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Especially in orbital-free density functional theory 
(OF-DFT), approximate functionals for the kinetic energy 
[10–31] often suffer from the lack of N-representability of 
density functionals [32–34], and consequently, they tend 
to fail during the variational optimization of the electron 
density, producing bosonic-like structureless electron den-
sities. This failure is attributed to an insufficient incorpo-
ration of the Pauli exclusion principle in the approximate 
functional. The Pauli kinetic energy, which is defined as the 
difference between the non-interacting kinetic energy and 
the bosonic von Weizsäcker term [35], as well as the cor-
responding Pauli potential has been intensively studied in 
the literature [36–44] as they represent the only unknown 
part of the Kohn–Sham (KS) kinetic energy functional and 
its corresponding KS potential.

Recently, one of us showed how to design approxima-
tions for the Pauli potential that give electron densities 
with proper atomic shell structure [45–47]. An extension 
of this method, applicable to bound Coulomb systems, can 
be found in reference [48]. However, those approxima-
tions are given in terms of a position variable and as such 
do not provide a direct route for obtaining the correspond-
ing parent functional using, for example, path integration 
techniques [49]. Of course, the corresponding functional 
of degree one can always be constructed [36, 50], but this 
functional expression does not fulfill known constraints on 
the kinetic energy, like homogeneous scaling [36], and is 
a poor approximation to total kinetic energy values even 
though it yields qualitatively correct binding energy curves 
for strong and moderately bound molecules [50].

In this work, we show how to construct functionals that 
correctly transform under homogeneous coordinate scal-
ing and yield a specified functional derivative. Examples of 
the proposed bifunctional construction will be given for the 
exchange energy and the Pauli kinetic energy.

Abstract A bifunctional construction depending on a 
specified density–potential pair and an approximate guid-
ing electron density functional is presented. The proposed 
bifunctional construction properly transforms under homo-
geneous coordinate scaling and yields the specified func-
tional derivative, which determines the electron density. 
Whereas the method is general and applicable to all func-
tional types, it will prove especially helpful in the context 
of orbital-free density functional theory, where most exist-
ing approximate density functionals predict inaccurate 
potentials.
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1 Introduction

The Hohenberg–Kohn (HK) theorems [1] offer a seduc-
tive approach to the physical properties of a system with-
out using wavefunctions [2]. However, finding reliable 
approximations to the HK functional is very difficult [3, 4]. 
Exact approaches [5–7] sacrifice conceptual simplicity and 
in practice require the same computational effort as wave-
function methods [8, 9]; simple approximations tend to fail 
unpredictably [3].
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2  Theory

Our approach to functionals with specified functional 
derivative is a bifunctional construction, using a potential 
functional that specifies the functional derivative and an 
approximate density functional. Additionally, the bifunc-
tional is designed to properly transform under homogene-
ous coordinate scaling [51].

A functional that is homogeneous with respect to coor-
dinate scaling:

can always be approximated by a local functional with the 
correct scaling:

where C, α and µ are constants. This suggests that we con-
sider a change in the argument of the density functional to 
the quantity ρµ/3+1(r), so that the functional is homogene-
ous of degree one and its functional derivative is homog-
enous of degree zero with respect to coordinate scaling:

The advantage of this approach is that δQ

δρµ/3+1(r)
 has the 

same scaling as a constant.
Finally, the bifunctional Qv[ρ] is constructed as the 

sum of an approximate density functional Q̃[ρ] that obeys 
homogeneous scaling and the bifunctional correction:

where vacc(r) =
δQ

δρ(r)
|acc is an accurate functional deriva-

tive associated with the electron density ρ[vacc; r]. Notice 

(1)
Q[ρα] = αµQ[ρ]

ρα(x, y, z) = α3ρα(αx,αy,αz)

(2)

Q[ρα] = C

∫
(ρα(r))

µ/3+1
dr

= C

∫ ∫ ∫
αµρµ/3+1(αx,αy,αz) d(αx) d(αy) d(αz)

= αµQ[ρ],

(3)

δQ

δρµ/3+1(r)
=

∫
δQ

δρ(r′)

δρ(r′)

δρµ/3+1(r)
dr

′

=

∫
δQ

δρ(r′)

δ(r − r
′)

δ
(
µ
3
+ 1

)
ρµ/3(r)

dr
′

=
3

µ+ 3
ρ−µ/3(r)

δQ

δρ(r)
.

