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Mario Fernández‑Pendás1  · Javier Carrasco2  · Elena Akhmatskaya1,3  

Received: 21 December 2016 / Accepted: 7 February 2017 / Published online: 7 March 2017 
© Springer-Verlag Berlin Heidelberg 2017

without losing its performance and accuracy, to reduce the 
negative effect of introducing a shell mass within a dynam-
ical shell model. The proposed approach has been tested on 
olivine NaFePO4, which is a promising cathode material 
for Na-ion batteries. The calculated Na-ion diffusion and 
structural properties have been compared with the available 
experimental data and with the results obtained using MD 
and the original GSHMC method. Based on these tests, we 
claim that the new technique is advantageous over MD and 
the conventional GSHMC and can be recommended for 
studies of other solid-state electrode and electrolyte materi-
als whenever high accuracy and efficient sampling are criti-
cal for obtaining tractable simulation results.

Keywords Enhanced sampling · Molecular dynamics · 
Hybrid Monte Carlo · Shadow Hamiltonians · Adaptive 
integrators · Adiabatic core–shell model · Na-ion batteries

1 Introduction

The development of advanced materials for energy stor-
age has grown into a topic of intense research due to their 
importance in powering portable devices, electric vehi-
cles, and electrical grids collecting energy from renew-
able sources. During the last decade, Li-ion rechargeable 
batteries have become a gold standard in storing electri-
cal energy [1–4]. However, in an ever-growing demand for 
better batteries, low cost and natural abundance of precur-
sor materials are quickly emerging as the basis for beyond 
Li-ion technology. In this context, the fifth most abundant 
element in the earth crust and the second lightest and 
smallest alkali metal after Li, Na, is currently considered 
as a natural candidate for the next generation of low-cost 
batteries [5, 6].

Abstract The study of ion transport in electrochemically 
active materials for energy storage systems requires simu-
lations on quantum-, atomistic- and meso-scales. The meth-
ods accessing these scales not only have to be effective but 
also well compatible to provide a full description of the 
underlying processes. We propose to adapt the Generalized 
Shadow Hybrid Monte Carlo (GSHMC) method to atom-
istic simulation of ion intercalation electrode materials for 
batteries. The method has never been applied to simulations 
in solid-state chemistry but it has been successfully used 
for simulation of biological macromolecules, demonstrat-
ing better performance and accuracy than can be achieved 
with the popular molecular dynamics (MD) method. It has 
been also extended to simulations on meso-scales, making 
it even more attractive for simulation of battery materials. 
We combine GSHMC with the dynamical core–shell model 
to incorporate polarizability into the simulation and apply 
the new Modified Adaptive Integration Approach, MAIA, 
which allows for a larger time step due to its excellent con-
servation properties. Also, we modify the GSHMC method, 
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Therefore, research on active materials for Na-based 
technologies is gathering momentum [7]. Atomic-scale 
computational approaches are becoming increasingly use-
ful for these exploratory studies in order to avoid time-con-
suming trial and error approaches [8, 9]. Based on ab ini-
tio methods and modern information technology tools, 
these techniques enable the assessment of critical proper-
ties of interest such as phase stability, electronic structure, 
and ionic conductivity [10–17]. However, the computation 
of some of these properties can be very time consuming 
and, therefore, impracticable to tackle from a pure ab ini-
tio viewpoint. This is particularly true for solid-state ionics 
and ion intercalation processes in electrolyte and electrode 
materials for batteries, where one should deal with the 
mobility of alkali ions.

Typically, ion diffusion occurs over long timescales and 
its statistically meaningful study usually requires to model 
systems containing thousands of atoms at least. Such simu-
lations are not currently feasible with the use of ab initio 
methods. Classical interatomic potentials (force fields) are 
a practical solution to this problem in many cases, since 
such methods reduce the electronic degrees of freedom and 
thus allow for handling longer timescales and larger system 
sizes. Many studies of electrolyte and electrode materials 
based on interatomic potentials have been performed in the 
last two decades, mainly dealing with statical energy evalu-
ations to determine ion diffusion paths and activation ener-
gies, defect chemistry, and stability of surfaces and nano-
structures [10].

In spite of such success, classical interatomic potentials 
are often inefficient to properly account for rare events, 
specially when they are applied in molecular dynamics 
(MD) simulations. Ion diffusion processes are indeed rare 
events that involve ion hopping between adjacent sites and, 
sometimes, even collective ion transport. In order to prop-
erly simulate such phenomena in technologically relevant 
materials, very long simulations are normally required (see, 
e.g., Ref. [18]). To overcome this issue, different propos-
als for enhancing sampling efficiency in MD simulations 
of ion diffusion have been reported. For example, one can 
modify the particles momenta on the fly to stimulate the 
events of interest (ion particles jumps), but these methods 
do not preserve the desired distribution [19]. A similar 
approach is to rely on very high unphysical temperatures to 
force the observation of rare diffusion events [20, 21]. The 
so-called Generalized Shadow Hybrid Monte Carlo method 
(GSHMC) is another promising technique, which has been 
proven to be successful when applied to the study of rare 
events in complex biological processes [22–24], but it has 
not been used for computing properties of solid crystalline 
systems yet.

In this work, we investigate the effectiveness of 
enhanced sampling approaches in the simulation of various 

properties of olivine NaFePO4 using GSHMC-based tech-
niques. We focused on NaFePO4 because this system is a 
promising candidate as a cathode material for Na-ion bat-
teries [25]. It is the Na counterpart of LiFePO4, which is 
used in many commercial Li-ion batteries nowadays [26]. 
In contrast to the Li case, NaFePO4 forms a stable par-
tially sodiated structure Na2/3FePO4 upon charge [25, 27] 
or chemical Na intercalation [13, 28]. The NaFePO4 and 
Na2/3FePO4 systems offer us the opportunity to test the 
GSHMC sampling approach in a technologically relevant 
material, and they are complex enough to analyze the per-
formance of different sampling techniques. In addition, a 
force field specifically developed for olivine NaFePO4 
already exists [29].

