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1 Introduction

In recent years, the combined quantum mechanics/molecu-
lar mechanics (QM/MM) approach has become a standard 
tool in theoretical chemistry. First developed by Warshel 
and Levitt [1] and Karplus et al. [2] at the semiempirical 
level to study chemical processes of biological relevance, 
the method was rapidly extended to ab initio and density 
functional methods [3–6]. It opened an avenue to carry out 
molecular dynamics (MD) simulations of chemical events 
in solution and to improve our understanding of reaction 
mechanisms and activation to the transition state [7, 8].

In QM/MM MD methods, only a small part of the 
whole system is treated quantum mechanically and this 
represents a main advantage in terms of computational 
cost with respect to other methods based on full ab initio 
treatments. Nevertheless, most applications usually require 
long to very long CPU times. The bottleneck in such sim-
ulations is the need to get the wave function, the energy 
and the energy derivatives at each time step, which in the 
Born–Oppenheimer approximation requires the diagonali-
zation of the Fock or Konh–Sham matrices, making the 
whole procedure poorly parallelizable. In other words, not 
only the CPU time but also the wall-clock time in QM/
MM MD simulations may rapidly become exceedingly 
long. For this reason, QM/MM simulations suffer in gen-
eral from two main shortcomings: the use of low-level QM 
methods (typically semiempirical methods, or at best DFT-
based methods with small basis sets), and a limited statis-
tical sampling (typically a few tens or a few hundreds of 
picoseconds, depending on QM level and system size). The 
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results are seldom accurate, therefore, and the situation is 
even worst when free energies are considered, as standard 
algorithms like umbrella sampling [9] are very computa-
tionally demanding.

In this paper, we describe a methodology to improve 
the accuracy of free-energy calculations in combined QM/
MM MD simulations. It is based on the combination of 
two recently developed algorithms in our group. On the 
one hand, the horsetail sampling algorithm [10], which 
has allowed us for the first time to reach the nanosecond 
time scale in ab initio QM/MM simulations through the 
implementation of an efficient parallelization procedure. 
And on the other hand, the dual-level technique [11, 12], 
in which free-energy perturbation theory is used to estimate 
high QM/MM-level corrections to free energy obtained at 
a lower QM/MM level. The methodology is outlined in 
the next section, and it is then illustrated through the study 
of hydrogen peroxide dynamics at the vapor–liquid water 
interface. Specifically, we aim at determining the torsional 
free-energy surface of H2O2 in this aqueous environment at 
the CCSD(T)/aug-cc-pVTZ level.

2  Accurate QM/MM calculations 
of thermodynamic properties

2.1  Horsetail sampling

The horsetail molecular dynamics (HMD) sampling 
method [10] is a particular version of the multiple molecu-
lar dynamics approach (MMD) [13]. As in MMD, in HMD 
multiple short trajectories are carried out in parallel seek-
ing to obtain long-time dynamics behavior. The main char-
acteristic of HMD is its multibranched structure, similar 
to that found in a horsetail. Along a main MD trajectory 
called the stem, many branched trajectories are launched at 
regular time intervals. The branching trajectories are started 
at selected stem configurations (the nodes) after redefin-
ing randomly the atom velocities from a Maxwell–Boltz-
mann distribution. This strategy is related to the rare event 
approach developed by Anderson [14, 15]. Details on the 
equilibrium fulfillment in such kind of simulations can be 
found elsewhere [16]. In order to achieve the highest paral-
lel efficiency, the internode separation in the stem and the 
branching trajectories length should be equal. In this way, 
the segment in the stem separating two nodes and a whole 
set of branching trajectories are computed in parallel in a 
multi-core run, and the calculation proceeds node by node. 
Note that in HMD (in contrast to standard MMD) only one 
configuration is required to restart the calculation. In our 
original paper [10], this technique was applied to study the 
structure of hydrogen peroxide at the water liquid–vapor 
interface. The total simulation time was slightly more than 

6 ns representing 5.1 years of CPU time but only 20 days of 
wall-clock time [10].

