0

i = 4 1 1

l1 = 2, l2 = 1

i = 0 A2B 0

i = 1 2AB ? A2 0

i = 2 B ? 2A 0

i = 3 1 1

l1 = 2, l2 = 0

i = 0 A2 0

i = 1 2A 0

i = 2 1 1

l1 = 1, l2 = 1

i = 0 AB 0

i = 1 B ? A 0

i = 2 1 1

l1 = 1, l2 = 0

i = 0 A 0

i = 1 1 1

l1 = 0, l2 = 0

i = 0 1 1
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The expressions of fx2P1
11jx2Q2

11g, fxP1
11jx2Q2

11g, and
f111jx2Q2

11g are, respectively:

x2P1
11jx2Q2

11
n o

¼ p5=2

2b c1 þ c2ð Þ7=2

� 4b2F4 tð ÞPQ4

x � 12bF3 tð ÞPQ2

x

n

þ 2 c1 þ c2ð ÞPQ2

x þ 3
h i

F2 tð Þ

� c1 þ c2ð Þ
b

F1 tð Þ þ c1 þ c2ð Þ
b

F0 tð Þ
�

ð12aÞ

xP1
11jx2Q2

11
n o

¼ p5=2

b c1 þ c2ð Þ7=2

� 2c2bF3 tð ÞPQ3

x � 2c2F2 tð Þ þ c1 þ c2ð ÞF1 tð Þ½ �PQx

n o

ð12bÞ

111jx2Q2
11

n o
¼ p5=2

b c1 þ c2ð Þ7=2

� 2c22F2 tð ÞPQ2

x �
c2 c1 þ c2ð Þ

c1
F1 tð Þ þ c1 þ c2ð Þ2

c1
F0 tð Þ

" #

ð12cÞ

where b is defined as ðc1c2Þ=ðc1 þ c2Þ and the terms FnðtÞ
are the Boys function:

FnðtÞ ¼
Z1

0

x2n exp �tx2
� �

dx ð13Þ

The evaluation of the Boys function had a recent

renewed interest and was the subject of recent publications

[12, 13]. A different algorithm was developed for this work

and will be discussed in a forthcoming paper.

The integrals fxiP1
y
j
P1
zkP1

jxi0Q2
y
j0

Q2
zk

0

Q2
g have important

characteristics that can be explored to simplify the

numerical approximations. The factors c1, c2, and b depend

on the orbital exponents and are unaffected by geometrical

changes. The Boys functions FnðtÞ depend on the orbital

exponents and separation between points P and Q, being

independent of the spatial orientation of the system. In

contrast, the factor PQx (also y and z), which is the x

component of the vector PQ, depends on the orientation of

the system. The ‘‘f’’ functions also introduce terms that

depend on the orientation of the system, PAxPBx and

ðPAx þ PBxÞ (see Table 1 and Eq. 11).

The algorithm developed for the calculation of ERIs is

based on the multivariate numerical approximation of all

functions contributing to the integrals in the desired inter-

val. The terms contributing to Eq. (11) consisting of

products of Eqs. (12a)–(12c) and their respective ‘‘f’’ terms

from Table 1 have complex spatial dependencies resulting

from the Boys functions, PAxPBx, ðPAx þ PBxÞ, and PQx

terms. The strategy used in this work consists in recasting

the terms making the total ERI in terms of simpler func-

tions which are products of the rotationally dependent

functions PQx, PAxPBx, and ðPAx þ PBxÞ, designated as

grotn , and a rotationally invariant term, Gn. The index n is

the exponent of PQx. In addition to the grotn and Gn terms,

there is an additional rotationally dependent term derived

from PAxPBx, g
rotðPAxPBxÞ. The corresponding rotation-

ally invariant term is designated as GPAxPBx
. Using the

terms of PQ
4

x for illustration, the rotationally dependent

functions grot4 and the corresponding rotationally indepen-

dent term G4 are calculated as:

