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1  Introduction

The astrochemistry of small, unsaturated molecules con-
taining nitrogen, carbon, and sulfur is poorly understood. 
This observation applies, in particular, to the family of 
compounds containing the –NCS functional group which 
include species like isothiocyanic acid (HNCS) and thio-
cyanic acid (HSCN). Both have been detected in the inter-
stellar medium (ISM) [1–4], and their astrochemical forma-
tion pathways recently proposed [2, 5]. These are the only 
such molecules detected in the interstellar medium which 
contain an atom each of carbon, sulfur, and nitrogen. Four-
atomic [C, H, N, S] isomers have already been studied on 
theoretical and experimental grounds [6–8] and HNCS 
turns out to be the most stable among them with the HSCN 
molecule only 6.3  kcal/mol higher in energy. HCNS and 
HSNC arrangements may also be important, with energies 
only 34.4 and 36.0 kcal/mol higher than that of HNCS.

Many interstellar molecules like HCN, HNC, HC3N, 
HC5N, and SH2 have methyl-bearing analogues which have 
also been observed in the interstellar medium. It is therefore 
likely that methyl-bearing molecules featuring the –NCS func-
tionality can also be found, potentially along with some of 
their structural isomers. As little spectroscopic data exists for 
the majority of species in the C2H3NS family, more must be 
known about them before any search can be contemplated. To 
date, no C2H3NS family member has been detected in space.

Among C2H3NS species, methyl isothiocyanate 
(CH3NCS) is perhaps the best known terrestrially. This is a 
volatile substance commonly used as a pesticide [9]. It eas-
ily reaches the atmosphere following application and pho-
tochemical processes contribute to its eventual decomposi-
tion and removal [10–12]. Although CH3SCN and CH3NCS 
are commercially available, their spectroscopy and photo-
chemistry are poorly known. Electronic absorption spectra 
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are similar to those reported for HNCS [13, 14]. Gas-phase 
photolysis products include CH3, NCS, and CN [15–20]. 
More decomposition products were reported for CH3SCN 
subjected to electric discharges [21]. Recently, Møllen-
dal and collaborators measured the gas-phase rotational 
spectroscopy of mercaptoacetonitrile, another isomer of 
C2H3NS stoichiometry [22]. From this study, we know that 
mercaptoacetonitrile has two conformers with a calculated 
energetic separation between them of 4.68 kJ/mol [22]. To 
the best of our knowledge, no experimental data are availa-
ble for the isomerisation reactions of C2H3NS family mem-
bers. Such processes are potentially important, for studies 
of photochemical reactions in solid noble gases.

Fu et  al. [23] analyzed the potential energy surface 
(PES) of the [CH3, N, C, S] system where the CH3 group 
remained an indivisible unit during the calculations. Here 
we consider the [2C, 3H, N, S] PES where all atoms can 
take any position and predict the spectroscopic properties 
of the relevant bound species. Very few high-level quan-
tum chemical studies on simple thiocyanates or isothiocyn-
ates have been reported. The most advanced was carried 
out in 1996 by Koput [24], who used the coupled-cluster 
approach with a triple-zeta basis set to derive the potential 
energy surface for the CNC bending motion in CH3NCS 
and to predict its rotational energy levels. Rotational con-
stants and geometric parameters of MeNCS were also 
reported by Palmer and Nelson [25].

The relatively large number of atoms in C2H3NS makes 
a search for all possible isomers based on chemical intui-
tion impractical. To overcome this, Saunders [26] proposed 
a stochastic search method where an arbitrarily selected 
structure is first optimized and used as a starting point  in 
the search for further isomers. The next arrangement can 
then be generated by a “kick” that slightly (and randomly) 
changes the positions of all atoms. Each kick is followed 
by geometry optimization. This iteratively repeated proce-
dure, while simple and efficient, may fail when the energy 
minima are too far apart (as is likely in our case). There-
fore, an alternative approach was applied here, based on 
randomly chosen atomic configurations [27, 28].