2.2  Free‑energy perturbation theory

Let us now consider how the quality of the QM calcu-
lation can be increased while keeping the computa-
tional time within affordable limits. The basic scheme 
is inspired from the “double-slash” dual-level approach 
in quantum chemical calculations [17] for medium-size 
molecules in gas phase, where a high-level single-point 
computation is done on the geometry optimized at a 
lower level. Such computations are usually denoted HL/
LL, where HL and LL stand for high-level and low-level 
methods, respectively. In our approach, LL calculations 
are used to generate the QM/MM sampling, while HL 
calculations are used afterward to obtain accurate ener-
gies on a selected set of snapshots from that sampling. 
Let us assume that the free-energy profile at LL along 
a reaction coordinate ξ has been obtained. If we further 
assume that the change from LL to HL Hamiltonian can 
be handled by means of perturbation theory [18], the free 
energy at HL can be estimated through the equation: [11] 

where

represents the potential energy difference between the 
high and low levels for configuration i, and β is the 
inverse temperature (kBT)−1. The average is calculated 
using a set of snapshots from the LL sampling selected 
at regular time intervals in the simulation and displaying 
a particular value of the reaction coordinate ξ. This is 
a major advantage of the method because one does not 
need to carry out high-level calculations along the whole 
reaction coordinate but only on selected ξ points, which 
limits significantly the computational effort to be done. 
It can be useful to rewrite the above expression using 
the fluctuations of the potential energy difference with 
respect to the average:

which leads to:

Here, the first term represents a free-energy correction due 
to differences on the potential energy average, which in 
general is expected to provide the largest contribution. The 
second term, which contains the fluctuations with respect to 
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the average and is connected to thermal corrections, is dif-
ficult to evaluate quantitatively. The distribution of δΔUi(ξ) 
is approximately Gaussian so that the average of the expo-
nential strongly depends on the low-energy tail, which cor-
responds to regions that are rarely sampled. To avoid large 
errors that can be introduced by these tails, several approxi-
mations can be done, which we briefly describe hereafter.

The calculation of (4) can be sufficiently accurate 
provided the distribution of δΔU(ξ) is well known up to 
two standard deviations [18]. In such case, it is possible 
to limit the numerical calculation to values in the range 
|δΔU(ξ)| ≤ 2σ, where σ holds for the standard devia-
tion of the distribution. A more rigorous approximation, 
however, consists in using a cumulant expansion [18, 
19] limited to the second order:

where the last term represents the variance of the vari-
able x. Applying this approximation in our case, one 
obtains:

since by definition 〈δΔU(ξ)〉LL = 0. A similar relation-
ship, although not totally equivalent, can be deduced 
if the distribution of δΔU(ξ) is fitted by a normalized 
Gaussian function having the general form:

where for simplicity we use x = δΔU(ξ), σ2 and xo are 
the variance and the position of the center of the Gauss-
ian, respectively. Formally, the fitted Gaussian is not 
necessarily centered at 0 because the original distribu-
tion is not strictly symmetric in general, but if one wants 
to preserve the condition 〈δΔU(ξ)〉LL = 0, it seems pref-
erable to force xo = 0. Now, the second term in the right-
hand side of Eq. (4) is calculated as:

Integration of the previous equation leads finally to:

This expression has the same form as Eq. (6) using the 
cumulant expansion, the difference being the fact that 
the variance is calculated now from the fitted Gaussian 
rather than from the original distribution.
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3  Computational details

As a case study, we report free-energy calculations for 
the torsional motion of hydrogen peroxide interacting 
with the vapor–liquid water interface. A horsetail QM/
MM simulation for this system has been carried out 
in our recent work [10]. Details on the simulation can 
be found in that paper, so that only a brief description 
will be presented here. The simulation box contains a  
molecule of hydrogen peroxide described at the 
B3LYP/6-311+G(d) level and 499 TIP3P [20] water 
molecules (box size is 24.662 × 24.662 × 130 Å; we 
used periodic boundary conditions along the X and Y 
directions and a cutoff radius of 12.331 Å). Simulations 
were done in the NVT ensemble (T = 298 K). A 100 ps 
MD trajectory (time step of 0.25 fs) was carried out to 
be used as the stem for the horsetail sampling. The latter 
consisted of 96 independent trajectories of 2.5 ps each 
launched at 26 internodes along the stem separated by 
4 ps, for a total simulation time of 6.24 ns. Snapshots 
were saved every 25 fs for further analysis. The simu-
lations were done using Gaussian 09 [21] for the QM 
calculations, Tinker 4.2 for the MD simulations [22] and 
the program developed by us [23].

