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absorption spectra of the nickel complex is practically lim-
ited to a red shift of about 0.1–0.3 eV. The analysis of the 
density of states for the dmit/TiO2 (101) system shows that 
the LUMO of the metal complex lies at the edge of the TiO2 
conduction band indicating, therefore, that electron injec-
tion from the complex excited state into the semiconductor 
surface is unlikely.

Keywords  Metal complexes · Dmit ligand · DFT · 
TD-DFT · Adsorption energy · Sensitizer

1  Introduction

The sensitization of wide band-gap semiconductors lays 
at the heart of dye-sensitized solar cells (DSSCs), a rising 
technology for solar energy harvesting that offers some 
advantages over classical Si-based devices [1, 2]. A key 
strength of DSSCs is the separation of electron genera-
tion and transport processes in two distinct materials. This 
allows the disconnected optimization of the dye for photon 
absorption and of a wide band-gap semiconductor for elec-
tron–hole separation and collection [3].

Typically, metal oxides like zinc oxide (ZnO) [4, 5], 
stannic oxide (SnO2) [6–8], and titanium dioxide (TiO2) [2] 
have been used as the semiconductor material. However, 
different experimental results have shown that TiO2 is pref-
erable over either ZnO or SnO2. Titanium dioxide is non-
toxic, highly abundant, and provides a mesoporous struc-
ture for both organic and inorganic dye adsorption.

The role of the dye is to absorb the incoming photons 
and to transfer the excited electron to the conduction band 
of the semiconductor. Thus, an efficient dye should (a) be 
strongly adsorbed at the semiconductor surface; (b) show 
intense absorption in the visible and near-infrared regions 
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of the electromagnetic spectrum; (c) be stable enough as to 
be capable of multiple oxidation–reduction cycles; and (d) 
be stable enough in its oxidized form as to be reduced by 
the electrolyte and his lowest excited state should be higher 
than the semiconductor conduction band edge.

Basically, photosensitizer dyes are either pure organic 
compounds or metal-based organometallic complexes. 
Metal-free organic sensitizers are cheaper, easy to modify 
structurally to tune the dye properties; in some cases, they 
are environmentally benign and non-toxic and have high 
molar absorption coefficients. However, they also show 
important stability and efficiency problems. Many metal 
complex-based dyes have been proposed. Of these, ruthe-
nium (II) polypyridyl complexes have been shown to be the 
best so far [9]. However, the low abundance of the metal, 
its high cost, and toxicity impose severe limitations on its 
practical and widespread use. Thus, transition metal com-
plexes based on iron (Fe), nickel (Ni), cobalt (Co), pal-
ladium (Pd), platinum (Pt), and zinc (Zn), among others, 
have been proposed as alternatives in the design of photo-
voltaic sensitizers [2, 3, 10–14].

In this regard, square-planar complexes with sulfur-
containing ligands that absorb in the near-infrared region 
(NIR) of the spectrum have attracted special interest and 
have been examined both experimentally and theoretically 
[12, 15–19]. Islam et al. [15] were the first to explore the 
application of a series of square-planar diimine–dithiolate 
complexes as sensitizers. They synthesized and character-
ized a series of platinum-based polypyridyl complexes with 
dithiolate ligands that were also anchored to nanocrys-
talline TiO2 in photoelectrochemical cells. The intense 
charge-transfer band in these complexes was shown to be 
tunable by changing the dithiolate ligands. Geary et  al. 
[16] prepared and examined a family of Pt(II)(diimine)
(dithiolate) complexes, analyzing the influence of 3,3′-, 
4,4′-, and 5,5′-bipyridyl substituents on their electronic 
properties. All synthesized complexes were attached to a 
TiO2 substrate and tested as solar cells sensitizers with the 
3,3′-disubstituted bipyridyl complex showing the highest 
photovoltaic performance.