2 � Theoretical methods

2.1 � General procedure

A procedure similar to that implemented here in the search 
for all possible energy minima on the potential energy sur-
face (PES) has been described previously [28]. Starting 
structures were repeatedly generated as random arrange-
ments of atoms placed at the nodes of a grid (spaced by 
0.6 Å) inside a 6.5 ×  6.5 ×  6.5 Å rectangular box. Such 
initial atomic configurations were subjected to geometry 

optimization using density functional theory (DFT) at the 
B3LYP/4-31G** [29–33] level. Resultant structures were 
added to a database of bound species if they were differ-
ent from any of those previously generated. Intermolecular 
complexes were not included in this database. The search 
procedure was terminated after completion of approxi-
mately 3000 optimization runs. At this number of runs, 
each structure had appeared at least twice. B3LYP/aug-
cc-pVDZ [29, 34, 35] geometries were subsequently cal-
culated for each molecule from this database. This second 
round of calculations allowed us to distinguish the most 
stable isomers with more certainty. The geometries pre-
dicted at this level are used as a starting point for a final 
round of very precise calculations providing final energies 
and spectroscopic constants.

A more detailed study of the most stable atomic arrange-
ments (at the B3LYP/aug-cc-pVTZ level [29, 34, 35]) 
included geometry optimizations which were then followed 
by anharmonic calculations (VPT2 [36]) with numerical 
differentiation along normal modes. This supplied har-
monic (ωB3LYP) and anharmonic (νB3LYP) frequencies, as 
well as vibration–rotation coupling constants and quartic 
centrifugal distortion constants. Raman intensities and nat-
ural bond orbitals [37–39] (NBO) were also calculated at 
the same level of theory.

Next, coupled-cluster computations (CCSD [40–42] 
with the cc-pVTZ [34, 35] basis set) were performed to 
improve the precision of molecular geometry predictions. 
Equilibrium electric dipole moment values were obtained 
at the same level of theory. Consequently, geometry opti-
mizations were carried out for the 12 most stable isomers 
with the CCSD(T) method (singles, doubles, and the per-
turbative treatment of triple excitations) in the frozen-core 
approximation. Harmonic vibrational frequencies ωCCSD(T) 
were obtained using numerical second derivatives of the 
total energy with respect to nuclear positions.

Calculations at the B3LYP/aug-cc-pVDZ and CCSD/cc-
pVTZ levels of theory were used to search for low-lying 
triplet electronic states for each of the C2H3NS isomers 
using singlet structures as starting points. Additional calcu-
lations searching for singlet excited states were performed 
in two steps. First, vertical excitation energies were calcu-
lated by EOM-CCSD/cc-pVTZ. Next, selected structures 
were optimized using CIS/aug-cc-pVDZ. These calcula-
tions are used to confirm that each molecule has a singlet 
ground state as well as to determine potential photochemi-
cal decomposition pathways.

The recommended vibrational frequencies were based 
on harmonic values obtained at the CCSD(T) level and 
on B3LYP-derived anharmonic corrections, as detailed 
elsewere [28, 43–46]. Similarly, our recommended ground-
state geometric structures (and the rotational constants that 
depend on them) were based on both coupled-cluster and 
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DFT calculations [5, 27, 28, 45–48]. Vibration–rotation 
coupling constants were obtained at the VPT2-B3LYP/
aug-cc-pVTZ level. The software package Gaussian 09 
[49] was used in these computations for the whole set of 
isomers. The frozen-core approximation was used for all 
ab initio calculations.

2.2 � The most stable isomers

The three lowest energy C2H3NS isomers were subjected 
to a more accurate theoretical treatment. Their molecular 
structures were derived at the CCSD(T)/cc-pVQZ level. 
The following formula, similar to that employed in our pre-
vious report [28], was used to obtain final energy values:

The meanings of the sub- and superscripts in the energy 
terms E

A,B
C  are the following: A (energy type)—this can be 

any of the correlation (corr), total (total), diagonal Born–
Oppenheimer correction (DBOC) [50], mass-velocity 
and Darwin term (MVD2) [51, 52], or zero-point energy 
(ZPE); B—method; C—basis set (CBS denotes the com-
plete basis set). All contributions to the energy were cal-
culated assuming the CCSD(T)/cc-pVQZ geometry, except 
for diagonal Born–Oppenheimer corrections E

DBOC,CCSD
cc−pVQZ  

(CCSD/cc-pVQZ geometry) and zero-point energy values 
E
ZPE,CCSD(T)
cc−pVTZ  (CCSD(T)/cc-pVTZ geometry).