The free-energy profile for the torsional angle φ at the 
B3LYP/6-311+G(d) level has been calculated using the 
probability distribution obtained in the horsetail sam-
pling, and the equation:

This calculation depends on the number of bins used for 
the computation of the probability distribution. We used 
here 35 bins of 5° for the torsional angle between 5° and 
180° but increasing (up to 45) or decreasing (up to 25) 
this number did not modify our results significantly. In 
order to get more accurate thermodynamic properties, 
free-energy perturbation theory has been used in the 
present paper. High-level QM/MM calculations were 
done using the CCSD(T)/aug-cc-pVTZ method for all 
the saved configurations displaying some specific val-
ues of the torsional angle φ ±1°. The region close to the 
free-energy minimum was explored in deeper detail. A 
total number of about 50000 QM/MM computations at 
the CCSD(T)/aug-cc-pVTZ level were done. The num-
ber of configurations used for each dihedral angle var-
ies depending on the angle probability recovered with 
the original DFT sampling. It ranges between 3600 and 
8600 for torsional angles close to the free-energy mini-
mum (region [70°–100°]), then it decreases as the free 
energy increases. For φ = 10°, which is in the highest 
energy part of the curve, only five configurations were 

(10)G(φ) = −
1

β
ln (P(φ))
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obtained, limiting the accuracy of the computation in 
this case. Standard errors will be provided in the next 
section. The free-energy corrections were calculated 
using perturbation theory and the cumulant approxima-
tion (6).

In the figures below, open circles represent the calcu-
lated points. These points are then fitted by a Fourier series 
torsional potential function,

to estimate the free energy at φ = 0° and φ = 180° in the 
case of H2O2 at the interface. The position of the energy 
minima φo has been determined using a quadratic function 
that fits the points around the minimum (range [70°–100°]).

4  Results and discussion

QM/MM statistical simulations of hydrogen peroxide in 
bulk water have been reported by several authors [24–26]. 
Simulations at the vapor–liquid water interface have also 
been carried out using both classical [27] and QM/MM 
[10] molecular dynamics. It has been shown that H2O2 dis-
plays a significant affinity for the vapor–liquid water inter-
face [10, 27] and this finding might have important impli-
cations on the reactivity of this chemical species in the low 
atmosphere. In particular, the UV–Vis absorption cross 
section is expected to be influenced by the solute–solvent 
interactions, which in turn may lead to a significant modi-
fication of the photolytic rate constant, as found in the case 
of ozone [28].

In order to achieve reliable predictions for the chemi-
cal reactivity of H2O2 at the vapor–liquid water interface, 
it is critical to get an accurate description of its structure in 
this aqueous environment. The equilibrium value of the tor-
sional angle and the height of the torsional energy barriers 
are the most problematic questions because, as discussed 
by other authors [29, 30], their calculation requires the use 
of elaborated correlation methods. Our focus in this work, 
therefore, has been to analyze this specific issue by means 
of the combined approach described above.

In Fig. 1, we compare the potential energy in gas phase 
at the B3LYP and CCSD(T) levels, as a function of the 
torsional angle φ. The geometries were optimized at the 
B3LYP level for each φ value (relaxed scan); then single-
point CCSD(T) calculations were conducted on these 
geometries. Energy barriers and equilibrium angles are tab-
ulated in Table 1. 

(11)
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2
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k2

2
(1− cos(2φ))

+
k3

2
(1+ cos(3φ))+
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+
k5

2
(1+ cos(5φ))

As shown, both methods give similar qualitative 
results though the cisoid barrier is overestimated and the 
transoid barrier underestimated by the DFT approach. 
Moreover, there is a significant difference in the equilib-
rium angle φ, which is predicted to be 123.1° and 112.8° 
by the B3LYP and CCSD(T) methods, respectively. 
The CCSD(T) value is in excellent agreement with the 
experimental estimate 112° reported by Koput [31] by fit-
ting infrared and microwave transitions simultaneously 
to a large-amplitude Hamilton that accounts for vibra-
tion–torsion–rotation interaction, and also with other 
theoretical calculations at similar level [31, 32]. The 
CCSD(T) activation energies for the transoid and cisoid 
transition states, 1.1 and 7.3 kcal/mol, respectively, are 
also in excellent agreement with the experimental val-
ues: 385/387 cm−1 (1.1 kcal/mol) and 2488/2563 cm−1 
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Fig. 1  Relaxed potential energy surface for H2O2 as a function of 
the HOOH torsional angle φ in gas phase. B3LYP/6-311+G(d) vs 
CCSD(T)/aug-cc-pVTZ calculations. The CCSD(T) calculations have 
been carried out on the B3LYP optimized geometries with a fixed φ 
angle. The lowest points are arbitrary taken as the zero energy in each 
case