In a later study [17], the superior performance of the 
3,3′- bipyridyl complex was rationalized by using density 
functional theory calculations based on a hybrid functional 
that suggested that the longer-lived charge-separated state 
for this complex on TiO2 was related to the non-planar 
geometry of the complex, reducing the electronic coupling 
between ligands. Lazarides et  al. [18] have attempted to 
increase the light absorption properties of Pt(II)(diimine)
(dithiolate) chromophores by combining them with boron-
dipyrromethene, a strongly absorbing dye, in a dual 
chromophore system. By using time-dependent DFT cal-
culations, the authors show that the many paths for elec-
tron transfer that exist in these systems result in unexpected 

routes for excited-state relaxation and loss of the desired 
properties of the excited charge-transfer state. Despite the 
intense work developed on examining the potential of Pt(II)
(diimine)(dithiolate) complexes as sensitizers for DSSC 
cells, only the paper by Linfoot et al. [12] has studied some 
Ni(II)(diimine)(dithiolate) dyes in relation with their use as 
dyes in a DSSC cell. The authors characterized the com-
plexes using electrochemical, spectroscopic, and computa-
tional techniques and assigned intense visible absorptions 
to ligand-to-ligand charge-transfer transitions that would 
suggest appropriate charge separation for using on a photo-
electrochemical device. However, low photocurrents were 
found when the complex was adsorbed on a TiO2 film, a 
problem that was linked to a short-lived excited state of the 
Ni(II) complex.

Because of their unique properties related to applica-
tions in fields as diverse as conducting and superconduct-
ing materials, nonlinear optics, catalysis, and dyes, metal 
dithiolene complexes, R2M(dmit)2, R  =  PyMe, NEt4, 
NMe4, NPr4, NBu4, and dmit  =  1,3-dithiole-2-thione-
4,5-dithiolate) have been extensively studied for more than 
forty years [20]. These applications result from an interplay 
of different properties, including highly delocalized fron-
tier orbitals that allow direct electron transfer through the 
ligand π orbitals. For this reason, these complexes are con-
sidered promising candidates for photochemical devices 
[21].

Here, we present a study of the structural and spectro-
scopic properties of the model dithiolene complex [(CH3)2]
[Ni(dmit)2] by combining DFT and TD-DFT calculations. 
First, we analyze the properties of the isolated complex 
using the B3LYP functional and an atom-centered basis 
set. Second, the geometric and electronic properties of the 
complex adsorbed on a model TiO2 (101) anatase surface 
have been examined by using plane-wave calculations that 
include both the use of a Hubbard correction to properly 
localize the metal d electrons and an approximate func-
tional to improve the description of the dispersion forces on 
the DFT calculations. Finally, we theoretically examine the 
performance of the model [(CH3)2][Ni(dmit)2] complex as 
a sensitizer.

2 � Computational details

For the isolated [CH3]2[Ni(dmit)2] complex, DFT calcu-
lations have been performed using the Gaussian 09 quan-
tum chemical package [22]. Equilibrium geometry and 
electronic properties were determined by employing the 
hybrid Becke three-parameter functional with the Lee, 
Yang, and Parr (B3LYP) exchange correlation functional 
[23, 24], with CEP-121G [25–27] effective core poten-
tials and basis sets for Ni and S atoms and 6–31++G 
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basis set for C and H atoms. Given that some charge-
transfer character was found in the first excited state, the 
CAM-B3LYP hybrid functional, that includes long-range 
corrections, was also employed [28]. TD-DFT single-
point energy calculations were performed on optimized 
geometries.

To determine the geometric and electronic properties 
of the TiO2 (101) surface and TiO2 (101) surface with the 
adsorbed nickel complex, we performed periodic DFT cal-
culations using the Vienna ab  initio Simulation Package 
(VASP) [29–31]. The projector augmented wave (PAW) 
method was used, and the cutoff energy was set to 400 eV 
for slab and adsorption calculations. The generalized gra-
dient approximation (GGA) functional was used (Perdew-
Burke–Ernzerhof, PBE) [32]. In order to better render the 
anatase band gap, usually underestimated in plain GGA 
DFT calculations, a Hubbard-type on-site Coulomb cor-
rection term was used as implemented by Dudarev et  al. 
[33]. The GGA + U procedure was applied on the transi-
tion metal d electrons, being the Ueff values employed in 
this work 4.5  eV and 5.5  eV for 3d levels of Ti and Ni, 
respectively [34, 35]. Optical spectra were obtained from 
the frequency-dependent dielectrical functions as proposed 
by Gajdoš et al. [36].

Because GGA functionals neglect attractive long-range 
contributions, computed adsorption energies are generally 
underestimated [37]. To include the van der Waals correc-
tions into the density functional approach (vdW-DF) and 
obtain a more accurate description, the method proposed by 
Tkatchenko and Scheffler was employed in this work [38].