(4)

Qv[ρ] = Q̃[ρ]

+

∫
ρµ/3+1(r)

[
δQ

δρµ/3+1(r)
|acc −

δQ̃

δρµ/3+1(r)
|acc

]
dr

= Q̃[ρ] +

(
3

µ+ 3

)∫
ρµ/3+1(r)

×

{
(ρ[vacc; r])

−µ/3

[
vacc(r)−

δQ̃[ρ[vacc; r]]

δρ(r)

]}
dr,

that by construction the term in curly braces does not 
depend on the electron density. Because of this, both the 
first and the second terms of Eq. 4 have the correct scaling, 
and so the overall functional does also. In addition, taking 
the functional derivative at the solution point, one obtains:

the desired potential expression vacc(r), that can be cho-
sen to be the accurate potential for the system of interest. 
Therefore, the functional defined by Eq. 4 obeys homoge-
neous coordinate scaling and has the specified functional 
derivative, as it shifts the minimum of the approximative 
functional Q̃[ρ] to the specified expression for the potential. 
Notice that the desired minimizing density is obtained for 
all possible choices of approximate Q̃[ρ]. In practice, how-
ever, the density will be obtained from the corresponding 
potential expression alone. The energy evaluated from the 
proposed bifunctional Qv[ρ] depends on the approximation 
for Q̃[ρ], where any approximation obeying homogeneous 
coordinate scaling [51] can be chosen. Alternatively, but 
equivalently, the energy can be evaluated by the virial theo-
rem [51].

At the solution point, the proposed bifunctional con-
struction with specified functional derivative:

yields an improvement over the original functional approx-
imation Q̃[ρ] as the accurate electron density is obtained by 
construction. Moreover, in stark contrast to existing kinetic 
energy density functionals, the potential is evaluated at 
the accurate reference density, rather than the poor qual-
ity minimizing density associated with Q̃[ρ]. This corrects 
for density-driven errors in the functional [52–54]. Finally, 
because the functional scales correctly and the density and 
potential are correct, the value of Q is correct for the mini-
mizing density (by the Euler theorem for homogeneous 
functionals). Finding an approximate functional in the form 
F[ρ] =

∫
f (ρ, . . . ) dr that produces an accurate energy 

(5)

δQv[ρ[vacc; r]]

δρ(r)
=

δQ̃[ρ[vacc; r]]

δρ(r)

+

(
3

µ+ 3

)(
µ+ 3

3

)
(ρ[vacc; r])

µ/3(ρ[vacc; r])
−µ/3

×

[
vacc(r)−

δQ̃[ρ[vacc; r]]

δρ(r)

]

= vacc(r)

(6)

Qv[ρacc] = Q̃[ρacc] +

(
3

µ+ 3

)

×

∫
ρacc(r)

[
vacc(r)−

δQ̃[ρ[vacc; r]]

δρ(r)

]
dr
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and potential expression for an actual reference density is 
less difficult than what the formulation in Eq. 5 achieves, 
which is a functional that gives this reference density by 
variational minimization of the functional.

As a first example of this formulation, consider the 
exchange energy density functional. For any electron den-
sity that is the Hartree–Fock ground state for some system, 
the exact exchange potential is given by the HFxc method 
[55]. Using the HFxc potential, vHFxc(r), for a Hartree–
Fock density ρHF(r), one can write the functional:

The issue of designing functionals with appropriate func-
tional derivatives is most critical in orbital-free density 
functional theory. Therefore, the proposed bifunctional 
is especially useful in this context. For the Pauli kinetic 
energy, the corresponding bifunctional construction at the 
solution point yields:

whereby T̃P[ρ] can be any functional approximation for the Pauli 
kinetic energy that obeys homogeneous coordinate scaling.

3  Conclusions

In this work, a strategy for the design of functionals that 
transform correctly under homogeneous coordinate scal-
ing and yield a specified functional derivative is presented. 
This goal was achieved with the help of a bifunctional con-
struction, depending on the electron density and a specified 
potential–density pair, determining the functional deriva-
tive. By construction, this bifunctional always recovers this 
pair when it is variationally optimized. However, the cor-
responding energy is mainly determined by the chosen den-
sity functional approximation.
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(7)

EX [ρ] = ẼX [ρ] +
3

4

∫
ρ4/3(r)

×

{
(ρHF(r))

−1/3

[
vHFxc(r)−

δẼX [ρHF]

δρ(r)

]}
dr.

(8)

TP[ρ] = T̃P[ρ]

+
3

5

∫
ρ(r)

[
vP(r)−

δT̃P[ρ[vP; r]]

δρ(r)