The paper is organized as follows. In Sect. 2, we 
describe the force field used to model the bulk NaFePO4. 
Then, in Sect. 3 we summarize the basics of the GSHMC 
method and explain the additional modifications that we 
have introduced to the original method. Section 4 com-
pares the efficiency in terms of accuracy and performance 
of two variants of GSHMC and the standard MD method to 
account for structural and dynamical properties of the bulk 
NaFePO4 and Na2/3FePO4. Finally, conclusions are pre-
sented in Sect. 5.

2  Computational model

The force field proposed for olivine NaFePO4 by White-
side et al. [29] follows the Born model, with the addi-
tion of shells to some ions. The shell model is introduced 
to describe the ionic polarization as suggested by Dick 
and Overhauser [30]. In this model, an ion is described 
using a central core with a charge X and a shell of a 
charge Y. These two charges are balanced so that the 
sum (X + Y) is the same as the valence state of the ion. 
A core and a shell are coupled together in a core–shell 
unit via a harmonic potential, which allows the shell to 
move with respect to the core, thus simulating a dielec-
tric polarization.

The total potential energy is given by

where VC stands for the long-range Coulomb interactions, 
VBH is a Buckingham potential that models short-range 
repulsions and van der Waals forces between atoms, and 
VCS is the interaction within each core–shell unit. In Eq. 
(1), the Coulomb interactions are computed between every 
pair of charged particles in the system but not within a 
core–shell unit. The short-range potential is considered 
solely between shells when core–shell units are involved 
and VCS is computed for each core–shell unit.

The terms in Eq. (1) are explicitly given by

(1)U = VC + VBH + VCS,



Theor Chem Acc (2017) 136:43 

1 3

Page 3 of 15 43

where ǫ0 is the vacuum permitivity, rij is the distance 
between particles i and j, qi and qj are their respective 
charges and N is the number of particles,

where Aij, ρij, and Cij are positive constants defining the 
shapes of the repulsive and the attractive terms of the 
potential, and

where kl is the spring constant for the l-th core–shell unit, 
rl is the displacement between the shell center and its core, 
and L is the total number of shells.

In the work by Whiteside et al. [29], an extra three-body 
bonding term for the O–P–O angles in the PO4 tetrahedral 
units was also included. It takes the form of a harmonic 
angle-bending potential given by

where kang is the spring constant, θ0 is the equilibrium bond 
angle, θk is the current value of the bond k, and K is the 
total number of angle interactions.

VC(rij) =
1

4πǫ0

N
∑

i,j=1

qiqj

rij
,

VBH(rij) =
N
∑

i,j=1

Aij exp

(

−
rij

ρij

)

−
Cij

r6ij
,

VCS(rl) =
L
∑

l=1

1

2
kl r

2
l ,

VAng(θk) =
K
∑

k=1

1

2
kang(θk − θ0)

2,

For this study, we took from Ref. [29] the full set of 
parameters defining the force field for olivine NaFePO4 
(Table 1).

At this point, it must be mentioned an important 
issue regarding molecular dynamics simulations based 
on a core–shell potential model. In the original core–
shell model, shell particles are massless and the model 
requires them to be always at their optimal positions with 
zero forces [30]. When atomic motions are considered 
during dynamical simulations, the shells should respond 
instantaneously to the motions of the cores. Two main 
approaches are found in the literature to deal with the 
integration of equations of motion in this case: the so-
called shell relaxation (CS-min) scheme [31] and the adi-
abatic shells (CS-adi) method [32].

The CS-min approach consists of three steps: (1) 
to calculate the forces on all cores with the shells fully 
relaxed; (2) to update the core positions using the forces; 
(3) to relax the shells for the new core positions [31]. The 
last step involves the energy minimization in the multi-
dimensional space of shell configurations which turns to 
be a very computationally demanding task. The CS-adi 
scheme was proposed as a faster alternative to the CS-
min method. In the CS-adi approach, a small fraction x 
of the ion mass is put on the shell, whereas the remaining 
(1-x) fraction belongs to the core. Then, all the particles 
positions propagate following the conventional MD tech-
nique [32]. Having sufficiently small masses, the shells 
adiabatically follow the cores motion during the simu-
lation. A proper choice of the mass distribution for the 
core–shell units is crucial for the accuracy of the method. 

Table 1  Force field parameters for olivine NaFePO4 taken from Ref. [29]

BH A (eV) ρ (Å) C (eV Å6)

Na+ − O2−
sh

629.757635 0.317034 0.0

Fe2+sh − O2−
sh

1105.2409 0.3106 0.0

P5+ − O2−
sh

897.2648 0.3577 0.0

O2−
sh − O2−

sh
22764.3 0.149 44.53

CS Core charge Shell charge k (eV Å−2)

Fe2+ −0.997 2.997 19.26

O2− 0.96 −2.96 65.0

Ang kang(eV rad−2) θ0 (deg)

O
2−
sh

− P
5+ − O

2−
sh

1.322626 109.47
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Care has to be taken to ensure the negligible effect of an 
extra thermal energy, introduced by the relative motion 
between a core and its shell, on the kinetic energy of the 
simulated system. However, to date there is no systematic 
way to assign mass values for shells.

In this study, we choose to apply the adiabatic shell 
scheme due to its computational efficiency and propose a 
novel approach for introducing a shell mass in the way that 
reduces its negative effect on the kinetic energy of the system.

3  Sampling

Our choice of the simulation technique for modeling oli-
vine NaFePO4 has been based on two requirements. We 
looked for an enhanced sampling method, which can effi-
ciently sample multidimensional space and detect the rare 
events, as well as be easily extended for simulations on 
meso-scales. Such properties are critical for effective study 
of ion transport in bulk and nanostructured materials.

The Generalized Shadow Hybrid Monte Carlo method or 
GSHMC by Akhmatskaya and Reich was originally devel-
oped for efficient atomistic simulation of complex systems 
[33] and then adjusted to simulation on meso-scales, with-
out losing its capacity for exact sampling at the target tem-
perature [23]. The method, however, has never been applied 
to solid-state chemistry. In this study, we investigate the 
performance of GSHMC in simulation of olivine NaFePO4 
and propose some modifications to the original algorithm 
aiming to improve its accuracy and sampling efficiency 
specifically in simulation of battery materials.

