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without any additional cost, i.e., by permitting to move 
upward on the cardinal number series (X = D : 2, T: 3, 
Q: 4, 5, …) that specifies the basis set quality. In fact, the 
hierarchical structure allows both self-consistent-field Har-
tree–Fock (HF) type and correlation energies to be sepa-
rately extrapolated to their so-called complete basis set 
(CBS) limits. In this regard, several protocols have been 
suggested to extrapolate the SCF [3–7] and correlation 
[8–23] energies. Recently [19, 20, 22, 24], we have shown 
that a basis set re-hierarchization procedure can help to 
improve further the results from such extrapolations for 
single-reference correlated energies, namely Møller–
Plesset and coupled cluster types. The novel hierarchical 
structures [19, 22] were determined from the requirement 
that the X ≤ 6 values fall on the straight line built by fit-
ting the X = 6 and 5 correlation energies with the unified 
singlet- and triplet-pair extrapolation (USTE) scheme of 
Varandas [4], a procedure similar to the one previously uti-
lized to obtain an extremely accurate curve for the helium 
dimer [25]. Specifically, the new hierarchical numbers 
(x) were chosen as the average values of the ones found 
for a test set of 18 molecules, with the method named 
as uniform singlet- and triplet-pair extrapolation [19], 
USTE(xi, xj). The extrapolation protocol assumes the form

where Ecor
X  is the raw correlation energy calculated with 

the basis of cardinal number X, Ecor
∞  the correlation energy 

at the CBS limit, x the novel hierarchical number [19, 22], 
and A a parameter to be determined jointly with Ecor

∞  from 
a fit to the computed raw energies. The novel hierarchical 
structure has also allowed the construction of a one-param-
eter extrapolation scheme for different correlated methods 
[20], referred to as unified single-parameter extrapolation 

(1)Ecor
X = Ecor

∞ +
A

x3
,

Abstract It is shown that Hartree–Fock calculations using 
basis sets of the correlation consistent family and arbitrary 
hierarchical numbers can be extrapolated to the complete 
basis set limit with an accuracy higher or at least similar 
than achieved thus far with the best available schemes. The 
same protocol is valid for multireference self-consistent-
field energies including only the nondynamical correlation. 
Test sets containing neutral and ionic species as well as 
closed-shell and open-shell systems are used for numerical 
illustration.
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1 Introduction

Hierarchical basis sets such as [1] cc-pVXZ and [2] XZP 
are known to improve the description of the energetics of 
a system by allowing to ascend on the basis set hierarchy 
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[20], USPE(x). This has been possible due to a good linear 
relation between the parameter A in Eq. (1) and the total 
energy. The CBS limit in USPE(x) is then obtained from

where a is the average slope obtained for the 18 test sets 
by employing MP2, CCSD, and CCSD(T) correlated 
methods and Etot

X  is the total energy calculated for the 
X-basis. The USTE(xi, xj) procedure yielded excellent 
results in extrapolations of the correlation energy [19, 21, 
22], atomization energies [19], and electrical properties 
[24] when compared with other two-parameter extrapola-
tion schemes. In fact, USPE(x) yields correlation energies 
[20, 22] and electrical properties [20] of at least similar 
accuracy to the ones obtained with the best available two-
parameter extrapolation schemes, which are obviously 
computationally more expensive. As current limitations, 
both USTE(xi, xj) and USPE(x) are available only for sin-
gle-reference methods [MP2, CCSD, and CCSD(T)], with 
USPE(x) being thus far available only for systems involv-
ing atoms from H to Ne.

It is well established that the multireference configura-
tion interaction (MRCI) method is one of the most impor-
tant tools for the calculation of accurate potential energy 
surfaces (PES). The literature in this area is vast, and we 
direct the reader to recent publications on both neutral and 
ionic species [26–38] from where others can be reached via 
cross-referencing. To produce an accurate PES, extrapola-
tions of the total MRCI energy to the CBS limit are nec-
essary in many cases. The CBS limit of the dynamical 
correlation (dc) energy can be estimated with Varandas’s 
extrapolation scheme [4], as commented in the next sec-
tion. However, for the CASSCF energy component, no def-
inite extrapolation scheme has been proposed, and it would 
be valuable if an accurate extrapolation protocol could also 
be found for such a purpose. Additionally, we expect the 
CASSCF extrapolation scheme to be also applicable to the 
HF energy, as suggested elsewhere by one of us [4]. The 
aim of the current work is therefore to find an accurate 
extrapolation scheme both for the HF and CASSCF ener-
gies, hence improving the results obtained with previously 
reported protocols [7, 9] specifically proposed for the HF 
energy.