G4 ¼
X

a;b;c;d

cacbcccdNaNbN
2
c � exp �a1a2AB

2
=c1

� �

� 4p5=2b

2 c1 þ c2ð Þ7=2
� F4 tð Þ ð15Þ

The important rotationally invariant term G0, which

makes a direct contribution to the total computed ERI, is

G0 ¼
p5=2

b c1 þ c2ð Þ7=2
6F2 tð Þ � 2 c1 þ c2ð Þ

b
F1 tð Þ

�

þ 2 c1 þ c2ð Þ
b

F0 tð Þ � c2 c1 þ c2ð Þ
c1

F1 tð Þ þ c1 þ c2ð Þ2

c1
F0 tð Þ

#

ð16Þ

grot4 PQ
4

x

� �
¼

P
a;b;c;d cacbcccdNaNbN

2
c � exp �a1a2AB

2
=c1

� �
� 4p5=2b

2 c1þc2ð Þ7=2
� PQ

4

x

� �
� F4 tð Þ

P
a;b;c;d cacbcccdNaNbN2

c � exp �a1a2AB
2
=c1

� �
� 4p5=2b

2 c1þc2ð Þ7=2
� F4 tð Þ

ð14Þ
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3 Mathematical background

3.1 Multivariate approximation

In many applications, it is convenient to introduce

approximate functions. An approximate function gðxÞ is a
function that given m data points x approximates the target

values produced by the function f ðxÞ as closely as possible

according to some metric. The approximant gðxÞ is desired
to be as smooth and compact as possible. The need to

approximate often occurs when it is too costly or complex

to use the true function, or even when the true function is

unknown. The mathematical theory of approximation is

well documented (see for example Ref. [14]).

This work explores the possibility of approximating the

complex and computationally costly Eq. (11) with simpler,

and faster to evaluate, functions. All approximants are

based on polynomial expansions (Eq. 17), in which the

coefficients ai are scalars and the basis functions HiðxÞ can
take different forms:

f ðxÞ ¼ a0 þ a1H1ðxÞ þ � � � þ anHnðxÞ ð17Þ

The main criterion to determine the quality of an

approximation is the measurement of the ‘‘distance’’

between target data points and the same set of points as

obtained by the specified approximating function (ap-

proximant). It is important that the target and approximated

points are as close as possible. A suitable metric to account

for the global different between the set of true values and

their respective approximations used extensively in this

work is the l2-norm.1

The multivariate scheme developed in this work to

approximate ERIs consists of multiple levels of bivariate

(or univariate) approximants, with the fitting variables of a

given level being expressed in terms of the variables of the

next immediate level. The methodology is illustrated with

the help of a 3-dimensional model depicted in Fig. 1. To

approximate the point f ðx1; x2; x3Þ, represented by the red

sphere, a numerical approximant gðx1; x2Þ of all points on
the ðx1; x2Þ plane is first developed. The function gðx1; x2Þ
is expanded in terms of primitive functions Hiðx1; x2Þ
according to Eq. (17). The dependency of x3, which is

illustrated in Fig. 1 by the vector originating at the blue

sphere, is carried by fitting parameters ai as functions of x3.

In mathematical terms, the dependency of the fitting

parameters ai is given by another expansion similar to

Eq. (17). The basis functions are represented by H0
iðx3Þ and

the expansion has adjustable coefficients a0i:

a x3ð Þ ¼ a00 þ
Xn0

i¼1

a0iH
0
i x3ð Þ ð18Þ

The process can be repeated multiple times, generating

complex dependencies of multivariate functions. However,

as the number of fitting parameters grows very fast with

each additional layer of variable dependencies, in practice,

the process is limited to a small number of layers.

In this work, the need for smooth functions arises

because of the multiple dependencies of the variables.

Since the fitting parameters carry additional dependencies

themselves, it is important that they are as smooth as

possible to avoid discontinuities that make the next level

fittings more complex. Other important criteria in defining

the fitting process are computational efficiency, simplicity

of algorithm implementation, and future evolution of the

method. When designing algorithms for numerical

approximation, it is important to consider how fast and

accurate the method is in the present and to have a clear

plan for future development.

The fitting functions were chosen to be bivariate Che-

byshev orthogonal polynomials. Chebyshev polynomials

form an important class of functions in curve fitting [15]. A

similar expansion can be developed for surfaces f ðx; yÞ
where the polynomial is based on to Chebyshev series with

�x; �y 2 ½�1; 1� � ½�1; 1�:

f x; yð Þ ¼
Xnx

i¼0

Xny

j¼0

aijTi �xð ÞTj �yð Þ ð19Þ

The 2-dimensional Chebyshev expansion was evaluated

directly by computing the polynomials and summing all

contributions according to Eq. (19).