The 1/X3 error law [53, 54] (X denoting the basis set 
cardinal number) served to estimate the complete basis set 
(CBS) limits of correlation energy [53, 54] which is given 
by:

Anharmonic (VPT2) calculations, performed at the 
CCSD(T)/cc-pVTZ level, supplied the zero-point vibra-

tional energy 
(

E
ZPE,CCSD(T)
cc−pVTZ

)

 values, electric dipole 
moment for the ground vibrational states (μ0), infrared 
absorption intensities of overtone and combination tran-
sitions, vibration–rotation coupling constants (αi

A, αi
B, 

αi
C), and the rotational distortion constants. The software 

package CFOUR v.1 [55] was used in these computa-
tions for the three lowest energy isomers. The frozen-core 
approximation was not used in these computations. The 
estimation of room-temperature thermodynamic stabili-
ties relied on partition functions obtained using B3LYP/

(1)

E = E
corr,CCSD(T)
cc−pVQZ +

(

E
corr,MP2
CBS − E

corr,MP2
cc−pVQZ

)

+

(

E
MVD2,MP2
cc−pCVQZ + E

corr,MP2
aug−cc−pCVQZ − E

corr,MP2
cc−pVQZ

)

+

(

E
corr,CCSDT
cc−pVTZ − E

corr,CCSD(T)
cc−pVTZ

)

+ E
total,HF
cc−pV5Z

+ E
DBOC,CCSD
cc−pVQZ + E

ZPE,CCSD(T)
cc−pVTZ

(2)
E
corr,MP2
CBS = E

corr,MP2
cc−pVQZ +

125

(

E
corr,MP2
cc−pV5Z − E

corr,MP2
cc−pVQZ

)

61

aug-cc-pVTZ-derived anharmonic vibrational frequencies 
[56] and were carried out using the Gaussian 09 package 
[49].

3 � Results and discussion

3.1 � Stability of isomers

More than 100 species were found in course of preliminary 
studies using B3LYP/4-31G** and B3LYP/aug-cc-pVDZ 
calculations. From the list generated by these runs, we 
selected 45 of the most stable isomers for further CCSD/cc-
pVTZ studies. From this set of 45, the 20 most stable iso-
mers are presented in Fig. 1. Species, including thionitroso 
ethane [57], 1,3-didehydro-1-methyl-1H-1λ4-thiazirine 
[23], 2-thia-4-azabicyclo[1.1.0]butane [58], and 2-methyl-
3-thiaziridinylidene [23] are in the longer list but not 
included on Fig. 1, because they have high relative energies 
with respect to 1: 183, 204, 238, 282 kJ/mol, respectively.

Figure  1 presents the most stable C2H3NS isomers 
together with their corresponding (relative) energy values. 
Mean absolute errors of 65.1 and 10.5  kJ/mol have been 
reported [59] for the predictions of atomisation energies 
and reaction enthalpies, respectively, using all-electron 
correlation and CCSD/cc-pCVTZ. Considering these val-
ues and the results of our earlier CCSD/cc-pVTZ study on 
C2HNS-stoichiometry molecules [28], we estimate the pre-
cision of our relative energy calculations to be better than 
30 kJ/mol. This is sufficient to identify isomers 1, 2, and 3 
as the most stable, but do not permit reliable prediction of 
the order of stability for the three lowest energy isomers.

Our most precise calculations (Table  1) reduced the 
energetic difference between 1 and 3 from 12.4 to 6.0 kJ/
mol. Inclusion of thermal corrections at the VPT2-B3LYP/
aug-cc-pVTZ level significantly changed the results. For 
standard (298.15 K, 1  bar) conditions and including ther-
mal corrections, 2 becomes the most stable isomer, but 
energetic differences remain small (Table  1). It seems 
likely that the thermodynamic stability under normal con-
ditions decreases in the flowing order with the first being 
the most stable: 2, 1, 3. However, the energetic differences 
between these isomers are low and of the same order of 
magnitude as the uncertainty of the calculation. The fact 
that 1 is among the three lowest energy chemicals seems to 
contradict what is known about the stability of molecules 
1, 2, and 3 from reports where handling of the chemicals 
was described. The last two chemicals are commercially 
available and can be stored with no difficulty, unlike spe-
cies 1 [60, 61]. The lower stability of 1 may be determined 
by other factors, such as the existence of a low energetic 
barrier to a thermally activated reaction or susceptibility to 
a photochemical transformation.
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Fig. 1   Molecular structures corresponding to the lowest energy min-
ima within a potential energy surface describing C2H3NS singlet spe-
cies. Isomer labels are followed by ZPE-corrected CCSD/cc-pVTZ 
relative energies, calculated with respect to species 1. More precise 
CCSD(T)/cc-pVTZ relative energies are given in parentheses, when 

available. Atomic charges (for the first 14 isomers) and Lewis-type 
dash formulae are based on NBO analysis at the B3LYP/aug-cc-
pVTZ level. Circles drawn with gray full lines, black full lines, and 
dashed gray lines represents the atoms situated, respectively, in the 
plane of the figure, in front of the plane or behind the plane
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3.2 � Spectroscopic properties of selected isomers