Table 1  Calculated energy barriers (kcal/mol) and torsional angle 
at equilibrium (degrees) of H2O2 in the gas phase and at the vapor–
liquid water interface at B3LYP/6-311+G(d) and CCSD(T)/aug-cc-
pVTZ levels

Cisoid barrier Transoid barrier φo

Gas phase

 B3LYP 9.82 0.70 123.1

 CCSD(T) 7.34 1.10 112.8

Interface

 B3LYP 4.45 1.41 92.3

 CCSD(T) 4.28 1.38 87.7
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(7.1–7.3 kcal/mol), respectively (see Ref. [33] and refer-
ences cited therein).

In Fig. 2, we report the free-energy curve obtained at the 
vapor–liquid water interface using the horsetail MD simu-
lations at the B3LYP level. For comparison, the potential 
energy curve in the gas phase is also reported. The solva-
tion effect leads, as expected [24], to a strong decrease in 
the cisoid barrier (by 5.4 kcal/mol) and a slight increase in 
the transoid one (by 0.4 kcal/mol), which is primarily due 
to the variation of the H2O2 dipole moment with the tor-
sional angle (the cisoid form being highly polar, while the 
transoid form has zero dipole moment). For the same rea-
son, the solvation effect does also modify the equilibrium 
value φo. It changes from 123.1° in the gas phase to 92.3° 
at the vapor–liquid water interface. This change represents 
a huge modification of the peroxide structure, which may 
have significant consequences in terms of the electronic 
properties and in particular of the electronic absorption 
spectrum [10].

In order to get more accurate data at the interface, we 
have calculated free-energy corrections at the CCSD(T) 
level using the dual-level method. The energy profiles are 
plotted in Fig. 3 (see also data in Table 1), and in Table 2 
we have collected the contributions to the free-energy cor-
rections in the cumulant expansion (6). Error bars for the 
calculated energies are represented in Fig. 3, although they 
are only visible for φ = 10°, 30° (in the other cases, stand-
ard errors are too small to be displayed, see Table 2 and 
the discussion below). For comparison, we also include 
in Table 2 the contribution of the variance when a fitted 

Gaussian is used instead of the cumulant expansion (see 
Eq. 9; note that we do not provide values for torsional 
angles of 10° and 30° because fitting a Gaussian to the cor-
responding δ�U(φ) distributions would not be realistic due 
to too limited samplings). As shown, the values are very 
close to those obtained with the cumulant expansion in the 
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a function of the HOOH torsional angle φ. Calculations at the  
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B3LYP/6-311+G(d) calculations vs dual-level CCSD(T)/aug-cc-
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Table 2  Calculated contributions to the cumulant expansion of the 
free-energy correction (kcal/mol) for different values of the torsional 
angle (°) of H2O2 at the vapor–liquid water interface

For comparison, we also display (right column) the contribution 
when a fitted Gaussian is used instead of the cumulant expansion 
(Eq. 9)

SE for 〈�U(φ)〉LL are indicated in parenthesis. Here, we use rela-
tive potential energies at B3LYP/6-311+G(d) and CCSD(T)/aug-cc-
pVTZ levels, the reference being the calculated energies of H2O2 at 
its B3LYP optimized geometry

φ 〈�U(φ)〉LL − β
2

〈

δ�U(φ)2
〉

LL
− β

2
σ 2

10 2.03 (0.23) −0.23

30 1.84 (0.10) −0.40

70 2.16 (0.01) −0.34 −0.34

75 2.21 (0.01) −0.34 −0.35

80 2.26 (0.01) −0.31 −0.33

85 2.32 (0.01) −0.32 −0.32

90 2.35 (0.01) −0.32 −0.32

95 2.41 (0.01) −0.30 −0.31

100 2.42 (0.01) −0.29 −0.29

140 2.36 (0.01) −0.21 −0.21

170 2.22 (0.02) −0.18 −0.17
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present case, and therefore, they will not be discussed fur-
ther here.