3.2 Choice of coordinates

Each of the terms grotn , grotðPAxPBxÞ, Gn, and GPAxPBx

required to calculate ERIs according to the prescription of

Eqs. (14)–(16) can be expressed in terms of a finite number

of variables. Fitting of three-center ERIs requires six

coordinates that are used to position the atomic centers

x2

x3x1

Fig. 1 Illustration of the spatial dependency of multilayered approx-

imating functions

1 The l2-norm of the vector x ¼ ðx1; x2; . . .; xiÞ is given by

jxj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 þ x22 þ � � � þ x2i

p
.
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carrying the basis functions. Importantly, only the total

number of variables has to be fulfilled and not the nature of

the individual coordinates as long as they provide the

spatial assignment of the atomic centers. It is, however,

advisable to use combinations of variables that lead to

simpler fitting expressions, in addition to having physical

meanings that can be related to common geometrical

transformations. In this respect, bond distances, angles, and

torsions are prime candidates.

The protocol followed in this work consists in separating

the rotationally dependent terms of PQ
n

x and PAxPBx from

the rotational invariant counterparts. The set of coordinates

chosen for the fitting of the rotationally invariant part is

two distances, r1 and r2, and the internal angle a. r1 is the

distance between the centers A and B and r2 is the sepa-

ration between C and the midpoint of AB, represented by

O. a is the angle dCOA (see Fig. 2). The projection PQx

(also PQy and PQz) and PAxPBx require special attention

since they affect the rotational invariance of the integrals.

Its spatial dependency is significantly more complex,

requiring an extra set of coordinates. The extra variables

are the polar spherical coordinates h and u, which are used

to position the atomic center C and the dihedral angle s,
which is used to determine the relative orientation of

centers A (and B) relative to C (see Fig. 2).

4 Results and discussion

The following section is dedicated to evaluating the

accuracy, and speed, of the numerical algorithm to

approximate ERIs. Emphasis is placed on testing the ability

of the method to accurately reproduce the integral

ðpxApxBjpxCpxCÞ with carbon atoms at A, B, and C. All

calculations were based on the STO-6G basis set. This

basis set is sufficiently small to allow computation of the

many target ERIs used in the parameterization in a

reasonable time. All calculations were done on an AMD

Ryzen 1700 CPU and 24 GByte of RAM memory. All

codes were compiled with Gfortran using the –O3 compiler

flag. The approximation of the rotationally independent

terms is discussed first, with G4 and GPAxPBx
being used as

examples. Afterward, the fitting of the rotationally depen-

dent terms is analyzed. The approximating methodologies

are illustrated with the help of grotðPAxPBxÞ, since it is the
largest contributor to the total ERI and is also representa-

tive of the other terms. The accuracy and speed of the

multivariate methodology of approximation are discussed

in Sects. 4.2 and 4.3.

The goodness-of-fit of the approximants was measured

in terms of the root-mean-square error (RMSE). RMSE

measures the total deviation of the computed from the

target values, and a value closer to zero indicates the fit is

good and is useful for prediction.

The domains of the variables influencing the rotation of

the systems are a 2 ½0; 180�� and s; h;u 2 ½0; 90��. The

domains of s, h, and u are limited to 90� because of the

symmetry relations resulting from having the same element

at the positions A, B, and C. Figure S1 illustrates the

symmetry effects for the dependencies of (a, s) and (h, u)

for the function grot4 ðPQ4

xÞ.

4.1 Fitting the rotationally independent terms

Gnða; r1; r2Þ and GPAxPBx
ða; r1; r2Þ

The protocol described in Sect. 3.1 for the multivariate

fitting of the different terms making the explicit analytical

expression of the ERIs starts with the initial fitting of

rotationally invariant functions Gnða; r1; r2Þ and

GPAxPBx
ða; r1; r2Þ. In most cases, these are auxiliary func-

tions used to create smoother rotationally dependent sur-

faces that are easier to fit, although G0ða; r1; r2Þ contributes
directly to the final integral (Eq. 16). The dependencies of

Gn and GPAxPBx
are on the angle a and distances r1 and r2.