The slab model of anatase surface was obtained by 
appropriately cutting the most stable TiO2 (101) surface 
and is represented by 96 [TiO2] units arranged according 
to anatase crystalline structure. The model 5 ×  3 super-
cell consisted of two O-Ti–O trilayers, 144 atoms each, 
where the bottom layer was fixed. The orthorhombic super-
cell has, thus, dimensions: a =  31.254, b =  15.288 and 
c = 35.916 Å, including a vacuum space of 20 Å in the c 
direction. All calculations were performed at the Γ point.

Adsorption of [CH3]2[Ni(dmit)2] complex on the TiO2 
(101) surface was done in three different adsorption config-
urations: linked by Sthione, linked by Sthiole–Sthiolate (bridge), 
and plane (Fig. 1).

Adsorption energies (EADS) for the optimized metal 
complexes on the TiO2(101) surface were calculated using

where E(TiO2)+(Nidmit) is the energy of (Ni-dmit) complex 
adsorbed on the TiO2 (101) surface, ENidmit

 and E(TiO2) are 
the energies of the isolated Ni-dmit complex and clean 
TiO2 (101) surface, respectively. With this definition, nega-
tive adsorption energies represent bound states stable with 
respect to desorption.

EADS = E(TiO2)+(Nidmit) − (E(TiO2) + ENidmit
)

3 � Results and discussion

3.1 � Structure and electronic properties 
of [CH3]2[Ni(dmit)2] complex

Figure 2 shows the optimized structure of the square-pla-
nar complex [CH3]2[Ni(dmit)2]. Table 1 presents the geo-
metric parameters obtained at the B3LYP and PBE + U 
levels, in comparison with the experimental structure. We 
report only the relevant bond lengths and bond angles.

From the data shown in Table 1, a general agreement 
between calculated and experimental values is observed. 
Optimized bond distances are systematically overes-
timated, and the values obtained from PBE +  U calcu-
lations in general are in better agreement than those 
estimated with either the B3LYP or the CAM-B3LYP 
functionals, except for the C=C double bond. Ni–S bond 
lengths are very similar to each other and in agreement 
with the experimental results. In contrast, the S=C bond 
is significantly overestimated. The disagreement found 
can be related to the fact that experimental data derive 
from solid crystal structure diffraction experiments in 
which packing forces may alter the geometry of individ-
ual molecules.

The calculated harmonic vibrational frequencies and 
band assignments for the nickel complex are presented in 
Table 2.

The calculated peaks associated with the C–H 
stretch modes of the [CH3] groups were found 
at 3073/3098/3001  cm−1 for B3LYP, CAM-
B3LYP and PBE  +  U, respectively. The bands at 
1331/1374/1297  cm−1 and 993/1063/950  cm−1 were 
assigned to C=C and C=S stretching modes, respec-
tively, and were compatible with other published results 
[40]. Valade et  al. [41] also reported the C=C peak 
at 1430  cm−1 and listed two peaks at 455  cm−1 and 
310  cm−1 and both were assigned as Ni–S vibration. 
The bands at 496/509/490  cm−1 are characteristic of 
the fundamental vibrations of the thiocarbonate group 
(–S–(C=Sthione)-S–). The C=S stretching vibration is 
the characteristic vibration in the IR spectra of DMIT 

Fig. 1   Schematic structure of adsorption form Sthione, Sthiole–Sthiolate
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complexes. According to various authors, several peaks 
appear in the 1050–995  cm−1 range, making it difficult 
to assign as C=S [42, 43]. The results show the same ten-
dency for different levels of calculations in describing the 
vibrational properties.

Considering now the electronic properties of metal 
complexes, we first start analyzing the HOMO and LUMO 
Kohn–Sham frontier orbitals of [CH3]2[Ni(dmit)2]. As 
shown in Fig. 3, the HOMO is of π-character and mainly 

corresponds to the C2S2
2− unit of dmit ligand and Ni(II) d 

orbital center. The LUMO is mainly contributed from the 
thiole ring of dmit ligand without metal participation. The 
same profile was observed by Fan et al. [45].

Absorption electronic spectra were obtained from TD-
DFT calculations performed at the optimized ground-state 
geometries (Fig. 4). Calculated oscillator strengths, transi-
tion energies, and wave function for the most relevant tran-
sitions of electronic absorption bands are listed in Table 3. 
The influence of the solvent environment on the absorption 
spectra was not considered in our calculations. Only tran-
sitions with significant oscillator strengths are presented. 
Fifty singlet electronic-excited states were included.