3.2.1 � Rotational spectroscopy

Calculated rotational constants are collected in Table  2. 
Available experimental values, concerning the vibrationless 
states of species 1, 2 and 3 [22, 62, 63], allow estimation 
of the precision of these predictions. Absolute differences 
between experimental and theoretical values are 0.4 and 
0.2  %, for C0 and B0 of 3, respectively. In the case of 1, 
corresponding values are even smaller, while for 2, these 
values are 0.2 and 1.0 %. A significant error observed for 
the predicted B0 value of 2 may stem from the large ampli-
tude of the low frequency vibration. In previous studies, 

employing the same theoretical approach, the absolute 
deviation from experimental B0 and C0 values varied 
between 0.05 and 0.6 % [5, 45]. Differences between equi-
librium and ground-state rotational constants are on the 
order of 0.5 %. Electric dipole moments calculated for the 
most stable isomers fall in the range between 0.8 and 6 D. 
This should allow for microwave detection of at least some 
of these molecules.

3.2.2 � Infrared spectroscopy

Tables  3, 4, 5 and 6 (see Online Resource for their full 
versions) collect information concerning the vibra-
tional spectroscopy of molecules 1, 2, 3, and 9 for 

Table 1   Relative energies (�E)  
and relative standard Gibbs 
free energies (�G298.15K) for 
the three most stable C2H3NS 
stoichiometry molecules, 
together with energy terms of 
the Eqs. 1 and 2

Unit 1 2 3

E
corr,CCSD(T)
cc−pVQZ

hartree −0.937268 −0.941883 −0.940366

E
corr,MP2
CBS −E

corr,MP2
cc−pVQZ

hartree −0.313280 −0.312709 −0.313513

E
MVD2,MP2
cc−pCVQZ + E

corr,MP2
aug−cc−pCVQZ − E

corr,MP2
cc−pVQZ

hartree −1.58949 −1.58882 −1.58976

E
total,HF
cc−pV5Z

hartree −529.527032 −529.526252 −529.522497

E
DBOC,CCSD
cc−pVQZ

hartree 0.011757 0.011755 0.011770

E
ZPE,CCSD(T)
cc−pVTZ

hartree 0.045035 0.047825 0.046380

�E kJ/mol 0 0.5 6.0

�G298.15K kJ/mol 0 −5.2 4.9

Table 2   Recommended equilibrium rotational constants and ground-state rotational constants of C2H3NS isomers computed using the hybrid 
CCSD(T) + B3LYP approach [5, 27, 28, 45–48] (see the text)

Equilibrium electric dipole moment and polarizability values derived using CCSD/cc-pVTZ are also given
a  Experimental value [22]
b  Based on CCSD(T) calculations of Ref. [25]
c  Experimental value [62]

Ae/GHz Be/GHz Ce/GHz A0/GHz B0/GHz C0/GHz μe/D α/Bohr3

1 23.08 3.107 2.826 22.94 (23.11)a 3.103 (3.105)a 2.813 (2.820)a 3.1 42.6

2 90.84 [83.53]b 2.5409 [2.5385]b 2.5111 [2.5024]b 105.6 (81.07)c 2.511 (2.537)c 2.494 (2.499)c 4.2 49.5