Likewise B3LYP, compared to gas phase, CCSD(T) 
calculations at the interface predict a large torsional angle 
decrease (by approximately 25°), a significant decrease 
in the cisoid energy barrier (by roughly 3 kcal/mol), and 
a slight increase in the transoid one (by roughly 0.3 kcal/
mol). Interestingly, at the interface, the CCSD(T) energy 
barriers are close to B3LYP calculations (see Table 1 and 
Fig. 3), suggesting that intermolecular interaction correc-
tions compensate H2O2 intramolecular energy corrections. 
This fact can be explained by considering that B3LYP 
dipole moments are overestimated with respect to the 
more accurate CCSD(T) calculations. For instance, for the 
structure with φ = 10° in gas phase, the low-level dipole 
moment is 3.66 D while the high-level value for the same 
structure is 3.27 D. We then expect intermolecular interac-
tions to be slightly overestimated at the low level, as indeed 
found. Thus, taking the set of structures with φ = 10° ± 1 
in the QM/MM simulation, the solute–solvent interactions 
are overestimated by roughly 4 kcal/mol (on average) at 
B3LYP level. Note finally that, quantitatively, the predicted 
decrease for the cisoid energy barrier is affected by the 
large error bars of the high-level corrections at φ = 10°, 
30°. However, the energy decrease with respect to gas 
phase is substantially larger than the standard errors at the 
interface gathered in Table 2.

As shown in Table 2, when one compares the high-
level free-energy corrections attributed to the change in 
the potential energy and to its variance, one notes that 
the first term undergoes the largest variations with the 
torsional angle. It ranges between 1.84 and 2.42 kcal/
mol, whereas the contributions due to the variance ranges 
between −0.18 and −0.40 kcal/mol. The latter, however, 
depends on β and should play a slightly larger role at 
lower temperatures.

5  Conclusions

The calculation of free-energy profiles in complex molecu-
lar systems remains an important challenge for theoretical 
chemistry, especially in the context of ab initio molecular 
dynamics and related simulation techniques. The reason 
for that is twofold. On the one hand, the convergence of 
the free-energy calculation is generally slow because it 
critically depends on the effectiveness of the phase space 
sampling. On the other hand, elaborated quantum chemi-
cal calculations have a high computational cost and in addi-
tion they are not efficiently parallelizable, limiting there-
fore the quality of the potential energy function that can be 
used in the simulations. In this work, we have proposed a 
possible strategy to address this challenge. It is based on 

the combination of the horsetail molecular dynamics and 
dual-level approaches previously described for calculations 
using QM/MM partitions. The central idea is to obtain a 
realistic sampling of the system using an appropriate cost-
effective statistical method, then to use perturbation theory 
to ameliorate the probability distribution in some selected 
points of the reaction coordinate. In this paper, we have 
used the horsetail sampling to get the probability distri-
butions and free energies from direct simulations but it 
would be possible to use a similar approach in connection 
with techniques based on biased molecular dynamics. For 
instance, in umbrella sampling simulations, each simula-
tion window could be carried out within the horsetail sam-
pling scheme, which in principle should improve the accu-
racy of the distributions and accelerate the convergence of 
the free-energy calculation.

Using the above computational scheme, we have suc-
ceeded in obtaining the free-energy profile associated 
with the torsional motion of the hydrogen peroxide mol-
ecule adsorbed at the vapor–liquid water interface at the 
CCSD(T)/aug-cc-pVTZ level. We have shown, in par-
ticular, that the equilibrium angle of H2O2 is significantly 
changed with respect to the gas phase value, which may 
have important implications on the photochemistry of this 
system interacting with water droplets in the low atmos-
phere [10].

Overall, the proposed methodology opens new opportu-
nities for the calculation of very accurate thermodynamic 
properties in large disordered systems, and accordingly, it 
can be compared to standard composite methods for the 
study of isolated molecules in the gas phase. Further exten-
sions in this direction will be considered in forthcoming 
work.

Acknowledgements The authors are grateful to the French CINES 
(project lct2550) for providing computational resources and to the 
French–Japan CNRS-JSPS PRC program (project CoSyDy).

References

 1. Warshel A, Levitt M (1976) J Mol Biol 103:227–249
 2. Field MJ, Bash PA, Karplus M (1990) J Comput Chem 

11:700–733
 3. Stanton RV, Hartsough DS, Merz KM (1993) J Phys Chem 

97:11868–11870
 4. Gao J, Xia X (1992) Science 258:631–635
 5. Tuñón I, Martins-Costa MTC, Millot C, Ruiz-López MF (1995) 

J Mol Mod 1:196–201
 6. Tuñón I, Martins-Costa MTC, Millot C, Ruiz-Lopez MF (1995) 

Chem Phys Lett 241:450–456
 7. Tuñón I, Martins-Costa MTC, Millot C, Ruiz-López MF (1997) 