As shown in both Table  3 and Fig.  4, the theoreti-
cal description of the UV–Vis absorption spectrum of 
[CH3]2[Ni(dmit)2] complex is, quantitatively, quite differ-
ent for the two DFT functionals tested. The first absorption 
appears at a wavelength of ~800 nm when the B3LYP func-
tional is used. However, the CAM-B3LYP functional offers 
a different picture, with a first, quite intense band appearing 
at ~590 nm, in much good agreement with the experiment 
[46, 47]. Both functionals assign this excitation to a HOMO–
LUMO π → π* transition, but with significant contribution 
of the HOMO-1 → LUMO + 1 transition in the case of the 

Fig. 2   Optimized structure of 
[CH3]2[Ni(dmit)2] complex. 
Atoms colors code: Ni, gray; C, 
black; S, yellow; H, white

Table 1   Main geometrical parameters calculated for 
[CH3]2[Ni(dmit)2] complexes

* Bond lengths in Å and bond angles in degrees

B3LYP CAM-B3LYP PBE + U Exp [39]

Bond distances

 Ni–S 2.244 2.230 2.186 2.16–2.17

 S=C 1.747 1.749 1.721 1.66

 C=C 1.401 1.400 1.416 1.39

Bond angles

 S–Ni–S 92.6 92.8 93.1 92.2

 S–Ni–S 87.4 87.2 93.2 86.6

 Ni–S–C 101.5 101.4 102.4 102.8

Table 2   Comparison between 
the experimental and calculated 
frequencies and assignments 
of vibrational modes of 
[CH3]2[Ni(dmit)2] (cm−1)

B3LYP CAM-B3LYP PBE + U Exp [40–44]

υs(C-H) 3073 3098 3001 3000

υs(C=C) 1331 1374 1297 1454

υ(C–Sthiole) 943 984 933 940

υ(S-(C = Sthione)–S) 496 509 490 531

υ(C=S) + υ(Sthiole–Cthione–Sthiole) 993 1063 950 1039

υ(Ni–Sthiolate) 418 438 414 455

υ(Ni–Sthiolate) 317 337 318 310

Fig. 3   Kohn–Sham frontier orbitals of isolated [CH3]2[Ni(dmit)2] HOMO (left); LUMO (right)
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CAM-B3LYP functional. At shorter wavelengths, the gen-
eral features of the CAM-B3LYP computed spectrum also 
agree in a better way with the experimental data. There are 
some excitations that give rise to an absorption band around 
380 nm assigned to transitions involving molecular orbitals 
arising from the interaction between d metal orbitals with p 
orbitals of dmit moieties [48]. However, in the experimental 
spectrum the band is found at 400 nm and shows a higher 
intensity than the 600  nm band, pointing to some defects 
still present in the model. In the high region energy, how-
ever, there is a much better agreement with the experiment, 
noting a prominent band at 4.79 eV (259 nm) that involves 
intra- and inter-ligand π → π* excited determinants.

3.2 � Adsorption energies, structural, and electronic 
properties of [CH3]2[Ni(dmit)2] supported on the 
TiO2 (101) surface

Three different types of adsorptions onto TiO2 surface con-
figurations were considered: linked by Sthione (in this case, 
the methyl group has been displaced to a nearby Sthiole site 
to allow Sthione to interact with the TiO2 surface), linked by 
Sthiole–Sthiolate, and planar. The optimized geometry of these 
structures is shown in Fig. 5, and the values of the adsorp-
tion energies are summarized in Table 4.

Table 4 shows that adsorption modes Sthiole–Sthiolate and 
planar of Ni complex are moderately exothermic, while 
binding through the Sthione atom is endothermic. Two main 
ingredients contribute to this different behavior. First, the 
stability of a complex with a bidentate ligand is invari-
ably greater than the corresponding complex of monoden-
tate (Sthione) ligands. Second, there is a large contribution 
from the dispersion forces for the Sthiole–Sthiolate and planar 
modes, which is practically absent in the Sthione mode. In 
fact, the more efficient Van der Waals interaction in the case 
of planar adsorption makes it the preferred mode. There are 
no significant variations on the internal geometry of the Ni 
complex after adsorption on TiO2 (101) surface.