The protocol followed in this work for the fitting of

Gnða; r1; r2Þ and GPAxPBx
ða; r1; r2Þ calls to the initial fitting

of the a dependency. The plots of Gnða; r1; r2Þ and

GPAxPBx
ða; r1; r2Þ functions relative to a (with r1 and r2

fixed) show a similar symmetric sinusoidal curve. The

dependency of G4ða; r1 ¼ 2:6 a:u:; r2 ¼ 5:0 a:u:Þ is illus-

trated on Fig. S2. The function of choice for the fitting of

the dependency of a, in radians, was a rational polynomial

written of the form:

f 0ðaÞ ¼ D r1; r2ð Þ a1 r1; r2ð Þa2 þ a2 r1; r2ð Þa4
1:0þ a3 r1; r2ð Þa2 þ a4 r1; r2ð Þa4 þ a5 r1; r2ð Þa6

	 


þ a0 r1; r2ð Þ
ð20Þ

r2r1/2
y

x

z

0
C

A

Dummy

Fig. 2 Illustration of the coordinates used in the fitting of three-

center electron-repulsion integrals
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The dependency of each ai term on ðr1; r2Þ is high-

lighted in Eq. (20), in accordance with the multivariate

fitting algorithm described in Sect. 3.1. The rational

expansion was found to be acceptable in terms of compu-

tational cost and accuracy. Because of the dependence of

the coefficients on the distances r1 and r2, it is important to

keep the polynomial expansion above as compact as

possible.

The dependency of the coefficients a0 and a5 in Eq. (20)

on ðr1; r2Þ is illustrated in Fig. 3. The key assumption of

this work that the fitting coefficients of a polynomial

approximant at a certain level have smooth spatial depen-

dencies of the variables of the next level, and thus, are able

to carry that spatial dependency, is fully fulfilled. Although

no rigorous mathematical proof is presented, the surfaces

of ai and D are smooth and can be approximated using the

multivariate techniques presented before. Each coefficient

aiðr1; r2Þ and D were fitted with bivariate Chebyshev

polynomials with arguments �r1 and �r2 (see Eq. 1). The

order of the expansion was truncated at order 20. It is the

largest order of the Chebyshev polynomials used in this

work. The computational cost of using such a long

expansion is not prohibitive for two reasons. First, each

increase in the order of the Chebyshev polynomial only

contributes its associated number of parameters times the

number of parameters of the univariate polynomial

expansion of a. Second, the rotationally invariant terms

only need to be calculated once and can be stored. The

same rotationally invariant term, Gnða; r1; r2Þ and

GPAxPBx
ða; r1; r2Þ, can be used in the fitting of all ERIs

regardless of involving px, py, or pz functions. The explicit

expression for fitting all spatial dependencies of

Gnða; r1; r2Þ and GPAxPBx
ða; r1; r2Þ, combining Eq. (2)

above with the bivariate ðr1; r2Þ Chebyshev polynomial for

each of the coefficients ai is

Gn a; r1; r2ð Þ or GPAxPBx
a; r1; r2ð Þ

¼
Xn

i¼0

Xn

j¼0

a
Dð Þ
ij Ti �r1ð ÞTj �r2ð Þ

 !

�
Pn

i¼0

Pn
j¼0 a

1ð Þ
ij Ti �r1ð ÞTj �r2ð Þ

� �
a2 þ � � �

1:0þ
Pn

i¼0

Pn
j¼0 a

3ð Þ
ij Ti �r1ð ÞTj �r2ð Þ

� �
a2 þ � � �

2
4

3
5

þ
Xn

i¼0

Xn

j¼0

a
0ð Þ
ij Ti �r1ð ÞTj �r2ð Þ

 !

ð21Þ

where Tið�r1Þ is the Chebyshev polynomial of the first kind

of degree i with argument �r1, and Tjð�r2Þ is similarly defined

for j and �r2. The approximations are extremely accurate

with overall RMSEs lower than 5.0E-09. The residuals for

Gnða; r1; r2Þ and GPAxPBx
ða; r1; r2Þ are plotted in Figs. S3

and S4, respectively, for a = 49.1� and s = 66.7�.

4.2 Fitting the rotationally dependent terms

grotn ðPQn

xÞ and grotðPAxPBxÞ

The rotationally dependent functions hold the effects of the

PQ
n

x , PAxPBx, and ðPAx þ PBxÞ terms in the three-center

ERI of the kind ðpxApxBjpxCpxCÞ. These are considerably

more challenging to approximate, since they depend on six

variables instead of the three variables in the rotationally

independent terms.