2  Extrapolation of HF and CASSCF energies: 
synopsis and novel scheme

Consider the total MRCI energy [4] split as

(2)Ecor
X = Ecor

∞ +
aEtot

X

x3
,

(3)EMRCI
X = ECAS

X + Edc
X ,

where Ecas
X  is the CASSCF energy and Edc

X  is the dynami-
cal correlation component; the subscript X denotes as above 
the basis set quality. Such a partitioning is indispensable to 
perform good-quality extrapolations, since the CASSCF 
and dynamical correlation energies are known to converge 
with distinct rates for the same number of functions in the 
basis set.

The first extrapolation scheme specifically proposed for 
the dc energy is due to Varandas [4], with the CBS limit 
obtained from the following two-parameter form:

where

with the parameters A0
5
, n, and c for MRCI energies assum-

ing the values of A0
5
= 0.0037685459, n = 1.25, and 

c = −1.17847713. To obtain the CBS limit, two calcula-
tions with different basis sets are then required.

For the CASSCF energy, four popular schemes [7, 9] 
are now highlighted. The first [9] is of the exponential type 
with the form:

where A, β, and ECAS
∞  are parameters to be determined by 

performing calculations with three distinct bases. The sec-
ond [7] converts the three-parameter into a two-parameter 
protocol by fixing the value of β for each extrapolation pair 
of cardinal numbers. The criterion has been to minimize the 
RMSD for a set of test molecules [7], with the following 
outcoming values of β: 1.54 for the (T, Q), 1.95 for (Q, 5), 
1.72 for (5, 6), and 1.26 for (6, 7). In the third scheme [7], 
the extrapolation assumes the form

where α is once more determined to minimize the RMSD 
of a set of test systems [7]. The following values result 
3.54 [5], 5.34, 8.74, 9.43, and 8.18, respectively, for (D, T), 
(T, Q), (Q, 5), (5, 6), and (6, 7) extrapolation cardinal pairs. 
Finally, the fourth scheme [7] assumes the form:

where γ assumes the values of: 6.57 for the (T, Q) pair, 9.03 
for (Q, 5), 8.77 for (5, 6), and 7.10 for (6, 7). Although the 
values of α, β, and γ were determined from HF energies [7] 
when relatively large basis sets are used, Varandas [4] pro-
posed that they should also yield accurate CBS values for 
the CASSCF energy, a suggestion that will be shown later 
to be corroborated by the results here presented. Indeed, the 

(4)Edc
X = Edc

∞ +
A3

(X + α)3
+

A5

(X + α)5
,

(5)A5 = A0
5 + cAn

3,

(6)ECAS
X = ECAS

∞ + Ae−βX
,

(7)ECAS
X = ECAS

∞ +
A

Xα

(8)ECAS
X = ECAS

∞ + A(X + 1)e(−γX
1
2 )
,
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two-parameter extrapolation schemes of Karton and Martin 
[7] have been used by the Coimbra Group to extrapolate 
the CASSCF energy in calculations of a variety of accurate 
global PESs [26–36], [38–40].

The ECAS
∞  from Eq. (6) can be written, for a fixed and 

universal parameter β, as:

To determine hierarchical numbers for CASSCF extrapo-
lations, we will then consider the CBS energy ECAS

∞  to be 
known, β to be universal and fixed, and one hierarchical 
number X = xk to be also known. Thus, we may determine 
the remaining hierarchical numbers (xi) by solving the fol-
lowing system of equations:

with the general solution being

where i = 2, 3, 4, 5, . . . and i �= k. Note that Eq. (10) has 
been constructed for consecutive xi values (xi, xi+1), but the 
result is the same for pairs of nonconsecutive ones. In fact, 
the extrapolation with pairs of nonconsecutive x values is 
also viable with the new hierarchical scheme, hereinafter 
denoted by CAS-exponential or CAS-E(xi, xj) or simply 
CAS-E when used for extrapolating CASSCF energies 
(correspondingly, HF-E for HF, or simply SCF-E when 
taken in its universal version; see later). Following previous 
usage [19, 25], the hierarchical numbers are labeled as 
x2 = d, x3 = t, x4 = q, x5 = p, x6 = h, and x7 = s.1 All 
valence-only raw energies have been calculated with the 
Molpro electronic structure code [41], see the Supplemen-
tary Information (SI).

To proceed, we have chosen the ECAS
∞  values from Eq. 