To analyze the electronic structure, density of states 
(DOS) was calculated for the optimized structure of clean 
TiO2 (101) surface, isolated [CH3]2[Ni(dmit)2] com-
plex, and [CH3]2[Ni(dmit)2] complex adsorbed on TiO2 
(101) surface. The corresponding DOS plots for the iso-
lated [CH3]2[Ni(dmit)2] complex and the TiO2 surface are 
reported in Fig.  6. The DOS of clean TiO2(101) shows a 
broad, filled valence band and a broad, empty conduction 
band, separated by a gap of 2.48  eV, which is consistent 
with previous theoretical works [49]. Inspection of Fig.  6 
shows that the HOMO of the [CH3]2[Ni(dmit)2] complex 
appears ~0.98 eV above the TiO2 valence band edge, lying 
within the band gap. In its turn, the LUMO level lies just 
below the conduction band edge.

The performance of DSSC is associated with align-
ment of the metal complex HOMO–LUMO levels with 
respect to the TiO2 band edges; this property is the key for 
an efficient electron injection. The LUMO of metal com-
plex has to be higher in energy than the conduction band 
edge of the semiconductor, so the electron transfer occurs 
between LUMO and the TiO2 conduction band. Therefore, 
charge injection times depend upon the electronic overlap 
between the TiO2 and dye orbital. The analysis of DOS 
shows that the metal complex LUMO position relative the 
TiO2 (101) surface is energetically unfavorable for electron 
injection on TiO2 conduction band. After adsorption, the 
DOS, bottom of Fig. 6, is found to be quite similar to that 
for the isolated components. The HOMO–LUMO gap of 
nickel complex decreases slightly, while the LUMO level 
is somewhat pushed into the conduction band of the titania 

Fig. 4   Gas phase UV–Vis absorption spectrum of [CH3]2[Ni(dmit)2] 
computed at the TDDFT/B3LYP and TDDFT/CAM-B3LYP levels of 
theory

Table 3   Excitation energy 
(E in eV), oscillator strength 
(f) and main configurations 
of the wavefunction of 
[CH3]2[Ni(dmit)2] at TDDFT/
B3LYP and TDDFT/CAM-
B3LYP levels of theory (H 
HOMO, L LUMO)

B3LYP CAM-B3LYP

E f Main configurations E F Main configurations

1.51 0.33 H→L 2.03 0.50 H→L/H-1→L + 1

2.49 0.12 H-1→L + 1 3.35 0.07 H→L/H-1→L + 1

3.29 0.08 H-6→L 4.69 0.15 H-7→L

3.97 0.04 H→L + 5/H→L + 8 4.79 0.54 H-5→L + 2

4.32 0.60 H-5→L + 2/H→L + 8/H→L + 10
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surface. As can be seen, some new occupied states appear 
at the TiO2 band gap after adsorption of [CH3]2[Ni(dmit)2] 
complex. These bands are contributed almost exclusively 
from the Ni complex orbitals. We also observe that metal 
complexes have a strong overlap with the conduction band. 
On the other hand, it is worth noting that the presence of 
[CH3]2[Ni(dmit)2] affects the magnitude of the band gap. 
In any case, the calculated DOS for the different modes of 
adsorption is quite similar.

Finally, the UV–Vis absorption spectra for the 
[CH3]2[Ni(dmit)2] nickel complex adsorbed on the TiO2(101) 
anatase surface in the planar configuration were obtained. The 
imaginary part of the dielectric function, ε2(ω), computed 
from PBE + U calculations is reported in Fig. 7. In order to 
make the analysis easier, the optical spectrum of the isolated 
nickel complex was also computed and plotted in Fig. 7.