Two quantities were defined to measure the contribution

of each term to the total ERI: the average absolute per-

centage contribution (AAPC) and maximum absolute per-

centage contribution (MAPC). The absolute value of each

term was chosen because each can be positive or negative.

The AAPC and MAPC quantities are calculated for

the term fa as, respectively, AAPC ¼ 100�

(a) (b)Fig. 3 Illustration of the spatial

dependency of a0 and a5 of the

rotationally independent term.

GPAxPBx
ða; r1; r2Þ. The surfaces

are smooth and suitable for

accurate approximation
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Pn
i fa;i
�� ��=n f1;i

�� ��þ � � � þ f7;i
�� ��� �� �� 

and 100�max½jfa;ij=
ðjf1;ij þ � � � þ jf7;ijÞ�. Values closer to 100% indicate a

stronger contribution to the integral and likewise values

close to zero mean smaller contributions. The most sig-

nificant contributors are the rotationally independent term

G0 and the rotationally dependent function of PAxPBx.

Interestingly, all the terms containing the projections PQx

make considerably smaller contributions (see Table 2).

According to the relevance of each term, different expan-

sions can be defined without imparting significantly the

accuracy of the approximation. The G0 term is already

fitted with the highest order of any Chebyshev polynomial,

and the accuracy of the approximations can be hardly

improved.

The fitting protocol for grotn ðPQn

xÞ and grotðPAxPBxÞ
requires three layers of fittings using bivariate Chebyshev

polynomials. The pairing of variables is: ðh;uÞ ? ða; sÞ
? ðr1; r2Þ. In the first step, fitting functions f ðh;uÞ are

determined for each of the target points ða; s; r1; r2Þ (see

Eq. 22a). The coefficients aij carry the dependency of the

remaining variables a, s, r1, and r2. In the second level of

optimization, each of the coefficients aij is fitted similarlywith

a bivariate Chebyshev polynomial (Eq. 22b). The fitting

coefficients b
ij
kl carry the dependency of ðr1; r2Þ and each is

fitted in the third level of fittings (Eq. 22c).

grot � f h;uð Þja0;s0;r0
1
;r0
2

¼
Xn

i¼0

Xn

j¼0

aij a; s; r1; r2ð ÞTi �h
� �

Tj �uð Þ
 !

ð22aÞ

aij a; sð Þjr0
1
;r0
2
¼

Xn

k¼0

Xn

l¼0

b
ij
kl r1; r2ð ÞTk �að ÞTl �sð Þ

 !
ð22bÞ

b
ij
kl r1; r2ð Þ ¼

Xn

i¼0

Xn

j¼0

cij;klmn Tm �r1ð ÞTn �r2ð Þ
 !

ð22cÞ

In Eq. (22), the superscript ‘‘0’’ means that the corre-

sponding variable assumes a fixed value.

Figure 4 illustrates selected surfaces f ðh;uÞ for specific
values of ðr1; r2Þ, and ða; sÞ. All surfaces have similar

Gaussian-like shapes. It is noteworthy that to facilitate the

numerical approximations, the surfaces were symmetrized

through the change in coordinate h� ¼ 180
� � h. The

functions of PQ
n

x were approximated with Chebyshev

polynomials of order 14. The rotationally dependent

function of PAxPBx was approximated with Chebyshev

polynomials of different orders, from 8 to 20. The overall

results are discussed in Sect. 4.3.

The next step in the fitting process consists in fitting the

aijða; sÞ surfaces. Figure 5 illustrates the coefficients a1 and

a231 of the grotðPAxPBxÞ term for r1 = 2.5 a.u. and

r2 = 5.0 a.u. Similarly to the approximation of the

Table 2 Average absolute

percentage contribution (AAPC)

and maximum absolute

percentage contribution (AAPC)

of each term contributing to

ðpxApxBjpxCpxCÞ

Term

PQ
4

x PQ
3

x PQ
2

x

l1 þ l2 ¼ 0

PQx PQ
2

x

l1 þ l2 ¼ 2

PAxPBx G0

AAPC 0.4 0.1 0.8 0.4 1.0 45.7 51.6

MAPC 12.7 2.2 10.1 2.5 11.0 91.2 100.0

(a) (b) (c)

Fig. 4 Illustration of the dependency of h and u for fixed values of r1, r2, a, and s for grotðPAxPBxÞ. a, b show the effect of varying a and s,
whereas b and c illustrate the effect of varying r1, r2. Fitting of each surface will require calculation of the coefficients aij of Eq. (22a)
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rotationally independent terms, the bivariate surfaces

aijða; sÞ are smooth and were easily approximated with

bivariate Chebyshev polynomials. It was opted to approx-

imate the aijða; sÞ and f ðh;uÞ surfaces with the Chebyshev

polynomials of the same order for simplicity.