3.1  GSHMC: Generalized Shadow Hybrid Monte 
Carlo

The GSHMC method is a type of Markov Chain Monte 
Carlo, with better sampling performance than Monte 
Carlo or MD in molecular simulations and with a negligi-
ble computing overhead. GSHMC is especially appropri-
ate when exploring configurational spaces of high dimen-
sionality, finding global energy minima, and simulating 
rare events such as phase transitions. Its theoretical foun-
dation has already been published elsewhere [23, 24, 33–
35]. It has recently been implemented in an open-source 
MD package [36, 37] and applied to the study of proteins 
[22, 38]. In the following lines, we present a brief sum-
mary of the method.

Essentially, GSHMC is a Hybrid Monte Carlo (HMC) 
method [39] that aims to achieve high efficiency by 
sampling with respect to modified energies (modi-
fied or shadow Hamiltonians). At the same time, it pre-
serves most of the dynamical information by applying a 

partial momentum update instead of fully resampling the 
momenta between molecular dynamics trajectories, as is 
the case of HMC.

Shadow Hamiltonians are asymptotic expansions of 
the true Hamiltonian in powers of the time step �t. They 
are conserved better than true Hamiltonians by symplec-
tic integrators such as the leapfrog/Verlet algorithm com-
monly used in molecular simulations [40]. Thus, replacing 
Hamiltonians with shadow Hamiltonians in Metropolis 
tests leads to higher acceptance rates than those obtained 
in the HMC method. The computational cost required for 
the evaluation of shadow Hamiltonians is negligible com-
pared to the force evaluation in an MD simulation. Effi-
cient algorithms for computing modified energies can be 
found for example in Refs. [33, 41, 42]. The GSHMC 
method employs the Lagrangian formulation of shadow 
Hamiltonians of an arbitrary order for the leapfrog integra-
tor [33]. In the case of the fourth-order of approximation, 
it leads to the following shadow Hamiltonian:

where U is the potential energy, x is the positions vector, 
and M is the atomic mass matrix. The derivatives of the 
positions can be obtained using the finite difference approx-
imation. The order of approximation of modified Hamil-
tonians used in the simulation also affects the acceptance 
rates. Higher approximation orders provide better accept-
ance rates, but they also require more time to compute.

The GSHMC method consists of a series of two alter-
nating steps: First, one integrates a short MD trajectory at 
constant energy and then performs a partial momentum 
update. Each of these steps can be accepted or rejected 
following the result of a Metropolis test where the accept-
ance probabilities are calculated using shadow Hamilto-
nians H̃ instead of true Hamiltonians. The full algorithm 
can be summarized as follows:

–– Molecular dynamics (MD) step

–– Given vectors for positions x and momenta p, tem-
perature T and mass matrix M, integrate the Hamil-
tonian equations of the system: 

 with 

using a symplectic method Ψ�t over L steps with 
time step �t. This generates a new configuration 
ΨT (x, p) = (x′, p′), with T = L�t.

(2)H̃ = U +
1

2
ẋ[Mẋ] +

�t2

12
ẋ[M ...

x ] −
�t2

24
ẍ[Mẍ],

(3)ṗ = −
∂H

∂x
, ẋ =

∂H

∂p

H =
1

2
p
TM−1

p+ U(x),
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–– Accept or reject the new configuration (x′, p′) by 
performing a Metropolis test with the probability 

where β = 1/kBT  with kB being the Boltzmann con-
stant and H̃(x, p) the shadow Hamiltonian.

•– If accepted: save x′ and p′ as the current positions 
and momenta (x, p).

•– If rejected: restore the initial x and p and negate the 
momenta to ensure the stationarity of the canonical 
distribution.

–– Partial momentum update (PMU) step

–– Generate a noise vector u from the Gaussian distribu-
tion N (0,β−1M) as 

where ξ = (ξ1, . . . , ξ3N )
T, ξi ∼ N (0, 1), 

i = 1, . . . , 3N and N is the system size.
–– For the current positions x update the momenta p using 

the partial momentum update procedure: 

 where φ is a parameter taking values from (0,π/2].
–– Accept or reject the new momenta p′ by performing a 

Metropolis test with the probability 

•– If accepted: save p′ as the current momentum p.
•– If rejected: restore the initial p.

Repeat MD and PMU step for a desired number of iterations.
As the simulation is performed in a modified ensemble 

with respect to shadow Hamiltonians, reweighting has to 
be applied to calculations of statistical averages [33]. More 
specifically, given an observable Ω(x, p) and its values Ωi, 
i = 1, . . . ,K, along a sequence of states (xi, pi), i = 1, . . . ,K , 
the averages 〈Ω〉 are calculated as

min







1,
exp

�

−βH̃(x′, p′)
�

exp
�

−βH̃(x, p)
�







,

u = β−1/2M1/2ξ ,

(4)

(

u
′

p
′

)

=
(

cos(φ) − sin(φ)

sin(φ) cos(φ)

)(

u

p

)

,

min







1,
exp

�

−β[H̃(x, p′)+ 1
2
(u′)TM−1

u
′]
�

exp
�

−β[H̃(x, p)+ 1
2
uTM−1u]

�







.

�Ω�K =
∑K

i=1 wiΩi
∑K

i=1 wi

with weight factors

3.2  New features introduced in GSHMC for this study

3.2.1  Modified Adaptive Integration Approach (MAIA)

As was pointed above, the original GSHMC method uses 
the leapfrog integrator and the corresponding modified 
Hamiltonians of arbitrary accuracy [33]. The leapfrog inte-
grator is a popular choice for molecular dynamics due to 
the favorable combination of properties such as the second 
order of accuracy, the reasonably long stability limit inter-
val, the simplicity and computational efficiency. Recently, 
Akhmatskaya et al. in their work titled “Adaptive splitting 
integrators for enhancing sampling efficiency of modified 
Hamiltonian Monte Carlo methods in molecular simulation” 
(preprint) demonstrated that replacing the leapfrog integra-
tor with the one-parameter 2-stage splitting adaptive inte-
grator specially designed for shadow Hamiltonian Monte 
Carlo methods may significantly improve accuracy and 
sampling performance of GSHMC [42]. The authors termed 
this scheme the Modified Adaptive Integration Approach or 
MAIA. The adaptive integrator is uniquely determined for a 
given simulated system and simulation time step, in such a 
way that the expected error in modified Hamiltonians, �H̃,  
is minimal. This immediately implies the best acceptance 
rates possible within a chosen setup since GSHMC does 
sample with respect to modified Hamiltonians and, there-
fore, the error �H̃ enters the Metropolis test.