3 15.61 4.164 3.358 15.60 (15.79)c 4.147 (4.155)c 3.340 (3.354)c 4.0 43.6

4 24.14 3.292 2.998 24.05 3.278 2.983 3.1 44.3

5 13.88 7.327 4.950 13.79 7.277 4.912 0.8 42.5

6 22.00 3.804 3.365 22.44 3.754 3.330 2.4 47.7

7 14.18 5.384 4.009 14.08 5.359 3.983 0.9 46.2

8 19.58 3.790 3.190 19.51 3.769 3.170 3.2 45.9

9 158.8 2.397 2.397 156.9 2.395 2.395 6.0 51.1

10 29.54 2.960 2.763 29.48 2.949 2.750 1.1 48.6

11 29.29 2.965 2.766 29.16 2.954 2.755 2.4 48.6

12 41.78 2.718 2.569 41.93 2.708 2.558 1.9 50.2

13 12.61 8.014 5.060 12.53 7.969 5.027 3.0 42.5

14 16.14 4.458 3.573 16.16 4.437 3.553 3.9 45.6
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which experimental values are also available. Addi-
tional data for less stable C2H3NS species are provided 
in the Online Resource. Focusing our attention on theo-
retical results alone, for the three lowest energy iso-
mers, the vibrational frequencies predicted by hybrid 
CCSD(T) + VPT − B3LYP [28, 43–46] calculations and 
by the standard VPT2-CCSD(T) procedure can be com-
pared. As reported previously [28, 43–46], the hybrid 
approach satisfactorily reproduces fundamental frequen-
cies. For overtone and combination modes, the discrepancy 
between VPT2-CCSD(T) and hybrid methods is higher, 
especially in the case of low-energy vibrations. In spite 
of its slightly lower accuracy, CCSD(T) + VPT − B3LYP 
predictions are still sufficient for the identification of iso-
mers by IR absorption spectroscopy. Isomers 1 and 3 fea-
ture rather low IR intensities, while for each of the follow-
ing species: 2, 4, 6, 7, 9, 10, 11, 12, and 14, at least one 
intense (in excess of 100  km/mol) IR transition is to be 
expected. While our theoretical predictions already allow 
for a critical evaluation of some published spectral assign-
ments concerning 1, 2, 3, and 9, the reliable identification 
of combination and overtone modes will require further, 
dedicated experimental studies.

Calculations can be compared to limited experimental data 
as well. No IR spectra have been measured for the isomers 

4–14, with the exception of the cryogenic argon matrix-iso-
lated species 9 [64]. We limit our discussion here to 1, 2, and 
3. Mathias and Shimanski [61], after having synthesized com-
pound 1, reported on its most prominent IR bands measured in 
the condensed phase. These bands are in acceptable agreement 
with our ab initio results. However, the complete IR spectrum 
of 1 was not given. Because of this, no experimental values are 
listed in Table  3. Our predictions suggest low intensities for 
each of the IR transitions of 1. The only exception is the anhar-
monic prediction for the ν8 vibration, for which the intensity is 
surprisingly high in comparison with harmonic result. We iden-
tified a strong resonance between ν8 and ν10 + ν14 as the main 
contributor to this intensity increase. A reliable prediction of 
resonances is challenging, even at a high level of theory, so this 
anharmonic intensity may be significantly overestimated.

For 2, IR [65–68] and Raman [65] spectra have been 
measured. Gas-phase frequencies [68] of the fundamen-
tal modes match our present theoretical predictions fairly 
well (Table  4). More complicated is the case of overtone 
and combination modes, some of which were identified for 
gaseous- and condensed-phase samples [65, 66]. Our theo-
retical predictions deserve several comments:

1.	 As pointed out elsewhere [24], the internal rotation of 
a methyl group is a large-amplitude vibration that can-

Table 3   Vibrational spectroscopy of 1

Frequency/cm−1 IR intensity/km × mol−1 Raman activ./Å4 × AMU−1

Harmonic Anharmonic Harmonic Anharmonic Harmonic

CCSD(T) CCSD(T,fc) + B3LYP CCSD(T) CCSD,fc CCSD(T) CCSD(T) B3LYP

Fundamental modes

ν1 3139 2988 2994 0.70 0.84 0.80 53

ν2 3105 2981 2979 1.9 1.8 2.5 1.2 × 102

ν3 2710 2583 2604 0.31 0.38 1.3 1.1 × 102

ν4 2310 2255 2274 0.70 0.32 0.15 1.3 × 102

ν5 1476 1441 1435 5.7 5.9 5.4 6.6

ν6 1290 1254 1258 6.0 5.4 4.6 11

ν7 1234 1195 1200 4.1 4.1 3.3 2.5

ν8 1022 998 956 5.4 5.3 8.9 × 103 3.2

ν9 953 921 931 4.9 4.2 3.0 1.5

ν10 801 794 788 0.19 0.17 0.17 8.3

ν11 714 694 704 4.6 4.5 1.9 16

ν12 490 475 484 0.099 0.056 0.083 4.5

ν13 369 350 364 0.69 0.85 0.55 1.2

ν14 221 277 203 20 20 18 0.72

ν15 175 195 171 6.9 6.3 7.5 2.4

Selected overtone and combination modes (intensities higher than 1 km × mol−1)

ν12 + ν14 712 752 684 3.1

ν10 + ν14 1023 1079 1038 4.7 × 103

ν5 + ν7 2710 2632 2632 2.2
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not be treated using VPT2. With this in mind, we give 
no predictions regarding the ν15 anharmonicity or any 
parameters of related overtone or combination bands.