(6), hereinafter denoted by KMβ(6,7), with the (6, 7) car-
dinal pair and β = 1.26. [7]. Note that KMβ(6, 7) has been 
adopted simply because it yields the closest to each other 
energies: deviations of ≤0.1 µEh. In fact, the three-param-
eter Eq. (6) underestimates the KMβ(6, 7) predictions by 

(9)ECAS
∞ =

EXie
βXi − EXje

βXj

eβXi − eβXj
,

(10)
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,

(11)xi =
1

β
ln

[

eβxk (ECAS
∞ − ECAS

xk
)

ECAS
∞ − Exi

]

,

1 To avoid confusion with the Greek symbol h (hexa) for 6, the initial 
s of the Latin prefix septen is used here for 7.

typically 10 µEh. The adopted xi and xj-numbers are finally 
chosen as average values of the calculated ones for each 
member of the 18 test sets (CH4, CO2, CO, F2, H2CO , 
H2O , HCN, HF, HNO, N2, NH3, O3, CH2, C2H2, C2H4, 
N2H2, H2O2) used in previous work [19, 20, 22]. To deter-
mine the novel hierarchical x-numbers, the Dunning [1] cc-
pVXZ (X = D, T, Q, 5, and 6) basis sets have been utilized, 
together with the pV7Z of Feller and coworkers [42, 43]. As 
noted above, to solve Eq. (11), both β and xk must be fixed. 
Because the hierarchical numbers are expected [19, 22] 
to lie close to the corresponding cardinals, the values of β 
and xk were further constrained to minimize the root mean 
square deviation (RMSD) relative to the corresponding car-
dinals. Since the highest x-number is expected to present 
the lowest variation among the various systems [22], this 
led to perform the search around xk = 7. Finally, to find 
the minimum RMSD, a grid of points was constructed for 
1.2 ≤ β ≤ 2.0 and 6.50 ≤ xk ≤ 7.50, with a mesh separa-
tion of 0.01. For each pair (β, xk) of the above grid, the fol-
lowing steps have then been performed: (i) Solve Eq. (11) 
to obtain xi, with i = 2, 3, 4, 5, and 6 for the 18 systems. (ii) 
Determine average xi numbers for the 18 test systems: The 
final hierarchical numbers d, t, q, p, h, and s (where s = xk ) 
are then obtained for each specific pair (β, xk). (iii) For the 

1.20
1.40

1.60
1.80

2.00 6.50
6.75

7.00
7.25

7.50

 0

 0.4

 0.8

 1.2

 1.6

parameter β
xk

R
M

S
D

Fig. 1  Parameter β and hierarchical number xk versus root mean 
square deviation (RMSD) relative to the corresponding cardinals. The 
minimum of RMSD for the CASSCF occurs at (β, xk) = (1.63, 6.90)

Table 1  Hierarchical numbers for HF and CASSCF energies

x Specific Universal

HF CASSCF

d 2.08 2.08 2.08

t 2.96 2.94 2.96

q 3.87 3.87 3.87

p 5.07 5.08 5.07

h 6.12 6.13 6.13

s 6.90 6.90 6.90

β 1.62 1.63 1.62
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d, t, q, p, h and s values so obtained, the RMSD is calcu-
lated with the reference values being the corresponding 
cardinal numbers, (xi − Xi). The optimum values of β and 
xk are the ones that yield the smallest RMSD.

Figure 1 shows a plot of the RMSD versus β versus xk 
for the CASSCF method, with a similar plot being obtained 
for the HF energy. In turn, the optimal β and Xi = xi val-
ues obtained for the HF and CASSCF energies are given in 
Table 1, with the CBS limit obtained with the SCF-E (HF-E 
and CAS-E) schemes via Eq. (9). Note that a set of univer-
sal x-numbers, i.e., usable both with the HF and CASSCF 
methods, is also proposed.

3  Results and discussion

Table 1 of the SI lists the statistical analysis for the raw and 
extrapolated CASSCF energies of the 18 systems used to 
determine the x-numbers; the reference values have been 
obtained by KMβ(6, 7) extrapolation. Comparison for the 
same pairs of consecutive X/x values shows that the CAS-E 
scheme with the specific x-number outperforms other 
results based on the Karton–Martin protocols, with the 
most significant improvement of 322 µEh (~33%) in mean 
absolute deviation (MAD) occurring for the (D, T)/(d, t) 
pair. For the (T, Q)/(t, q), the gain in MAD is only ≥25 µEh 
(~7%). In turn, for (Q, 5)/(q, p), (5, 6)/(p, h), and (6, 7)/
(h, s), the results are virtually the same for all schemes. 
When employing universal x-numbers, CAS-E shows an 
improvement of 49 µEh relative to (t, q) with specific x 

Table 2  Statistical analysis (in µEh) for the extrapolated and raw 
energies for the 106 test sets

