
1 3

Theor Chem Acc (2017) 136:54
DOI 10.1007/s00214-017-2077-z

REGULAR ARTICLE

Hirshfeld partitioning from non‑extensive entropies

Farnaz Heidar‑Zadeh1,2,3  · Ivan Vinogradov1 · Paul W. Ayers1 

Received: 23 January 2017 / Accepted: 28 February 2017 / Published online: 30 March 2017 
© Springer-Verlag Berlin Heidelberg 2017

1  Background

In the language of chemistry, molecules are built from 
atoms and functional groups [1–5]. Although the atoms 
and functional groups are deformed (or “promoted”) 
when they are combined, they nonetheless maintain their 
quiddity. This is why, for example, the periodic table, 
along with tables of atomic properties (like the electron-
egativity, hardness, and polarizability) [6–8], is essen-
tial to practicing chemists. This motivated the strategy 
first proposed by Nalewajski, Parr, and Ayers: define the 
electron density of an atom in a molecule to maximize 
its resemblance to the electron densities of the isolated 
reference atoms and atomic ions enshrined in the peri-
odic table [9–12]. The electron density is chosen as the 
fundamental descriptor of atoms because of the Hohen-
berg–Kohn theorem [13, 14] and inspired by the pioneer-
ing work of Richard Bader [3–5, 15, 16]. The measure 
of “resemblance” between the atom-in-molecule’s den-
sity, ρA(r), and the isolated reference pro-atom’s density, 
ρ0
A(r) , was originally taken to be the Kullback–Leibler 

directed divergence [11],

The Kullback–Leibler divergence is just the Shannon 
information/entropy gain relative to a reference distribu-
tion and has been used in many chemical and biochemi-
cal contexts beyond the atomic partitioning problem 
[17–73]. If one minimizes the total divergence of all 
atoms, subject to the constraint that the sum of all the 
atom-in-molecule densities is equal to the total molecu-
lar density,

(1)I
[

ρA

∣
∣
∣ρ

0
A

]

=

∫

ρA(r) ln

(

ρA(r)

ρ0
A(r)

)

dr.

Abstract We show that the statistical divergence meas-
ures associated with non-extensive thermodynamic entropy 
functions—specifically the Tsallis, Réyni, Sharma–Mittal, 
supraextensive, and H-divergences—are associated with 
the Hirshfeld atoms-in-molecules partitioning. This extends 
the treatment of Nalewajski and Parr (J Phys Chem A 
109:3957–3959, 2005), (for the extensive Shannon entropy) 
to non-extensive entropy measures. It also extends the work 
of Heidar-Zadeh and Ayers (J Chem Phys 142(4):044107, 
2015), (for divergence measures that are local density func-
tionals) to non-local functionals. These results dramatically 
extend the mathematical framework that one can use for 
similarity-based atoms-in-molecules partitioning.

Keywords Atoms in molecules · Hirshfeld partitioning · 
Stockholder population analysis · Atomic charges · 
Information theory · Non-extensive entropy · Tsallis 
entropy · Réyni entropy · Sharma–Mittal entropy · 
Supraextensive entropy · H-divergence

 * Farnaz Heidar-Zadeh 
 farnazhz@gmail.com

 * Paul W. Ayers 
 ayers@mcmaster.ca

1 Department of Chemistry and Chemical Biology, McMaster 
University, Hamilton, ON, Canada

2 Department of Inorganic and Physical Chemistry, Ghent 
University, Krijgslaan 281 (S3), 9000 Ghent, Belgium

3 Center for Molecular Modeling, Ghent University, 
Technologiepark 903, 9052 Zwijnaarde, Belgium

http://orcid.org/0000-0002-2069-050X
http://crossmark.crossref.org/dialog/?doi=10.1007/s00214-017-2077-z&domain=pdf


 Theor Chem Acc (2017) 136:54

1 3

54 Page 2 of 9

then one obtains the “stockholder” partitioning that Hir-
shfeld proposed on heuristic grounds in 1977 [74], and 
upon which many state-of-the-art atomic population 
methods are based [75–89].

It was rapidly recognized that the Hirshfeld partition-
ing can also be obtained from more general directed and 
undirected divergences [12] including the non-extensive 
Tsallis entropy [90], generalized Hellinger-Bhattacharyya 
distances [91], and general f-divergences [92]. Reference 
[92] proves a strong result: any divergence measure that 
can be written as a local density functional,

and which furthermore satisfies

whenever ρA(r) �= ρ0
A(r) for the electron densities 

with the same number of electrons,

and when minimized according to Eq. (2) gives the Hir-
shfeld partitioning is an f-divergence.