The final step in the approximation of the rotationally

dependent functions is the fitting of the coefficients

b
ij
klðr1; r2Þ. In Fig. 6, the surfaces corresponding to b11 and

b2312 for grotðPAxPBxÞ are shown as a function of the

remaining coordinates r1 and r2. The dependency of the b
ij
kl

coefficients is considerably simpler with the functions

being monotonically increasing or decreasing in r1 (i.e., for

fixed values of r2). Important simplifications can be

introduced in the approximation of the b
ij
kl coefficients since

many can be eliminated due to their small contribution to

the aijða; sÞ terms. While the terms derived from grotn ðPQn

xÞ
were approximated by Chebyshev polynomials of order 14,

the effect of the length of the Chebyshev polynomials on

the accuracy was tested for grotðPAxPBxÞ. grotðPAxPBxÞ
was chosen because of all rotationally dependent terms is

single largest contributor to the total ERI. The quality of

the different approximants of ðh;uÞ, aijða; sÞ, and

b
ij
klðr1; r2Þ is gauged in Table 3, where goodness-of-fit

results are presented and compared for the rotationally

dependent terms. The total number of nonzero b
ij
kl terms is

also shown. They determine the speed and accuracy of the

proposed methodology. Starting with the grotðPAxPBxÞ
term, the RMSE values are good for all Chebyshev

expansions and are systematically improved for higher

orders. Very important is the slow growth of the number of

nonzero b
ij
kl terms, meaning improvements of accuracy

come with small additional computational costs. For the

grotn ðPQn

xÞ terms, accuracy varies significantly, ranging from

RMSE values of * 10-7 for grot3 ðPQ3

xÞ and * 10-5 for

grot2 ðPQ2

xÞðl1 þ l2 ¼ 2Þ. Importantly, the highest RMSE

occurs for terms with the lowest number of nonzero terms,

opening the possibility of improving the accuracy without

significant additional computational costs by using longer

expansions for terms with fewer nonzero elements. The

improvement of the accuracy with higher-order expansions

is shown pictorially in Fig. S5 where histograms of resid-

uals are plotted for the four expansions used for

(a)

(b)

Fig. 5 Illustration of dependency of the coefficients aij of Eq. (22a)

on the angles a and s for fixed values of r1 = 2.5 a.u. and r2 = 5.0 a.u

for grotðPAxPBxÞ. The surfaces are smooth and have distinctive

magnitudes that can be explored to reduce the order of the

polynomials used in the fittings

(a) (b)

Fig. 6 Illustration of the dependency of the coefficients b
ij
klðr1; r2Þ of

Eq. (22b) on the distances r1 and r2 for g
rotðPAxPBxÞ. The surface on

the left (a) is for b11ðr1; r2Þ and the surface on the right (b) is for

b2312 ðr1; r2Þ. The surfaces are monotonically increasing or decreasing

in the r1 direction, i.e., for fixed r2. These surfaces can be

approximated with more compact Chebyshev polynomials, thus

reducing the overall computational cost
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grotðPAxPBxÞ. The spread of the residuals becomes

increasingly narrower and with the expansion of order 20

most errors are in the interval [-5.0E-06, 5.0E-06]. It is

important to stretch that approximation with bivariate

Chebyshev polynomials provides a way to systematically

improve the quality of the approximation.