In this study, we investigate the efficiency of the MAIA 
method in simulations of olivine NaFePO4. We briefly sum-
marize MAIA below.

A 2-stage one-parameter splitting integrator ψ�t of a 
Hamiltonian system (3) with a Hamiltonian

is defined as a composition of solution g-flows of partial sys-
tems X ∈ {A,B},ΦX

g , where g = {b�t,�t/2, (1− 2b)�t}, 
�t is a time step and 0 < b <= 1/4 is a parameter of the 
family:

The maps Φ1
�t/2 and Φ2

�t/2 advance the solution over a first 
and a second halves step of length �t/2 respectively, there-
fore the name 2-stage for this integrators family.

wi = exp
[

−β

(

H(xi, pi)− H̃(xi, pi)
)]

.

(5)H(x, p) =
1

2
p
TM−1

p+ U(x) ≡ A+ B

(6)

ψ�t =
(

φB

b�t
◦ φA

�t/2 ◦ φB

(1/2−b)�t

)

◦
(

φB

(1/2−b)�t
◦ φA

�t/2 ◦ φB

b�t

)

≡ Φ1

�t/2 ◦Φ2

�t/2.
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Such an integrator is symplectic as a composition of sym-
plectic flows and reversible due to the palindromic structure 
of (6). A free parameter b fully describes a 2-stage integrator 
and can be chosen according to some special requirements 
on the properties of an integrator. Several 2-stage splitting 
integrators with the parameters b fixed to some specific 
values are commonly used in molecular dynamics and/or 
Hybrid Monte Carlo methods [43, 44]. The most celebrated 
one is the Verlet/leapfrog integrator. Indeed, with b = 1/4 
both maps in (6), Φ1

�t/2 and Φ2
�t/2, become a velocity Verlet 

(VV) algorithm with a time step of �t/2:

This suggests that in order to make a fair comparison in 
terms of computational efficiency between an arbitrary 
2-stage scheme with the parameter b �= 1/4 and the Ver-
let integrator in its usual formulation, a 2-stage integrator 
(6) should be run with a twice longer time step than Verlet, 
but for a twice shorter number of integration steps L, i.e., 
�t2-stage = 2�tVerlet and L2-stage = LVerlet/2. Some specific 
choices of b in (6) lead to the 2-stage integrators, which are 
capable of outperforming Verlet in accuracy and efficiency 
with the appropriately selected time steps as it was demon-
strated in Refs. [42–44]. However, with an increasing time 
step the Verlet integrator shows better performance due 
to the longer stability limit interval (see for example Ref. 
[45]).

The MAIA approach provides a rational choice of an 
integration parameter and identifies a unique value b∗ of the 
parameter b (and thus a unique integrator) for a given simu-
lated system and a chosen time step �t as

where ρ(h, b) is the upper bound for the expected value 
of the modified energy error ∆ = H̃(ψLh(x, p))− H̃(x, p) 
with respect to the modified density π(x, p) ∝ e−βH̃(x,p) , 
i.e., Eπ (∆) ≤ ρ(h, b). Here, as before, x and p are posi-
tion and momentum, respectively, ψLh is a 2-stage inte-
grator advancing the numerical solution over L steps, h is 
a dimensionless time step, and h̄ =

√
2ω�t with ω being 

the highest frequency of the simulated system. Such a 
choice of b∗ guarantees the best conservation of the modi-
fied Hamiltonians and thus the best acceptance of propos-
als in the GSHMC method. Depending on the values of the 
highest frequency of a simulated system ω, and a choice of 
a time step �t, the adaptive integrator can either coincide 
with already known integrators with a fixed parameter, e.g., 
Verlet, the minimum-error integrator, ME [43], or BCSS 
[44] or be a new integrator, whose efficiency is the best 
under the chosen conditions.

ψ�t =
(

φB
�t/4 ◦ φA

�t/2 ◦ φB
�t/4

)

◦
(

φB
�t/4 ◦ φA

�t/2 ◦ φB
�t/4

)

=Φ1
�t/2 ◦Φ2

�t/2 ≡ ψVV
�t/2 ◦ ψVV

�t/2.

(7)
b∗ = arg min

0<b< 1
4

max
0<h<h̄

ρ(h, b),

The derivation of ρ(h, b) and, the formulae for modified 
Hamiltonians H̃(x, p) of various orders of approximation 
corresponding to the multi-stage splitting integrators were 
obtained in Ref [42]. Here we only present the expressions 
we used in this study.

The fourth-order modified Hamiltonian for 2-stage split-
ting integrators derived in terms of quantities available dur-
ing a simulation reads as:

with

where ∇U̇(x) is the numerical time derivative of the gradi-
ent of the potential ∇U(x) and b∗ is a parameter of a sys-
tem specific 2-stage integrator. The upper bound function 
ρ(h, b) is calculated as [42]:

Importantly, finding the appropriate parameter b∗ in (7) 
can be done at the pre-processing stage of the simulation. 
Therefore, the procedure does not introduce any compu-
tational overhead. Additionally, the method is available 
for constrained and unconstrained dynamics and it is thus 
applicable to a broad range of problems.

In Sect. 4, we compare performance of GSHMC 
achieved using two different integration schemes, the 
velocity Verlet and MAIA, for a range of time steps and 
lengths of MD trajectories. We find that using the MAIA 
integrators may improve performance of the original 
GSHMC method by a factor as high as 2.