The goal of this paper is to consider divergence meas-
ures that cannot be written as local functionals of the 
electron density. Recall that all local functionals of the 
electron density can be written as

where f (x) : R+ → R is an ordinary function. Equiva-
lently, to evaluate the functional derivative of a local 
functional at a point, one needs to only know the electron 
density at that point,

In this paper, we will consider non-local functionals 
which are functions of local functionals,

Of particular interest are divergence measures that are 
based on non-extensive functionals for the thermody-
namic entropy. (Entropy functionals which are non-local 
are inherently non-extensive.) These are not obviously 
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f-divergences, and for this reason, it is interesting to 
assess whether or not the Hirshfeld partitioning is recov-
ered. Specifically, we consider the directed divergence 
measures associated with the Tsallis divergence [90, 93, 
94],

the Réyni divergence [94–96],

the Sharma–Mittal divergence [97–101],

a recently proposed supraextensive divergence [102],

and the very general family of H-divergences [103],
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These H-divergences are not a valid divergence measure 
for every choice for the functions ϕ1(x), ϕ2(x), and h(x). It 
suffices, however, for ϕ1(x) to be convex with ϕ1(1) = 0 
(as for an f-divergence), ϕ2(x) > 0, and h(x) to be mono-
tonic (h′(x) > 0) with h(0) = 0.

There are further extensions (e.g., corresponding to 
position-dependent values, α(r), for the parameter in 
Tsallis divergence) [103, 104], but we will choose not 
to explore those generalizations here. We also omit con-
sideration of divergence measures that are invariant to 
coordinate rotations (e.g., the total Bregman divergence) 
[105–107]. Finally, we note that divergence measures in 
Eqs. (9)–(13) are slightly different from the usual form 
of these divergence measures. This revision is needed 
because atomic electron densities are normalized to the 
number of electrons, while the traditional divergence 
measures only apply to probability distribution functions 
that are normalized to one.

The Tsallis divergence is known to be an f-divergence 
and, in particular, is closely related to the special type of 
f-divergences called the α-divergences [92, 94, 108–111],

where

is the number of electrons in the molecule. For con-
venience, we have chosen a different normalization of 
the α-divergence from the usual form. While we regard 
Eq. (14) as merely a notational convenience, we note that 
in the absence of prefactors, If

α is not a valid divergence 
measure for 0 ≤ α ≤ 1, because it is not convex.

Specifically, the Tsallis divergence is proportional to the 
α-divergence [94]

Similarly, the Réyni divergence can be written as

The α-divergence is also closely related to the Sharma–
Mittal divergence,
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and the supraextensive divergence,

Notice that the Réyni, Sharma–Mittal, and supraextensive 
divergences are functions of local functionals [cf. Eq. (8)]. 
They are therefore non-local density functionals, not 
f-divergences.

The goal of this paper is to show that these more general 
families of divergences, which are closely related to the 
α-divergence, give rise to Hirshfeld atoms. This extends the 
results of Ref. [92] and is the first time that the Hirshfeld 
partitioning has been obtained from non-local divergence 
functionals. This gives a more general approach to Hirsh-
feld-inspired atomic partitioning. As Verstraelen et al. [75] 
have noted, this also has potential applications in computa-
tional algorithms for electronic structure theory, e.g., den-
sity fitting [112–116].

2  Non‑extensive information models 
and Hirshfeld atoms

Suppose one is given an information loss function that 
has the general form,

This form clearly encompasses and generalizes the Tsal-
lis, Réyni, Sharma–Mittal, and supraextensive divergence 
measures. We then determine the atoms in molecule by 
the usual procedure,

Introducing the constraint with a Lagrange multiplier, the 
Lagrangian is:

and the stationary condition for the minimum is
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where

The equation can then be written

As long as α ≠ 1 and ∂g/∂If
α ≠ 0, this identity gives the 

key relation from which the Hirshfeld atom is derived, 
namely that ρB(r)

/
ρ0
B(r) is the same for all atoms. (For 

example, it is sufficient to have a strictly monotonic 
g
(

Nmol, I
α
f

)

 with respect to If
α > 0.) For the Tsallis, Réyni, 

and Sharma–Mittal divergences,

For the supraextensive entropy,

Since this expression cannot be equal to zero, one must 
have β ≠ 1. In all these expressions, we have used the 
fact that If

α ≥ 0, which presumes that the sum of the 
atomic densities and the sum of the reference pro-atomic 
densities have the same normalization.

For local divergence functionals, one sometimes uses 
the fact that the densities of the reference pro-atoms, 
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as close as possible to the density of the molecule, ρmol(r) 
[75, 92]. (This can remove the ambiguity associated with 
picking the reference pro-atoms.) This can also be done 
for these measures. To see this, notice that the key Hirsh-
feld criterion,

for some function h(r), can be written as

Therefore

and Eq. (14) can be rewritten as

where in Eqs. (33) and (35) we have used the constraint 
that the atom-in-molecule densities add up to the total 
molecular density. The pro-molecule density can there-
fore be optimized by the two-step procedure,

Identity (35) and the strategy in Eq. (36) clearly extend to 
any of the generalized α-divergences in this paper. While 
these formulas generalize the f-divergences considered in 
Ref. [92] somewhat, they do not contradict the results in 
that paper because these divergences are not local func-
tionals of the electron density. Their generalizations are 
also not very consequential, since one still obtains the Hir-
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The divergence measures we considered in the previous 
section are all based on non-extensive entropy formulas. 
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The H-divergence formula in Eq. (13) generalizes these 
equations and also the f-divergence. For example, the 
H-divergence is an f-divergence (up to a choice of nor-
malization) if ϕ1(1) = 0, ϕ1(x) is convex, ϕ2(x) = 1, and 
h(x) = x.