J Chem Phys 106:3633–3642
 8. Strnad M, Martins-Costa MTC, Millot C, Tuñón I, Ruiz-López 

MF, Rivail JL (1997) J Chem Phys 106:3643
 9. Torrie GM, Valleau JP (1977) J Comput Phys 23:187



Theor Chem Acc (2017) 136:50 

1 3

Page 7 of 7 50

 10. Martins-Costa MTC, Ruiz-López MF (2017) J Comput Chem 
38:659

 11. Retegan M, Martins-Costa M, Ruiz-López MF (2010) J Chem 
Phys 133:064103

 12. Martins-Costa MTC, Ruiz-Lopez MF (2013) J Phys Chem B 
117:12469–12474

 13. Auffinger P, Westhof E (1996) Biophys J 71:940–954
 14. Anderson JB (1973) J Chem Phys 58:4684–4692
 15. Anderson JB (1995) Adv Chem Phys 91:381–431
 16. Bennett CH (1977) Molecular dynamics and transition state 

theory: the simulation of infrequentevents. In: Christoffersen RE 
(ed), Algorithms for chemical computations, chap 4. ACS sym-
posium series, vol 46. American Chemical Society, Washington, 
DC, pp 63–97

 17. Corchado JC, Truhlar DG (1998) Dual-level methods for elec-
tronic structure calculations of potential energy functions that 
use quantum mechanics as the lower level. In: Gao J, Thomp-
son MA (eds), Combined quantum mechanical and molecular 
mechanical methods, chap 7. ACS Symposium Series, vol 712. 
American Chemical Society, Washington, DC, pp 106–127

 18. Chipot C, Pohorille A (2007) Free energy calculations. Springer, 
Berlin

 19. Park S, Khalili-Araghi F, Tajkhorshid E, Schulten K (2003) J 
Chem Phys 119:3559–3566

 20. Jorgensen WL, Chandrashekar J, Madura JD, Impey WR, Klein 
ML (1983) J Chem Phys 79:926–935

 21. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, 
Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson 
GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, 
Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, 
Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao 
O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro 
F, Bearpark MJ, Heyd J, Brothers EN, Kudin KN, Staroverov 
VN, Kobayashi R, Normand J, Raghavachari K, Rendell AP, 

Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, 
Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo 
J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, 
Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski 
VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels 
AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ 
(2009) Gaussian 09. Gaussian Inc, Wallingford

 22. Ponder JW (2004) TINKER: software tools for molecular design 
4.2. Washington University School of Medicine, Saint Louis, 
MO

 23. Martins-Costa MTC (2014) A Gaussian 09/Tinker 42 interface 
for hybrid QM/MM applications. University of Lorraine—
CNRS, Lorraine

 24. Martins-Costa MTC, Ruiz-Lopez MF (2007) Chem Phys 
332:341–347

 25. Cristina Caputo M, Provasi PF, Benitez L, Georg HC, Canuto S, 
Coutinho K (2014) J Phys Chem A 118:6239–6247

 26. Fedorov DG, Sugita Y, Choi CH (2013) J Phys Chem B 
117:7996–8002

 27. Vacha R, Slavicek P, Mucha M, Finlayson-Pitts BJ, Jungwirth P 
(2003) J Phys Chem 108:11573

 28. Anglada JM, Martins-Costa M, Ruiz-Lopez MF, Francisco JS 
(2014) Proc Natl Acad Sci USA 111:11618–11623

 29. Maciel GS, Bitencourt ACP, Ragni M, Aquilanti V (2006) Chem 
Phys Lett 432:383–390

 30. Margules L, Demaison J, Boggs J (2000) J Mol Struct THEO-
CHEM 500:245–258

 31. Koput J (1995) Chem Phys Lett 236:516–520
 32. Maciel GS, Bitencourt ACP, Ragni M, Aquilanti V (2007) J Phys 

Chem A 111:12604–12610
 33. Dorofeeva OV, Iorish VS, Novikov VP, Neumann DB (2003) J 

Phys Chem Ref Data 32:879–901


	Highly accurate computation of free energies in complex systems through horsetail QMMM molecular dynamics combined with free-energy perturbation theory
	Abstract 
	1 Introduction
	2 Accurate QMMM calculations of thermodynamic properties
	2.1 Horsetail sampling
	2.2 Free-energy perturbation theory

	3 Computational details
	4 Results and discussion
	5 Conclusions
	Acknowledgements 
	References