3.2.2  Randomized Shell Mass Generalized Shadow Hybrid 
Monte Carlo (RSM-GSHMC)

One important drawback of the adiabatic dynamics 
core–shell approach is its potential negative effect on the 

H̃(x, p) =
1

2
p
T
M

−1
p+ U(x)

+�t
2

(

αpTM−1∇U̇(x)+ γ∇U(x)TM−1∇U(x)

)

,

α =
6b

∗ − 1

24
,

γ =
6b

∗2 − 6b
∗ + 1

12
,

ρ(h, b) =
(SBh + Ch)

2

2S(1− A
2

h
)
,

S =
1+ 2h

2γ

1+ 2h2α
,

Ah =
h
4
b(1− 2b)

4
−

h
2

2
+ 1,

Bh = −
h
3(1− 2b)

4
+ h,

Ch = −
h
5
b
2(1− 2b)

4
+ h

3
b(1− b)− h.
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simulated kinetic properties due to the introduction of a 
shell mass. Previous studies demonstrated that with the 
careful choice of a shell mass and a time step such an effect 
becomes negligible [31, 32]. There is not, however, a clear 
criterion for choosing these parameters, and finding the 
appropriate parameter values is a matter of trial and error.

In this paper, we propose to take an advantage of the 
flexibility of the GSHMC method in order to smooth the 
undesired effect of the shell mass on the kinetics of a simu-
lated system. The flexibility we refer to in this context is 
the possibility to vary on the fly in a rigorous manner the 
simulation parameters in GSHMC [42]. This can be done 
before starting each new molecular dynamics trajectory, 
i.e., on each Monte Carlo step, by randomizing the simu-
lation parameters around pre-assigned fixed values. These 
parameters can be selected independently from a chosen 
distribution. The randomization helps to avoid some bad 
combinations of fixed values that might lead to accuracy 
or performance degradation such as slow convergence and 
non-ergodicity. Based on this idea, we introduced randomi-
zation of a shell mass in the GSHMC method.

We implemented the mass randomization as a part of the 
momentum update step. Before updating the momenta, we 
redistribute a fraction of the atomic mass between core and 
shell, keeping the total mass constant:

where mc,i and ms,i are the core and shell masses at Monte 
Carlo step i, mc,0 and ms,0 are their respective initial values, 
r is the amount of mass that we want to randomize, and �i 
is a random number generated from a uniform distribution 
U(0, 1) at step i.

It is important to notice that ms,0 has to be large enough 
to ensure the stability of the numerical integrator (its 
minimum value will depend on the time step used in the 
simulation). For a discussion about how to choose ms,0 see 
Ref. [32]. On the other hand, r should not be bigger than 
mc,0/2, as that could lead to a situation in which the shell 
is actually heavier than the core. Having these constraints 
is enough to rigorously implement the algorithm. How-
ever, the optimal choice of r remains empirical. Below 
we summarize the modified momentum update step in 
RSM-GSHMC.

–– Given the mass matrix M, generate a randomized mass 
matrix M ′ by applying the randomization described in 
(8) to the core and shell particles.

–– Generate a noise vector u from the Gaussian distribution 
as in the original GSHMC: 

(8)
mc,i = mc,0 − �ir

ms,i = ms,0 + �ir

u
′ = β−1/2M ′1/2ξ .

–– Adjust the current momenta p to the new masses: 

–– Update the candidate momenta p′ using the partial 
momentum update procedure: 

–– Accept or reject the new momenta p′′ by performing a 
Metropolis test with the probability 

–– If accepted: save p′′ as the current momenta p.
–– If rejected: restore the initial p.

3.2.3  Implementation: MultiHMC

The GSHMC method was implemented in the open-source 
molecular dynamics software GROMACS [46], ver-
sion 4.5.4. Details of this implementation can be found 
in Refs. [36, 37]. GROMACS was chosen for its popular-
ity, computational efficiency, and effective parallelization. 
The implementation of the GSHMC method was done in 
a self-contained manner, respecting the parallel scalability 
and introducing almost no computational overhead. The 
same software package was used for the implementa-
tion of 2-stage integrators [45] and, in particular, for the 
MAIA method. We call the resulting package MultiHMC-
GROMACS, and it is available for public use under the 
GNU Lesser General Public License. All the classical 
atomistic simulations in this work were performed with the 
MultiHMC-GROMACS software.

Additionally, the randomized mass algorithm for the 
adiabatic core–shell model was implemented in the same 
software package as a single function call inside the partial 
momentum update step.

4  Numerical experiments

In this section, we present a series of numerical experi-
ments performed to validate our computational model 
and to evaluate the performance of the proposed sampling 
approach. To this end, we used four different atomistic sim-
ulation methods: MD (CS-min), MD (CS-adi), GSHMC, 
and RSM-GSHMC. In addition, we compared the results 
with available experimental data and assessed the accuracy 
of the underlying force field by performing some ground-
state DFT calculations.

p
′ = M ′1/2M−1/2

p.

(

u
′′

p
′′

)

=
(

cos(φ) − sin(φ)

sin(φ) cos(φ)

)(

u
′

p
′

)

.

min







1,
exp

�

−β[H̃](x, p′′)+ 1
2
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u
′′]
�

exp
�
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4.1  DFT calculations

The total energies were computed using the projected 
augmented wave (PAW) method [47, 48] within the 
PBE generalized gradient approximation (GGA) [49] as 
implemented in the VASP package version 5.3.3 [50]. 
The GGA+U approach, in which an effective Hubbard 
U-like term is added to exchange–correlation functional, 
was required to correctly account for the electronic cor-
relation of iron 3d electrons [15]. We used a U value of 
4.3 eV as suggested for NaFePO4 in other works [28, 
51, 52]. An energy cutoff of 600 eV and a proper k-point 
mesh were used to ensure that the total energies had con-
verged within 5 meV per formula unit (f.u.). The geom-
etry optimization was considered converged when forces 
on the atoms for each component became smaller than 
0.02 eV/Å.

The surface energies of different possible terminations 
for NaFePO4 were computed following the approach out-
lined by Wang et al. [17] for its lithium counterpart. In 
Table 2, the DFT results obtained for surface energies 
are shown in comparison with the ones reported using 
the interatomic potential chosen for this study [29]. The 
tested methods provide similar values of the surface 
energies and close trends in the surfaces stability order. 
The agreement is very good considering the fact that the 
classical model was obtained by fitting to bulk structural 
properties only. These results support our choice of the 
interatomic potential for atomistic simulations carried out 
in this study.