2.	 Interpretation of IR spectra in the 2000–2300  cm−1 
region, where our ab initio calculations locate the fun-
damental band ν4 (“antisymmetric” NCS stretching), 
is very challenging. The band ν6 + ν11 (CH3 antisym-
metric deformation coupled to the NCS “symmet-
ric” stretching) should be a factor of two less intense 
than ν4. In the same region one can also expect to find 
an overtone of a CH3 twisting mode (2ν10), as well 

as the ν4 + ν14 combination (ν14 is the CNC bend-
ing), with their predicted intensities about two times 
lower than that of ν6 + ν11. An additional band in this 
region might come from ν8 + ν10 and ν7 + ν11 vibra-
tional transitions. These are predicted to be 6 and 12 
times less intense in IR than ν6 + ν11. Reliable spectral 
assignments of all combination bands will require fur-
ther experimental studies and possibly the use of iso-
topologues.

3.	 The combination band ν4 + ν11, arising from NCS 
“antisymmetric” and “symmetric” stretches, is pre-

Table 4   Vibrational spectroscopy of 2

a  Ref. [68], gas phase

Frequency/cm−1 IR intensity/km × mol−1 Raman activ./Å4 × AMU−1

Harmonic Anharmonic Exp.a Harmonic Anharmonic Harmonic

CCSD(T) CCSD(T,fc) +B3LYP CCSD(T) CCSD,fc CCSD(T) CCSD(T) B3LYP

Fundamental modes

ν1 A″ 3145 2993 2994 2966 8.1 9.7 1.1 × 101 1.1 × 101

ν2 A′ 3127 2983 2993 2966 8.6 1.0 × 101 9.9 1.1 × 101

ν3 A′ 3067 2944 2946 2952 43 4.6 × 101 1.9 3.8 × 101

ν4 A′ 2198 2078 2142 2083 1.2 × 103 1.1 × 102 5.0 × 102 1.1 × 101

ν5 ″ 1522 1487 1473 1421 7.8 7.6 6.5 8.6

ν6 A′ 1513 1476 1468 1421 7.6 6.8 5.2 6.9

ν7 A′ 1465 1446 1436 1425 7.3 × 101 7.2 × 101 6.3 × 101 28

ν8 A′ 1186 1148 1141 1181 1.9 6.5 1.3 7.6

ν9 A′ 1135 1114 1113 1108 0.15 0.12 1.9 0.049

ν10 A″ 1133 1087 1110 1108 2.5 × 101 2.8 × 101 1.4 × 101 11

ν11 A′ 683 666 662 680 3.7 × 101 1.9 × 101 2.1 × 101 13

ν12 A′ 483 457 509 535 2.1 × 101 3.1 × 101 2.1 × 102 0.43

ν13 A″ 464 447 460 417 2.0 1.2 0.91 0.041

ν14 A′ 97 113 82 110 2.0 × 101 2.7 × 101 2.1 × 101 2.0

ν15 A″ 15 3.2 2.4 0.74

Selected overtone and combination modes with IR intensities higher than 1 km × mol−1

2ν14 194 191 148 1.5

ν12 + ν14 580 560 584 4.0

ν8 + ν14 1283 1246 1217 1.7

ν7 + ν11 2148 2096 2097 2.3 × 101

ν6 + ν11 2196 2142 2130 2.8 × 102

2ν10 2267 2183 2221 1.5 × 102

2ν9 2270 2225 2222 1.1

ν4 + ν14 2295 2215 2242 1.4 × 102

ν8 + ν10 2320 2234 2250 4.7 × 101

2ν8 2373 2293 2278 8.3

ν4 + ν12 2680 2563 2654 3.5

ν4 + ν11 2881 2771 2815 1.9 × 101

2ν7 2929 2853 2853 2.4

2ν6 3026 2962 2933 2.1 × 101

2ν5 3045 2984 2938 5.3 × 101

2ν4 4395 4150 4235 5.6
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Table 5   Vibrational spectroscopy of 3

a  Q branch maximum
b  Band centre
c  Ref. [69], similar values reported in Ref. [70]
d  Ref. [71]

Frequency/cm−1 IR intensity/km × mol−1 Raman activ./
Å4 × AMU−1

Harmonic Anharmonic Exp. Harmonic Anharmonic Harmonic

CCSD(T) CCSD(T,fc) +B3LYP CCSD(T) Gas phase Solid, Raman CCSD,fc CCSD(T) CCSD(T) B3LYP