As mentioned before, not every choice of functions 
in Eq. (13) is allowed. In this paper, we consider only 
H-divergences which satisfy the requirements:

•	 h(x) is monotonically increasing, h′(x) > 0, and 
h(0) = 0.

•	 ϕ1(x) is convex, ϕ″1(x) > 0, and ϕ1(1) = 0.
•	 ϕ2(x) > 0.

This gives Hh,ϕ1,ϕ2
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tion, which is one of the essential properties of a diver-
gence measure. The analogous H-divergence derivation 
of the Hirshfeld atoms-in-molecules partitioning is found 
by minimizing

with the solution

where we have defined the convenient notation,

Note that by requiring that ϕ1(x) is a convex function 
with ϕ1(1) = 0, we ensure that Gϕ1 is an f-divergence. 
Gϕ2 is not an f-divergence, but a type of normalization 
factor. Possible choices include ϕ2(x) = xα (0 ≤ α ≤ 1), 
ϕ2(x) = x/(x + 1), ϕ2(x) = ln (x + 1), ϕ2(x) = tanh (x). 
All of these functions are concave for x ≥ 0, ϕ″2(x) < 0. 
This is not required for H-divergence to be a valid diver-
gence measure, but later it will turn out to be useful.

Inserting the functional derivatives,
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Equation (32), which leads to the Hirshfeld partition-
ing, is a solution to this equation. However, it may not be 
the only solution. In general, Eq. (41) gives an equation 
relating the densities of every atom pair in the molecule,

where

If g(x) is invertible for x ≥ 0, then the unique solution to 
Eq. (42) is

which leads to the Hirshfeld partitioning. If we assume 
that all the functions are at least twice differentiable, it 
is sufficient that g(x) be monotonic. Therefore, for x > 0,

The conditions stipulated at the beginning of this sec-
tion are almost sufficient to satisfy this equation because 
they ensure that Gϕ2 is positive, that ϕ″1(x) are positive, 
and that Gϕ1 is nonnegative. If we further require ϕ″2(x) 
to be non-positive, then the Hirshfeld partitioning is the 
unique solution to variational procedure (37). These con-
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in Eq. (35), namely that for the atom-in-molecule densi-
ties obtained from Eq. (37),
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gave the same results for the Tsallis and Réyni divergences. 
We were also surprised that the Réyni divergence, even 
though it is not an f-divergence, gave back the Hirshfeld 
partitioning. This led us to explore what other sorts of non-
local divergence measures would recover the Hirshfeld par-
titioning. This paper reports the results of that exploration.

Reference [92] shows that the only local density func-
tionals that lead to the popular Hirshfeld partitioning are 
f-divergences. This paper explores divergences that are 
non-local density functionals but which also give the Hir-
shfeld partitioning. In particular, we observe that the Réyni, 
Sharma–Mittal, and supraextensive divergence measures all 
give the Hirshfeld partitioning. Moreover, all of these func-
tionals are very closely linked to the α-divergence. This 
is desirable insofar that it ensures that these measures are 
closely linked to a very popular and useful family of diver-
gence measures, but it is undesirable insofar as it means 
that optimizing the pro-atom densities [using Eq. (47)] does 
not give significantly different results for these approaches.

The H-divergence in Eq. (13) is much more general. 
While it is difficult to find necessary conditions for the 
H-divergence that gives the Hirshfeld atom, it is sufficient 
to require the following properties for x > 0:

•	 h(x) is monotonically increasing, h′(x) > 0. Also 
h(0) = 0.

•	 ϕ1(x) is convex, ϕ″1(x) > 0. Also ϕ1(1) = 0. This is the 
same as the requirements for an f-divergence.

•	 ϕ2(x) > 0 and is non-convex, ϕ″2(x) ≤ 0.

Note that this family of H-divergences is closely related 
to the f-divergences, but extends that set in a non-trivial 
way. We anticipate that the family of H-divergences could 
be used to define new, and more effective, alternatives to 
variational Hirshfeld-based methods like the minimal basis 
iterated stockholder (MBIS) partitioning [75].

While our primary interest in divergence measures is 
motivated by the problem of atomic partitioning and, more 
generally, fitting molecular densities [cf. Eq. (35)], the 
mathematical tools presented here are suitable for measur-
ing the divergence between other probability distribution 
functions that arise in quantum chemistry. For example, 
there has been a significant recent interest in approaches that 
use the shape function [90, 117–119], instead of the electron 
density, to describe chemical phenomena [70, 120–123].
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