The raw energies are calculated at HF/cc-pVXZ level of theory, and 
the reference data from the KMβ(5, 6) extrapolations
a Mean relative deviation
b Mean absolute deviation
c Root mean square deviation
d From Eq. (7)
e From Eq. (6)
f From Eq. (8)
g From Eq. (9) and the specific hierarchical number

 h From Eq. (9) and the universal hierarchical number

Method MRDa MADb RMSDc

Raw cc-pVQZ 4082 4082 4602

Raw cc-pV5Z 531 531 584

Raw cc-pV6Z 95 95 105

KMαd

(D, T) 145 563 706

(T, Q) 265 330 432

(Q, 5) −58 70 104

(5, 6) 0 0 0

KMβe

(T, Q) 283 343 448

(Q, 5) −58 70 104

(5, 6) 0 0 0

KMγ f

(T, Q) 270 334 436

(Q, 5) −59 70 105

(5, 6) 0 0 0

HF-Eg

(d, t) −86 556 700

(t, q) −52 226 280

(q, p) −63 73 108

(p, h) −2 2 2

(d, h) −13 16 20

(d, p) −62 80 104

(d, q) −58 214 260

(t, h) −13 15 19

(t, p) −61 75 98

(q, h) −12 13 19

HF-Eh

(d, t) −86 556 700

(t, q) −52 226 280

(q, p) −63 73 108

(p, h) 0 0 0

(d, h) −11 14 19

(d, p) −62 80 104

(d, q) −58 214 260

(t, h) −11 13 17

(t, p) −61 75 98

(q, h) −10 12 17
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Fig. 2  Comparison of extrapolation schemes for O3 at CASSCF/cc-
pVXZ level of theory. The hierarchical numbers (#s) are the specific 
values from Table 1. Note that the hierarchical numbers describe the 
correct shape of the extrapolation curve for all x values, while the car-
dinals, X = D and T, present small deviations from the CAS-E(h, s) 
curve. Additionally, despite accurate results obtained from KMα(6, 7) 
and KMβ(6, 7), the shape of the extrapolation curve is clearly incor-
rect
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values. However, (d, t) underperforms by 206 µEh relative 
to the case where specific x-numbers are used.

Shown in Table 2 is the statistics for the extrapolated 
and raw values obtained at the HF/cc-pVXZ level of the-
ory with the test set of 106 closed-shell systems [17, 19] 
formed by atoms of H, N, O, C, and F. Comparing the 
results for pairs of consecutive X/x values, it is seen that the 
difference between the HF-E and KMα [Eq. (7)] results is 
only of 7 µEh (~1%) for (D, T)/(d, t). However, for (T, Q)/
(t, q), the improvement obtained with HF-E is ≥152 µEh 
(~35%) compared with the Karton–Martin schemes. For 
the others pairs with consecutive values of X/x, the results 
are practically the same. The notable point is that both the 
HF- and CAS-E schemes using pairs of nonconsecutive x 
values yield results of at least similar quality to the ones 
obtained via Karton–Martin and even SCF-E schemes with 
consecutive extrapolation pairs. For example, the (d, s), 
(d, h), (d, p), and (d, q) pairs show virtually the same results 
as (h, s), (p, h), (q, p), and (t, q), but at significantly lower 
computational cost. Such a pattern is also observed for 
other nonconsecutive pairs. In fact, the key point of hierar-
chical extrapolation schemes lies on the highest x-number 
used in the pair: The CBS estimate is practically the same 
regardless the lowest x value of the pair.

Figure 2 shows the behavior of the KMα, MKβ , and 
CAS-E extrapolation schemes for the O3 molecule at CAS-
SCF/cc-pVXZ level of theory. Although the results are 
practically the same for large X/x values, the current hier-
archical scheme is the only one that predicts the correct 
shape of the extrapolation curve for any extrapolation pair. 
Thus, the methodology here utilized to generate the x-num-
bers makes the extrapolations consistent. On average, the 
x values lie closer to the correct extrapolation curve, CAS-
E(h, s), than the cardinals ones (see the SI). For this reason, 
the results of the SCF-E extrapolations are (on average) 
more reliable than the Karton–Martin protocols, especially 
when involving x = d, t, and q. To summarize, the hierar-
chical numbers are expected to be more realistic than the 
cardinals, allowing accurate predictions in extrapolations 
with pairs of consecutive and nonconsecutive x values. This 
is to be expected based on the results of previous work [19, 
22, 25] where the re-hierarchization procedure has also 
been utilized.