Fundamental modes

ν1 3179 3029 3035 3033 a,c 3038 1.7 1.5 2.7 53

ν2 3167 3020 3026 3014 3025 1.6 1.5 2.5 65

ν3 3088 2970 2978 2951a, c 2944, 2938 10 9.9 9.0 1.7 × 102

ν4 2225 2173 2193 2171a,c 2155 8.1 7.2 5.9 1.5 × 102

ν5 1502 1465 1458 1435a,c 1438, 1432 8.5 8.5 7.3 3.0

ν6 1485 1435 1444 1424, 1415 7.5 7.7 7.0 5.2

ν7 1366 1326 1337 1329a,c 1318, 1309 5.5 5.1 0.083 1.1

ν8 1007 985 989 991a,c 1005, 996 7.5 7.4 6.9 0.87

ν9 984 966 968 968a,c 974 2.8 2.9 2.8 0.26

ν10 722 700 705 709a,c 703, 704 1.5 1.2 1.1 3.9

ν11 682 666 674 692b,c 678 0.61 0.34 0.39 19

ν12 459 447 455 467 0.17 0.22 0.22 1.0

ν13 411 389 405 440c 421 3.0 2.4 2.3 0.57

ν14 174 170 174 172a,c 190 5.4 5.1 5.0 5.1

ν15 161 157 147 131d 0.032 0.028 0.019 0.092

Selected overtone and combination modes with IR intensities higher than 1 km × mol−1

2ν11 1364 1326 1340 8.6

2ν5 3004 2899 2898 1.7

Table 6   Vibrational spectroscopy of 9

a  Ref. [64]

Frequency/cm−1 IR intensity/km × mol−1 Raman activ./A4 × AMU−1

Harmonic Anharmonic Ar matrixa Harmonic Harmonic

CCSD(fc,T) CCSD(T,fc) + B3LYP CCSD,fc B3LYP

ν1 E 3132 2979 0.93 2.7 × 102

ν2 A1 3051 2976 2926 8.1 5.8 × 102

ν3 A1 2271 2228 2237, 2240 2.8 × 102 5.0 × 102

ν4 E 1482 1448 1413 19 21

ν5 A1 1413 1395 1346 5.5 78

ν6 E 1046 1023 3.6 2.3

ν7 A1 1020 1004 1005, 1001 54 1.8

ν8 A1 574 579 565 40 3.4

ν9 E 406 405 0.82 2.1

ν10 E 140 144 1.1 4.2
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dicted to have a sizable IR intensity. Its calculated posi-
tion agrees well with the experimental [66] frequen-
cies: 2789 (gas-phase) and 2791 cm−1 (argon matrix). 
This fits with the fundamental frequencies proposed by 
Zheng et al. [68].

4.	 The assignment of weak bands observed in the gas 
phase [65, 66] at 2823 and 2900 cm−1 or in solid argon 
[66] at 2818 and 2887 cm−1, is not easy. These were 
interpreted in the gas phase as the overtones of CH3 
antisymmetric deformation modes (2ν5 or 2ν6), pos-
sibly overlapping with the overtone of CH3 antisym-
metric deformation (2ν7) or the combination of CH3 
antisymmetric deformations (ν6 + ν5). Yet another 
explanation of the bands detected in that region may 
involve a combination of symmetric and antisymmetric 
CH3 deformation modes, ν6 + ν7 and/or ν5 + ν7. Com-
pared to prior assignments, the predicted frequencies 
of either ν6 + ν7 or ν5 + ν7 would be higher than the 
sum of the fundamentals.

Comparisons between the IR spectra of 3 and our 
results are not straightforward. Firstly, no obvious assign-
ment of the band observed by Sullivan et  al. [69] at 
2112 (strong) and 2106  cm−1 (medium intensity) in gas 
and solid phases, respectively, can be given. Fundamen-
tal transitions are not expected there, while overtone and 
combination bands are predicted to be weak. The band 
most likely comes from impurities as it was not reported 
in another study [70].

Table 7   ZPE-corrected singlet–triplet energetic separation (eV), 
as derived for the C2H3NS isomers using B3LYP/aug-cc-pVDZ and 
CCSD/cc-pVTZ calculations

a  Barrierless detachment of HS
b  HNC-CH2-S structure is adopted in the lowest triplet state
c  The lowest triplet state structures of 10 and 11 are identical (planar)

Molecule B3LYP CCSD

1 2.3a

2 2.7 2.8

3 3.1 3.6

4 2.4a

5 2.9 3.1

6 1.5 1.6

7 2.1b 3.8

8 1.0 1.2

9 1.9 2.0

10 1.8c 2.0

11 1.8c 1.8

12 0.7 0.9

13 2.5 2.6

14 2.2 2.2

Table 8   Energy (eV) and oscillator strength values for vertical 
transitions (∆Evert  <  7.75  eV) from the ground electronic states of 
C2H3NS isomers, as derived using EOM-CCSD/cc-pVTZ