4.2  MD simulations

We considered two different systems: a fully sodiated 
NaFePO4 and a partially sodiated Na2/3FePO4. The lat-
ter was chosen as the most stable compound reported 
by Saracibar et al. [28] for that composition, which cor-
responds to a stable ordered superstructure in the Nax
FePO4 (0 ≤ x ≤ 1) phase diagram [51, 53, 54]. The unit 
cell of Na2/3FePO4 contains 12 f.u., i.e., 80 atoms.

For bulk NaFePO4 we built a model system based 
on a (6× 6× 6) supercell containing 864 NaFePO4 f.u. 
(10368 particles in total including the Fe and O shells). 
For Na2/3FePO4 we used a (6× 3× 2) supercell with 
432 Na2/3FePO4 f.u. (5040 particles). In both cases, the 
force field parameters are those presented in Sect. 2, with 
a cutoff of 12 Å for electrostatics and periodic boundary 
conditions applied in the three dimensions. For the par-
tially sodiated case, the extra charge in the system due to 
removing 1/3 of Na atoms was compensated by averaging 
the net charge on Fe atoms as was previously suggested 
in the similar study for LiFePO4 [20].

All of the simulations were initially equilibrated with a 
50 ps run using an NPT ensemble with a specified target 
temperature (T) and pressure P = 1 bar. We employed the 
Berendsen thermostat [55] and the Andersen barostat [56].

Na-ion diffusion events require the presence of vacant 
Na sites; thus, only the partially sodiated system was used 
for the computation of diffusion coefficients. The produc-
tion runs in these cases were performed in an NVT ensem-
ble at temperatures between 10 and 700 K using the Ber-
endsen thermostat.

The velocity Verlet integrator was used for all MD simu-
lations. The optimal choice of the time step in MD is dis-
cussed in Sect. 4.5.

4.3  GSHMC simulations

We tested two versions of the GSHMC method: the original 
approach and the RSM-GSHMC. We used the same MD 
setup as described above in the MD runs of the GSHMC 
methods with two exceptions. The MD trajectories were 
run in an NVE ensemble; thus, no thermostats were 
involved, and the MAIA integrator was chosen instead of 
velocity Verlet for most of the tests.

The velocity Verlet integrator was coupled with the orig-
inal GSHMC method in the parameters refining procedure 
in order to compare its performance with respect to the 
MAIA integrators. As in the case of MD simulations, the 
choice of the time step will be discussed in the following 
sections. The parameter φ in Eq. (4) was fixed to 0.2. The 
number of integration steps was 500 for MAIA and 1000 
for velocity Verlet. The fourth-order modified Hamiltonian 
was used in all tests.

4.4  Validation

First, we verified that the underlying force field used in this 
study provides reliable results when employed for dynami-
cal simulations. In addition, we wanted to check that the 

Table 2  NaFePO4 surface energies (γ) for different terminations 
considered after relaxation, as determined by DFT calculations in the 
present work (γDFT) and with classical interatomic potentials (γFF) 
[29]

Surface γDFT (J/m2) γFF (J/m2)

(010) 0.51 0.52

(201) 0.59 0.63

(101) 0.60 0.74

(100) 0.67 0.68

(110) 0.70 0.54

(111) 0.97 0.68

(001) 1.15 0.90



Theor Chem Acc (2017) 136:43 

1 3

Page 9 of 15 43

proposed simulation techniques with the chosen simula-
tions settings are capable to accurately reproduce the prop-
erties of olivine NaFePO4.

To this end, we calculated the lattice constants of the 
fully sodiated NaFePO4 at T = 300 K and P = 1 bar, 
based on production runs of 0.5 ns using GSHMC, RSM-
GSHMC, MD (CS-min), and MD (CS-adi). The results are 
shown in comparison with the experimental data [14] and 
the DFT-based calculations in Table 3. We found that all 
the methods yield very similar lattice constants, with rela-
tive differences less than 2%.

We also considered the thermal expansion of bulk 
NaFePO4 to evaluate the suitability of the force field. We 
computed the volume expansion of the unit cell as a function 
of temperature by performing simulations under an NPT 
ensemble. The pressure was maintained using the Andersen 
barostat. The target temperature was controlled by using 
the Berendsen thermostat in MD, while GSHMC keeps T 
constant by design. We considered temperatures between 
10 and 700 K, making sure that the box size and the poten-
tial energy were completely stabilized before measuring 
the volume. The resulting thermal expansion for NaFePO4 
is shown in Fig. 1 along with the experimental results of 
Moreau et al. [14]. The three tested methods yield similar 
slopes, and the small difference observed with respect to 
the experimental values is negligible (relative variations are 
less than 1%). Therefore, we can conclude that the model 
combined with the simulation methods under study properly 
accounts for the thermal expansion of olivine NaFePO4.

As a final validation test we present in Table 4 the 
average values for potential (U) and kinetic energies (K), 
temperatures, and two structural parameters, the angles 
between the bonded O–P–O species (θO−P−O) and their 
corresponding P–O distances (dP−O). As can be seen from 
Table 4, the randomized mass algorithm, RSM-GSHMC, 
provides the best agreement with the experimental data. 
This is not surprising because, as it will be further demon-
strated in Sect. 4.5, being an enhanced accuracy and sam-
pling method, RSM-GSHMC produces more uncorrelated 
samples than other tested samplers provided that all meth-
ods are run for the same simulation time, which is the case 
in Tables 3 and 4. That should guarantee for RSM-GSHMC 
more accurate ensemble averages.

In Fig. 2, we show the computational performance 
measured in nanoseconds per day for the four methods 

considered. All simulations were run in parallel on 8 cores 
on the same computational server. In terms of performance, 
the adiabatic core–shell approach offers a great advantage 
that outweighs any marginal loss of accuracy. The sig-
nificantly lower performance observed with the MD (CS-
min) scheme is due to the big overhead introduced by the 
search of optimal shell positions at each time step. The 
loss of performance registered at temperatures over 500 K 
is a consequence of using a smaller time step, which was 
found necessary to keep the simulations stable at such high 
temperatures. The GSHMC approaches always achieved a 
higher performance because their increased numerical sta-
bility allowed the use of longer time steps. For tempera-
tures below 500 K, the time steps were set to 1.15 fs for 
MD (CS-adi) and 2.3 fs for GSHMC methods, whereas for 
higher temperatures, they had to be reduced to 0.5 and 2 fs, 
respectively.