4.3 Adding all together: assembly of the computed

ðpxApxBjpxCpxCÞ two-electron-repulsion integral

The culmination of this work on the numerical approxi-

mation of ERIs is the assembly of the calculated

ðpxApxBjpxCpxCÞ ERIs from the different terms discussed

above and the comparison with the real explicit analytical

values. The contributors to the calculated ERI are the

rotationally invariant term G0, the rotationally dependent

terms grotn ðPQn

xÞ � Gn and grotðPAxPBxÞ � GPAxPBx
. The

approximation of G0 was unique, using the highest order

expansion of this work (Chebyshev polynomials of order

20 for the dependency of r1 and r2). Goodness-of-fit results

for the total ERI are shown in Table 4. The results do not

represent the full potential of the methodology since the

contributions from both grot2 ðPQ2

xÞ � G2 terms dominate. For

this reason, there is no improvement when using Cheby-

shev polynomials of order 20 for grotðPAxPBxÞ � GPAxPBx

relative to order 14. However, the RMSEs for some of the

grotn ðPQn

xÞ � Gn terms can be improved approximately an

order of magnitude by using longer Chebyshev polyno-

mials as in grotðPAxPBxÞ terms (see Table 3). It is impor-

tant to stretch not only the magnitude, but also the

distribution of the residuals. In Fig. 7, the residuals for

r1 = 2.5 a.u., r2 = 5.0 a.u., a = 49.1�, 165.5�, and

s = 66.7�, 61.6� are plotted as a function of h and u for

two Chebyshev expansions of grotðPAxPBxÞ (order 20 and

order 14). The dominant effect of both grot2 ðPQ2

xÞ � G2 terms

is evident on Fig. 7a where the total ERI surface follows

roughly the contributions from grot2 ðPQ2

xÞ � G2ðl1 þ l2 ¼ 0Þ
and grot2 ðPQ2

xÞ � G2ðl1 þ l2 ¼ 2Þ (see Fig S3 for plots of

grotn ðPQn

xÞ � Gn and Fig S4 for plots of

grotðPAxPBxÞ � GPAxPBx
). When grotðPAxPBxÞ � GPAxPBx

is

also fitted with Chebyshev polynomials of order 14, the

resulting ERI does not show any dominant contributions

since all terms have a similar effect. The biggest residual is

approximately one order of magnitude smaller when

grotðPAxPBxÞ � GPAxPBx
is fitted with polynomials of order

20. It is important to stretch that accuracy can be system-

atically improved by using longer expansions for the fitting

of selected grotn ðPQn

xÞ � Gn terms. The same pattern was

Table 3 Goodness-of-fit

estimates and number of

nonzero elements b
ij
kl for terms

grotn ðPQn

xÞ; n ¼ 1; 2; 3; 4 and

grotðPAxPBxÞ

grotn ðPQn

xÞ; n ¼ 1; 2; 3; 4
Chebyshev order 14

grotðPAxPBxÞ

RMSE # nonzero

b
ij
kl

Order of fitting RMSE # nonzero

b
ij
kl

grot4 ðPQ4

xÞ 2.16E-06 5921 8 4.53E-05 1059

grot3 ðPQ3

xÞ 1.13E-07 6440 10 1.56E-05 1796

grot2 ðPQ2

xÞ
l1 þ l2 ¼ 0

7.42E-06 6536 14 4.55E-06 2157

grot2 ðPQ2

xÞ
l1 þ l2 ¼ 2

1.41E-05 3254 20 1.69E-06 4526

grot1 ðPQxÞ 9.85E-06 2891

Table 4 Goodness-of-fit estimates and total execution timings for the

approximated ðpxApxBjpxCpxDÞ ERI

Order of fitting of grotðPAxPBxÞ RMSE

Goodness-of-fit estimates

8 6.07E-04

10 6.06E-04

14 1.59E-05

20 1.59E-05

Numerical approximation (this

work)

Uquantchem

Total execution timings

Execution time

(s)

80.5 ± 0.5 1017.5 ± 27.0

The terms grotn ðPQn

xÞ; n ¼ 1; 2; 3; 4 were fitted with Chebyshev poly-

nomials of order 14, and the term G0 was fitted with the rational

function of Eq. (20) and Chebyshev polynomials of order 20 (for the

radial dependencies). The radial terms of the rotationally dependent

elements were fitted with Chebyshev polynomials of order 14. The

term grotðPAxPBx was fitted with Chebushev polynomials of order 20
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found for other points, and in the future an exhaustive

statistical study will be performed to better understand the

spatial dependencies of the total fitted ERIs.

The timings of the calculation of 505,000 ERIs using the

numerical approximated developed in this work and a

reference method are given in Table 4. The reference

results are from Uquantchem [16] which computes ERIs

using Rys polynomials [5, 6]. The total execution time of

the present method is mostly dependent on the number of

nonzero b
ij
kl terms. Importantly, longer Chebyshev expan-

sions result in significant improvements of accuracy, while

adding comparatively fewer b
ij
kl terms. It is safe to say that

the methodology developed in this work can be systemat-

ically improved with only a small penalty on the total

execution time. Despite the significant results, with a

speedup of 12.6, consideration of the timings required for

the numerical approximation of ERIs is secondary in this

work. The calculations were performed monolithically

using fixed polynomial expansions for most fittings, and no

optimizations of the fitting polynomials were attempted. In

the future, specific optimizations will be introduced and

Chebyshev polynomials of different orders will be tested to

provide the best cost/benefit result.