We start with the spectrum of the isolated nickel com-
plex. The lowest energy peak appears at 0.87  eV that 
according to the DOS analysis is assigned to a HOMO–
LUMO transition. This is followed by a small peak at 
1.95  eV, and several absorptions at energies higher than 
3 eV. If we compare this spectrum with that obtained from 
TDDFT B3LYP calculations (Fig. 4), a general lowering 
of the transition energies is observed. Beyond the speci-
fied technical differences in the setup calculations: plane-
waves vs. contracted Gaussian basis sets and theoretical 
framework, the main responsible for this lowering is the 
exchange–correlation functional used in the calculations 
[50]. While hybrid exchange–correlation functionals use 

Fig. 5   Side-view optimized geometries for [CH3]2[Ni(dmit)2] 
adsorbed on TiO2 (101) anatase surface

Table 4   Calculated adsorption energies (Eads in eV) of 
[CH3]2[Ni(dmit)2] on TiO2 (101) surface

Form of adsorption Eads

Sthione 0.59

Sthiole–Sthiolate −0.92

Planar −1.12

Fig. 6   Top: Calculated DOS for the isolated [CH3]2[Ni(dmit)2] com-
plex and clean TiO2 (101) surface; bottom: after adsorption. The zero 
of the energy is set at the Fermi level of the complex
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to overestimate HOMO–LUMO gaps, plane GGA func-
tionals clearly underestimate them, which leads to a shift 
in the spectra [51, 52]. Notice that although a Hubbard-
type correction is present in the PBE calculations, the U 
term is only applied to Ni atoms, while the lowest tran-
sitions mainly are of π  →  π* character, primordially 
involving carbon and sulfur ligand atoms.

After deposition of the nickel complex on the TiO2(101) 
surface, the optical spectrum shows a low energy strong 
absorption at 0.73  eV that corresponds to the HOMO–
LUMO excitation of the free complex. Below 3  eV, the 
observed peaks are quite similar to those of the free com-
plex but at lower energies, indicating that the interaction 
with the titanium oxide surface induces a general red shift 
of the electronic bands in agreement with the behavior 
reported for CdSe clusters supported on TiO2(110) rutile 
surface [51]. At energies higher than 3  eV, the spectrum 
shows complex features resulting from the superposition 
of the electronic absorption of both the nickel complex 
and the TiO2(101) surface [51]. This assignment is consist-
ent with the DOS plots computed for [CH3]2[Ni(dmit)2] 
nickel complex adsorbed on the TiO2(101) anatase surface 
reported at the bottom of Fig. 6. In any case, it is worth to 
remark the absence of significant electronic absorptions in 
the visible spectrum window (1.6–3.1 eV), indicating the 
unsuitability of this type of nickel complex as DSSC sensi-
tizer. This situation, however, may be different if the com-
plex is chemically bound to the TiO2 surface, a possibility 
that will be the subject of a future work.

4 � Conclusions

Density functional calculations have been carried out to 
explore the structural, electronic, and optical properties 

of [CH3]2[Ni(dmit)2] complex, both isolated and sup-
ported on TiO2(101) anatase surfaces. With this aim, two 
different theoretical frameworks have been undertaken: 
molecular B3LYP calculations with a contracted Gauss-
ian type basis set and periodic PBE +  U slab calcula-
tions using plane-waves. From a structural point of view, 
both approaches give geometrical parameters and vibra-
tional frequencies in agreement with experimental data. 
TDDFT/B3LYP calculations of [CH3]2[Ni(dmit)2] iso-
lated complex show an intense and low energy absorp-
tion at 1.51  eV mainly arising from a HOMO–LUMO 
π → π* excitation. The HOMO isosurface clearly shows 
the electron density being localized on C2S2

2− moie-
ties of dmit ligand and Ni (II) d orbital. In contrast, the 
LUMO is mainly composed by the dmit ligand thiole ring 
without nickel contribution.

For the deposition of [CH3]2[Ni(dmit)2] on the 
TiO2(101) surface, three different adsorption configura-
tions were considered. Our calculations indicate that the 
most stable adsorption mode corresponds to a planar form 
where the dmit π system interacts with the TiO2 surface, 
mainly through long-range dispersion forces. Partial DOS 
plots show that the LUMO of [CH3]2[Ni(dmit)2] lies at the 
conduction band edge of TiO2 which is unfavorable for a 
hypothetic electron injection onto the semiconductor sur-
face. On the other hand, the HOMO of the complex also 
falls within the TiO2 band gap, making it that the lowest 
(and most intense) electronic absorption of the nickel com-
plex supported on the TiO2 is similar to that of the unsup-
ported complex. The effect of the TiO2(101) surface on the 
absorption spectra of the nickel complex is practically lim-
ited to a red shift of about 0.1–0.3 eV. The absence of sig-
nificant electronic absorption in the visible spectrum region 
allows us to discard this complex as sensitizer in DSSC.
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