Shown for brevity in Table 3 of the SI is the statisti-
cal analysis for the extrapolated and raw values of the 43 
systems considered by Jensen [44]: 1CH+, 3CH−, 3NH,  
1OH− , 1FH, 1C2, 2CN, 1CN−, 1N2, 1NO+, 3NO−, 1CO, 3O2,  
1CF+ , 3CF−, 3NF, 1OF−, 1F2, 2F2−, 3SiH−, 1SH−, 1HCl , 
2CP, 1CP− , 1CS, 2SiN, 1SiN−, 1NP, 3SN−, 3NCl , 1SiO,  
3PO−, 3SO, 1SF−, 3PF, 1ClF, 1SiS, 1P2, 3PS−, 3S2 , 1SCl−,  
1Cl2 , 2Cl2−, all composed of first- and second-row ele-
ments having wave functions of � symmetry; the left 
superscript indicates the spin multiplicity. All energies 

have been calculated at both the HF and CASSCF levels 
of theory with the aug-cc-pVXZ basis [45] at the same 
geometries given in the original paper [44]; in this case, the 
reference energies are HF numerical ones [44], and CAS-
SCF/KMβ(5, 6) extrapolations that are deemed sufficiently 
accurate for the propose. Note that such test set consists of 
neutral species formed from first- and second-row atoms, 
as well as positive and negative molecular ions, thus con-
trasting with the neutral and first-row systems considered 
above. A comparison for extrapolation pairs with consecu-
tive X/x values shows once more that the hierarchical meth-
ods outperform the Karton–Martin schemes for both the 
(d, t) and (t, q) pairs. The average gain for the HF method 
is now of 93 µEh (~6%) for the (d, t) pair and ≤ 81µEh 
(~14%) for (t, q). Regarding the CASSCF energies, the 
average improvement is of 334 µEh (~21%) and 100 µEh 
(~6%) for (d, t) when using specific and universal x-num-
bers, respectively. In the same order, the mean improve-
ment for CASSCF/(t, q) is of ≥28 µEh (~6%) and ≥76 µEh 
(~17%) for specific and universal x values. For the others 
pairs of consecutive X/x values, the results are virtually the 
same for all schemes here examined. In turn, for extrapola-
tions with pairs of nonconsecutive x values, the predictions 
are somewhat poorer, but still competitive with the ones 
obtained via consecutive x-numbers, thus reinforcing the 
observation that the key issue in the hierarchical extrapola-
tions refers to the highest x-number of the pair. Also nota-
ble is the fact that the extrapolated results for Jensen’s set 
of 43 systems [44] are somewhat poorer than for the first-
row systems in Table 1 of the SI and Table 2. However, if 
only molecules formed by first-row elements are consid-
ered from there [44], then the RMSD is reduced by 1112 
µEh, 239 µEh, and 83 µEh for the (d, t), (t, q), and (q, p) 
pairs (respectively) when specific values of x and CASSCF 
energies are considered. For HF ones with specific x-num-
bers, the reduction in the same order is of 1257 µEh, 259 
µEh, 103 µEh, and 12 µEh. In this case (only first-row mol-
ecules), extrapolation with pairs of nonconsecutive x values 
yields results of better (or at least equal) quality than those 
obtained with consecutive x values.

4  Concluding remarks

We have suggested a two-parameter scheme for extrapo-
lating Hartree–Fock and multiconfiguration self-consist-
ent-field energies to the complete one-electron basis set 
limit. The novel protocol employs the idea of basis set 
re-hierarchization, with the hierarchical x-numbers for the 
HF and CASSCF methods lying very close to each other. 
A universal set of hierarchical numbers is also proposed 
which applies to both methods with an almost equal per-
formance. The scheme here reported allows extrapolations 
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with arbitrary hierarchical pairs (consecutive or nonconsec-
utive), hence allowing a significant reduction in computa-
tional cost, especially when high quality basis sets are used 
in the calculation. Note that the CASSCF is a significant 
part of the total MRCI energy. Thus, performing MRCI/
aug-cc-pVQZ calculations rather than MRCI/aug-cc-pV5Z 
ones can represent a considerable reduction in the compu-
tational cost when thousands, even millions, of points are 
necessary to build a multidimensional global PES. On this 
regard, the numerical results here presented for test sets 
that include neutral, ionic, closed-shell, and open-shell spe-
cies, show that the new scheme outperforms the best avail-
able protocols in all cases, even when pairs of nonconsecu-
tive x values are used. Indeed, the results can be up to 30% 
closer to the estimated CBS limit than the ones obtained 
from the Karton–Martin schemes with the same computa-
tional cost. Furthermore, the most significant improvements 
are obtained for small hierarchical numbers, namely pairs 
formed from x = q, t, and d which are the ones expected to 
be affordable with increasing system size.
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