5 Conclusions and future prospects

This work is the first step of a large effort to develop novel

tight-binding computational methodologies to study large

and complex systems. In the path to faster and more gen-

eric computational quantum methods, three aspects are the

most significant: (1) computation of ERIs, theoretically an

O(N4) process, although for large systems, the asymptotic

scaling approaches O(N2), (2) diagonalization, itself an

O(N3) process, and (3) the SCF iterations. The focus of this

work was on the efficient and accurate computation of

ERIs. The approach consisted in using multivariate

approximation techniques to reproduce pre-computed tar-

get data. It is a proof-of-concept work aimed at demon-

strating the feasibility of such approximations. To my best

knowledge, this was the first time that such techniques have

been published.

(a) (b)

(c) (d)

Fig. 7 Illustration of the

residuals of the total computed

ERI for two fittings of the term

grotðPAxPBxÞ (Chebyshev
polynomials of order 20 and

14). The rotationally dependent

terms grotn ðPQn

xÞ were only fitted

with Chebyshev polynomials of

order 14. Fitting grotðPAxPBxÞ
with order 20 polynomials

results in residuals one order of

magnitude smaller than when

fitting with order 14

polynomials. Importantly, the

biggest absolute residuals are

typically localized at h = 90�
and u = 0�
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The test system was the three-center ERI

ðpxApxBjpxCpxCÞ with all atoms being carbons. Having all

atoms the same, introduced important symmetry relations

that reduced the amount of data required to develop the

approximations. In the initial phase of development, when

multiple calculations were needed to generate adequate

target data, it was important to keep the number of calcu-

lations to a minimum. The same holds for the target basis

set. The small STO-6G basis set was used because it

allowed efficient calculation of the many ERIs required as

target data.

The methodology for the numerical approximation

consisted in decomposing a six-variable problem, and a

three-variable problem, into three-bivariate problems, and

one-univariate plus one-bivariate problem, respectively.

The chosen approximating functions were bivariate Che-

byshev polynomials and a univariate rational polynomial.

The assumption was that for each sequential variable

reduction, the approximating coefficients yield a continu-

ous function that can be approximated by another set of

polynomial approximants. If the approximating coefficients

of a certain layer span a continuous surface, they can be

fitted in the next layer of approximations using the same

techniques. Although no mathematical justification was

attempted, it was indeed verified that all surfaces and the

single curve are continuous and could be accurately

approximated. It is important to remember that the novel

methodology to approximate ERIs is not general and is not

intended to replace existing methodologies.

The results are excellent with reasonably small errors. In

plots of residuals for two specific points, the best approx-

imant gives absolute errors significantly less than 1.0E-05,

for most of the approximating domains. This means that

the approximating methodology is able to maintain the

rotational invariance of the computed integrals. Impor-

tantly, the new approach does not depend on the size of the

contractions of the basis set. Although it was not a priority

of this work, and no special attempts were made to opti-

mize the speed of the numerical approximations, the

methodology is very fast. Without specific optimization of

the different Chebyshev expansions, the numerical

approximation of the ERIs is 12.6 times faster than the

calculation of the same ERIs using Rys polynomials as

implemented in Uquantchem [16]. Considerable speed

gains are expected from using optimized numerical

libraries and GPU computing.

The first major development in the future will be the

creation of a library of approximated ERIs, starting with

the most common elements in Biology: H, C, N, O, S, Na,

K, Cl, Fe, Zn, Cu, and Ni. Appropriate single- and double-f

basis sets will be developed for these elements, and a new

tight-binding approach will be implemented to take

advantage of this work.

In conclusion, this work opens new perspectives to the

future of computational chemistry, for example in molec-

ular simulations of large and complex systems. The effi-

cient computation of ERIs eliminates a significant barrier

to the generalization of computational quantum methods to

large systems and will allow the development of special-

ized quantum-based methodologies that will be simulta-

neously fast and accurate.
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