]
dr

References

 1. Hohenberg P, Kohn W (1964) Phys Rev B 136:864
 2. Parr RG, Yang W (1989) Density-functional theory of atoms and 

molecules. Oxford University Press, Oxford
 3. Burke K (2012) J Chem Phys 136:150901
 4. Becke AD (2014) J Chem Phys 140:18A301
 5. Levy M (1979) Proc Natl Acad Sci 76:6062
 6. Lieb EH (1983) Int J Quantum Chem 24:243
 7. Kryachko ES, Ludeña (1991) Phys Rev A 43:2179
 8. Colonna F, Savin A (1999) J Chem Phys 110:2828
 9. Ayers PW, Parr RG (2014) Indian J Chem 53A:929
 10. Thomas LH (1927) Proc Camb Philos Soc 23:542
 11. Fermi E (1928) Z Phys 48:73–79
 12. Kirzhnits DA (1957) Sov Phys JETP 5:64
 13. Hodges CH (1973) Can J Phys 51:1428
 14. Yang W (1986) Phys Rev A 34:4575
 15. DePristo AE, Kress JD (1987) Phys Rev A 35:438
 16. Thakkar AJ (1992) Phys Rev A 46:6920
 17. Lacks DJ, Gordon RG (1994) J Chem Phys 100:4446
 18. Wang YA, Carter EA (2000) Orbital-free kinetic-energy density 

functional theory. In: Schwarz SD (ed) Theoretical methods in 
condensed phase chemistry. Kluwer, New York, p 117

 19. Ayers PW, Lucks JB, Parr RG (2002) Acta Chim Phys Debr 
34:223

 20. Ayers PW (2005) J Math Phys 46:062107
 21. Chakraborty D, Ayers PW (2011) J Math Chem 49:1810
 22. Tran F, Wesolowski TA (2002) Int J Quantum Chem 89:441
 23. Levy M, Ayers PW (2009) Phys Rev A 79:064504
 24. Lee D, Constantin LA, Perdew JP, Burke K (2009) J Chem Phys 

130:034107
 25. Karasiev V, Jones RS, Trickey SB, Harris FE (2009) Recent 

advances in developing orbital-free kinetic energy functionals. 
In: Paz EJ, Hernandez AJ (eds) New developments in quantum 
chemistry. Transworld Research Network, Trivandrum

 26. Ghiringhelli LM, Delle Site L (2008) Phys Rev B 77:073104
 27. Ghiringhelli LM, Hamilton IP, Delle Site L (2010) J Chem Phys 

132:014106
 28. Trickey S, Karasiev VV, Vela A (2011) Phys Rev B 84:075146
 29. Karasiev VV, Trickey SB (2012) Comput Phys Commun 

183:2519
 30. Karasiev V, Chakraborty D, Trickey SB (2014) Progress on new 

approaches to old ideas: orbital-free density functionals. In: 
Delle Site L, Bach V (eds) Many-electron approaches in physics, 
chemistry and mathematics. Springer, Heidelberg, p 113

 31. Karasiev V, Trickey SB (2015) Adv Quantum Chem 71:221
 32. Ayers PW, Liu S (2007) Phys Rev A 75:022514
 33. Ludeña EV, Illas F, Ramirez-Solis A (2008) Int J Mod Phys B 

22:4642
 34. Kryachko ES, Ludeña EV (2014) Phys Rep 544:123
 35. March NH (1986) Phys Lett A 113:476
 36. Levy M, Ou-Yang H (1988) Phys Rev A 38:625
 37. Nagy A (1991) Acta Phys Hung 70:321
 38. Nagy A, March NH (1991) Int J Quantum Chem 39:615
 39. Nagy A, March NH (1992) Phys Chem Liq 25:37
 40. Holas A, March NH (1995) Int J Quantum Chem 56:371
 41. Amovilli C, March NH (1998) Int J Quantum Chem 66:281
 42. Nagy A (2008) Chem Phys Lett 460:343
 43. Nagy A (2010) Int J Quantum Chem 110:2117
 44. Nagy A (2011) J Chem Phys 135:044106
 45. Finzel K (2015) Int J Quantum Chem 115:1629
 46. Finzel K (2016a) J Chem Phys 144:034108
 47. Finzel K (2016b) Theor Chem Acc 135:87



 Theor Chem Acc (2016) 135:255

1 3

255 Page 4 of 4

 48. Finzel K (2016c) Int J Quantum Chem 116:1261
 49. Gaiduk AP, Chulkov SK, Staroverov VN (2009) J Chem Theory 

Comput 5:699
 50. Finzel K, Davidsson J, Abrikosov AI (2016) Int J Quantum 

Chem 116:1337
 51. Levy M, Perdew JP (1985) Phys Rev A 32:2010

 52. Kim MC, Sim E, Burke K (2013) Phys Rev Lett 111:073003
 53. Kim MC, Sim E, Burke K (2014) J Chem Phys 140:18a528
 54. Kim MC, Park H, Son S, Sim E, Burke K (2015) J Phys Chem 

Lett 6:3802
 55. Ryabinkin IG, Kananenka AA, Staroverov VN (2013) Phys Rev 

Lett 111:074112


	Functional constructions with specified functional derivatives
	Abstract 
	1 Introduction
	2 Theory
	3 Conclusions
	Acknowledgements 
	References