4.5  Accuracy and sampling performance

In order to include in our tests the calculation of Na self-
diffusion coefficients, we chose the partially sodiated Na2/3
FePO4 as a benchmark system. The diffusion coefficients 
are notoriously difficult to determine from dynamical sim-
ulations because they require considerably long runs to 
reach convergence. In this work, they were derived from 
the mean square displacement of Na-ions using the Ein-
stein relation

where the term on the left side, which is the squared dis-
placement of a Na-ion during an integrated interval τ, is 
proportional to the Na self-diffusion (or diffusion) coeffi-
cient (D) and τ.

In what follows, all reported properties are results of 
averaging over five different production runs of 2 ns each, 
unless stated otherwise.

The first step for optimizing the accuracy and perfor-
mance of the novel approaches in prediction of various 
properties of the system of interest is to find the best com-
bination of numerical integrators and simulation param-
eters to be used. We begin with measuring the sampling 
efficiency of GSHMC in two different scenarios, namely 
when the method is combined with the new MAIA inte-
grator or when it uses the standard velocity Verlet.

(9)�|xNa(t + τ)− xNa(t)|2� = 6Dτ ,

Table 3  Computed lattice 
constants of olivine NaFePO4 
at 300 K using different 
approaches

Experimental values also shown are taken from Ref. [14]

Parameter (Å) Exp. DFT MD (CS-min) MD (CS-adi) GSHMC RSM-GSHMC

a 10.41 10.52 10.34 10.38 10.39 10.40

b 6.22 6.27 6.16 6.19 6.19 6.19

c 4.95 4.99 4.90 4.92 4.92 4.91
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For these experiments, we chose a time step in the 
MAIA integrator twice longer than the one in the veloc-
ity Verlet case presented in its usual, 1-stage formula-
tion. However, since MAIA performs two force evalua-
tions per each integration step in contrast to only one in 
velocity Verlet, a number of integration steps in MAIA 
has been chosen to be half as many as in velocity Verlet. 
Such a setup equalizes the computational effort required 
for each integrator and makes the comparison fair (see 
Sect. 3.2.1 for the detailed explanation). For simplicity, 
we use from now on an effective time step, defined as 
�t/nstages, where nstages is equal to either 1 for velocity 
Verlet or to 2 for MAIA.

One can evaluate the influence of the tested integrators 
on the sampling performance by looking at the acceptance 
rates (AR) for the positions and momenta Metropolis tests. 
Ideally, the AR for positions in GSHMC should be close 
to 100%, to minimize the time spent on computing trajec-
tories that are finally rejected. In Fig. 3, we show the AR 
for positions and momenta when using the two integrators 
for a range of integration time steps (�t). As follows from 
Fig. 3, MAIA always leads to better acceptance rates, as for 

positions as for momenta, than can be achieved with veloc-
ity Verlet.

Another way to compare the sampling efficiency is 
to calculate integrated autocorrelation functions (IACF), 
defined as:

where ACF(τl), l = 0, . . . ,K ′ < K is the standard auto-
correlation function for the time series Ωk of K samples, 
k = 1, . . . ,K, with the normalization

The IACF gives a quantitative measure of time required, on 
average, for generating a non-correlated sample, and thus 
lower values of IACF imply more efficient sampling.

In Fig. 4, we present the IACF values for several prop-
erties of the system obtained with the MD and GSHMC 
methods for different effective time steps. The latter was 
combined with velocity Verlet (GSHMC-VV) and MAIA 
(GSHMC-MAIA). Clearly, the combination of GSHMC 
with MAIA always produces the lowest IACF values, 
which translates into a more efficient sampling. On the 
other hand, plotting IACF as a function of the effective 
time step helps to reveal the influence of the time step 
on the overall performance and suggests a way to choose 
the optimal one. More specifically, we found that the best 
performance was observed for all the simulation methods 
at the effective time step of 1.15 fs and thus the rest of 
the tests were performed with this value. Also, since the 
GSHMC-MAIA combination provided the best sampling 
efficiency, we proposed this setup for future studies.

Once we chose the proper settings for the MD and 
GSHMC methods, longer 4 ns simulations at con-
stant volume and temperature (NVT) were performed. 
In Fig. 5, we plot the relative IACF for the structural 

(10)IACF =
K ′
∑

l=0

ACF(τl),

ACF(τ0) = ACF(0) = 1.

Fig. 1  Thermal expansion for olivine NaFePO4 calculated using MD, 
GSHMC, RSM-GSHMC in an NPT ensemble with the Andersen 
barostat. Experimental values are taken from Ref. [14]

Fig. 2  Computational performance for all the considered methods at 
different temperatures

Table 4  Average values for temperature (T), potential energy (U), 
kinetic energy (K), O–P–O angles (θO−P−O) and P–O internuclear 
distances (dP−O)

Method T (K) U (kJ/mol) K (kJ/mol) θO−P−O 
(deg.)

dP−O 
(nm)

MD  
(CS-min)

297.02 −1.01 × 107 1.09 × 104 108.29 0.150

MD  
(CS-adi)

299.98 −1.03 × 107 1.63 × 104 108.26 0.151

GSHMC 296.40 −1.03 × 107 1.60 × 104 108.30 0.149

RSM-
GSHMC

298.64 −1.03 × 107 1.61 × 104 108.32 0.156

Experiment 300.00 – – 109.47 0.155
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parameters and self-diffusion observed with MD (CS-
adi), GSHMC-VV and GSHMC-MAIA at 300 K with 
respect to the corresponding IACF values obtained with 
RSM-GSHMC-MAIA. Clearly, the best performance is 
obtained with the RSM-GSHMC-MAIA simulations for 
all simulated properties (lowest IACF values, up to 3.3 
times better than in MD). This is a very promising result, 
especially for computing self-diffusion coefficients in 
solid bulk materials.