Isomer State ∆Evert fvert

1 A 5.8 0.0001

B 6.8 0.02

2 A 5.3 0

B 5.5 0.004

C 5.7 0.0001

D 7.7 0.5

E 7.7 0.004

3 A 5.5 0.0001

B 7.0 0.002

C 7.5 0.01

4 A 5.9 0.003

B 7.1 0.02

5 A 4.8 0

B 5.6 0.002

C 6.0 0.01

D 6.1 0.05

E 7.4 0.004

6 A 2.8 0.0004

B 4.6 0.07

C 5.5 0.06

D 6.1 0.05

E 6.2 0.1

F 7.1 0.003

E 7.6 0.04

7 A 5.1 0.0007

B 5.6 0.003

C 5.9 0.01

D 6.6 0.1

E 7.4 0.001

8 A 2.1 0

B 4.4 0.0007

C 5.8 0.2

D 6.6 0.007

E 6.7 0.01

F 7.3 0.01

G 7.4 0.07

H 7.6 0.02

9 A 4.8 0

B 4.9 0.0002

C 5.8 0.0009

D 5.8 0.0009

E 6.6 0.9

F 6.7 0.0001

10 A 4.7 0.004

B 5.9 0.005

C 6.4 0.007

D 6.6 0



	 Theor Chem Acc (2016) 135:222

1 3

222  Page 10 of 12

3.2.3 � Excited electronic states

Searches for both singlet (EOM-CCSD/cc-pVTZ and CIS/
aug-cc-pVDZ) and triplet (B3LYP/aug-cc-pVDZ and 
CCSD/cc-pVTZ) excited states were performed. The results 
of the triplet search indicated that all ground electronic 
states are of singlet multiplicity. No minima corresponding 
to 1 or 4 could be found on the triplet potential energy sur-
face. Instead, 1 and 4 converged to H2C–CN + SH or H2C–
NC + SH, respectively. Table 7 lists singlet–triplet energy 
splittings predicted for the whole family of isomers.

Table  8 presents vertical electronic excitation energies 
for the most stable isomers. Strong UV absorption bands 
are predicted for species 2, 7, 8, 9, 10, 11, and 12. Dif-
ferences between isomers 2 and 3, both featuring methyl 
groups and NCS structural units, are notable. The main 
UV absorption band of 2 is predicted to be far more 
intense (f  =  0.5) than any of the bands predicted for 3 
(f < 0.01, at least up to energies of 8.6 eV). This difference 
in intensities is rooted in the electronic structures of these 

molecules, differences between which can be seen in the 
results of charge distribution calculations given in Fig. 1. 
Only six of the discussed species, namely 6, 8, 9, 10, 11, 
and 12, have their first singlet excited states at less than 
5 eV (248 nm).

Geometry optimizations using CIS/aug-cc-pVTZ, for 
selected excited singlet electronic states of the 14 most 
stable C2H3NS isomers, did not point to many significant 
changes in atomic arrangements that might occur as a result 
of excitation. We found that 9 dissociates in its first singlet 
excited state, reached through a vertical excitation energy 
of approximately 4.8 eV, into CH3–CN and S. In the case 
of 7, electronic excitation breaks apart the bonds between 
sulfur and carbon atoms. For 14 an SNC ring can be cre-
ated. The excitation of 1 to the second excited state is likely 
to yield the SH radical. This ease of photodecomposition 
may contribute to the reported low stability of 1. A similar 
process is to be expected for 4, but the breaking of C–S is 
accompanied by the creation of an H–C bond. As a result, S 
and HCNCH2 may be created.

4 � Summary and conclusions

Methyl isothiocyanate (CH3–NCS, 2), methyl thiocyanate 
(CH3–SCN, 3), and, surprisingly, mercaptoacetonitrile 
(HS–CH2–CN, 1) are identified as the most thermodynami-
cally stable molecules of C2H3NS stoichiometry. These 
three species are separated in energy by no more than 
10 kJ/mol. Molecular constants for rotational, vibrational, 
and electronic spectroscopy were predicted for the 14 most 
stable isomers. Quantum chemical calculations suggest the 
susceptibility of mercaptoacetonitrile (1), mercaptoace-
toisonitrile (HS–CH2–NC, 4), and N-sulfide acetonitrile 
(CH3–CNS, 9) to UV-induced decomposition.
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