The enhanced sampling of the Na-ion self-diffusion 
observed with RSM-GSHMC in Fig. 5 implies shorter 

integration times required for obtaining the converged 
self-diffusion value. Figure 6 monitors the average self-
diffusion obtained with MD, GSHMC, and RSM-GSHMC 
at T = 300 K with increasing simulation time up to 4 ns. 
Though convergence is not fully achieved with any of 
the methods, the GSHMC-based, and especially RSM-
GSHMC, demonstrate higher rates of convergence and 
as a result clear signs of convergence after 3 ns of simu-
lation. With longer simulation times, all methods should 
converge to almost the same values. However, those values 
still would differ due to the different level as of accuracy 

Fig. 3  Acceptance rates for positions (left) and momenta (right) for GSHMC simulations using MAIA and velocity Verlet integrators at 
T = 300 K

Fig. 4  Integrated autocorrelation functions for the diffusion coefficient and structural parameters at T = 300 K
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as of sampling efficiency of the tested samplers. Achieving 
a comparable statistical error for each method is possible, 
but it would require significantly longer simulations for the 
MD case. In general, obtaining full convergence for the dif-
fusion coefficient using molecular dynamics is notoriously 
difficult and could require extremely long simulations. 
Since the purpose of this paper is to specify the most effi-
cient and promising sampling method for studying electro-
chemically active materials, we leave a proper investigation 
of ion transport using RSM-GSHMC as a subject for future 
research.

Next, we investigated the performance of MD, GSHMC, 
and RSM-GSHMC in the range of temperatures by running 
a series of NVT simulations at temperatures between 10 
and 700 K. As before (see Sect. 4.4), the integration time 
steps had to be reduced for temperatures greater than 500 K 
for all methods.

We introduced a variable X that measures the sampling 
performance by taking into account both the effective time 
step �t/nstages and the IACF as:

In Figs. 7 and 8, we present the performance of the methods 
for a range of temperatures and different quantities of inter-
est in terms of relative X values with respect to the ones 
obtained with MD. We can see that the GSHMC methods 
with and without mass randomization offer a significant 
improvement over MD (up to 2.5 and 4.7 for GSHMC and 
RSM-GSHMC, respectively).

As we noticed in Fig. 5, the RSM-GSHMC method is 
particularly beneficial for calculating diffusion coefficients. 
This is apparent at all temperatures (see Fig. 8). For other 
calculated properties, RSM-GSHMC also demonstrates 

(11)X =
�t/nstages

IACF
.

its superiority over MD and GSHMC at all temperatures 
though its performance differs less dramatically from the 
one offered by GSHMC. Yet another advantage of RSM-
GSHMC over other tested methods is that it can be further 
tuned by modifying the amount of randomized mass in Eq. 
(8) for each specific temperature.

Fig. 6  Diffusion coefficient convergence at T = 300 K for MD, 
GSHMC and RSM-GSHMC methods

Fig. 7  Sampling performance (X) relative to MD at different tem-
peratures achieved for several structural parameters when using the 
GSHMC (top) and RSM-GSHMC (bottom) methods

Fig. 5  Relative IACF with respect to RSM-GSHMC-MAIA for 
structural properties and diffusion coefficients obtained with the opti-
mal simulation parameters at T = 300 K
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5  Conclusions

We presented the new methodology for atomistic sim-
ulation of solid-state materials for batteries, which 
offers a better accuracy and sampling efficiency than 
can be achieved with popular molecular dynamics 
(MD) approaches. The sampling in this method is per-
formed with Generalized Shadow Hybrid Monte Carlo 
(GSHMC), which combines in a rigorous and effective 
manner molecular dynamics trajectories with Monte 
Carlo steps. The accuracy of the method is ensured by the 
new system specific adaptive integrators MAIA used in 
the MD step as well as by the modifications introduced in 
the adiabatic core–shell model for retaining the dynam-
ics of a simulated system. Utilizing the adiabatic core–
shell model (CS-adi) in the new method instead of the 
core–shell relaxation scheme (CS-min) yields important 
performance gain saving up to 80% of the computational 
time. We have applied the method to the study of olivine 
NaFePO4 systems and analyzed its accuracy and perfor-
mance in comparison with available experimental data, 
the DFT computed properties, and the results obtained 
with other atomistic simulation methods (MD and con-
ventional GSHMC). The accuracy of the method in the 
calculation of lattice constants and thermal expansion 
has been compared against DFT-based calculations and 
experimental data, obtaining reliable results for all prop-
erties. Moreover, the method demonstrates a better agree-
ment with the experimental data than one can observe 
with other tested atomistic methods, namely MD (CS-
min), MD (CS-adi) and the original GSHMC.

Introducing the novel MAIA integrator in our new meth-
odology has also allowed for more efficient sampling when 
characterizing structural properties, such as average angles 

between atoms and bond lengths, as well as improving sta-
bility at higher temperatures.

Applying a randomization term to the shell mass 
improved not only the accuracy but also the sampling effi-
ciency, especially when measuring diffusion coefficients. 
This modification of the GSHMC algorithm does not intro-
duce significant overhead and is fully compatible with par-
allel implementations.

In summary, the proposed methodology can be viewed 
as an alternative to molecular dynamics for atomistic 
studies of solid-state battery materials whenever high 
accuracy and efficient sampling are critical for obtaining 
tractable simulation results. Indeed, RSM-GSHMC is an 
importance sampling Generalized Hybrid Monte Carlo 
method, which introduces stochasticity in a simulation, 
while retaining the dynamical properties of a system; pro-
vides a fast convergence due to sampling in a modified 
ensemble and allows for longer simulation time steps in 
Hamiltonian dynamics by using the method specific adap-
tive numerical integrators combined with the holonomic 
constraints. The method offers a better accuracy than the 
conventional MD through the rigorous temperature con-
trol, more accurate numerical integration of Hamiltonian 
equations and the reduced negative effect of the shell 
mass on the system’s kinetics. Besides, the RSM-GSHMC 
method is implemented in the popular highly efficient 
GROMACS package with a low computational overhead 
(<2%) in comparison with MD. It can be easily combined 
with the ensemble simulation methods available in the 
GROMACS package.

Finally, the presented GSHMC methodology can be 
successfully applied not only to simulations of solid-state 
materials but also to the study of fluids as demonstrated in 
previous works [22, 33], as long as reliable force fields for 
the model system are provided. This means that, in prin-
ciple, each of the three electroactive materials forming 
a battery device, i.e., the cathode, anode, and electrolyte, 
can be treated with the GSHMC approach to simulate, for 
instance, the active ions self-diffusion.
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