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1 Introduction

Antioxidants are currently considered a chemical alterna-
tive to the enzymatic defense systems against oxidative 
stress (OS). There is compelling evidence that melatonin—
and related compounds—is very efficient for that purpose 
[1–3]. It has been proposed that they exhibit a rather unique 
feature that makes them particularly efficient against OS. 
They jointly act as a combined antioxidant, through both 
their free radical scavenging activities and their metal 
chelation ability, behaving as •OH-inactivating ligands. 
The antioxidant capabilities of melatonin metabolites are 
responsible for this collective defense, frequently referred 
to as a cascade-like protection [4–6]. In addition, the mel-
atonin’s family of compound exhibits a “task-division” 
behavior in their antioxidant protection. Some members of 
the family have been identified as particularly efficient free 
radical scavengers (FRS), while others are mainly metal 
chelators (MC). For example, N-acetylserotonin (NAS) and 
6-hydroxymelatonin (6OHM) belong to the FRS group, 
while melatonin itself and N1-acetyl-N2-formyl-5-meth-
oxykynuramine (AFMK) act mainly as MC. On the other 
hand, it has been proposed that one of the metabolites—
cyclic 3-hydroxymelatonin (c3OHM)—can be efficient in 
both ways [7].

Several reaction mechanisms have been previously 
investigated regarding the free radical scavenging activity 
(FRSA) of these compounds including radical adduct for-
mation (RAF), hydrogen transfer (HT), and single electron 
transfer (SET). However, to our best knowledge, the role 
of the sequential proton loss electron transfer (SPLET) 
mechanism on the FRSA of these compounds has not been 
assessed yet. This is probably because there is no informa-
tion about the pKa values of most of them. The SPLET 
mechanism was first proposed by Litwinienko and Ingold 
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for the reactions of substituted phenols with the DPPH rad-
ical [8–11] and comprises two consecutive steps, namely 
(1) the deprotonation of the antioxidant and (2) an electron 
transfer from the deprotonated antioxidant to the free radi-
cal [12]. Accordingly, knowing the pKa value, or values, of 
the antioxidant is crucial to assess the relative importance 
of this mechanism. This is because pKa values rule the pro-
portion of the deprotonated species in aqueous solution at 
any pH of interest, for example, at pH = 7.4 under physi-
ological conditions. In other words, the pKa values would 
determine the extension of step (1). At the same time, 
SPLET is currently known to be crucial for the antioxi-
dant protection exerted by numerous chemical compounds 
including curcumin [9], esculetin [13], piceatannol [14], 
resveratrol [15, 16], hydroxybenzoic and dihydroxyben-
zoic acids [17, 18], xanthones [19], hydroxychalcones [20], 
procyanidins [21], kaempferol [22], gallic acid [23], isofla-
vonoids [24], fraxetin [25], and genistein [26]. In addition, 
it has been demonstrated that theoretical chemistry-based 
approaches can provide reliable and valuable information 
on this subject [27, 28]. Accordingly, it is the main goal of 
the present work to assess the relative importance of the 
SPLET mechanism in the FRSA activity of several mem-
bers of the melatonin’s family and to estimate their pKa 
values.

2  Computational details

Geometry optimizations and frequency calculations have 
been carried out using the M05-2X functional [29] and the 
6-31 + G(d,p) basis set, in conjunction with the solvation 
model based on density (SMD) [30] using water as solvent. 
The M05-2X functional has been recommended for kinetic 
calculations by their developers [29], and it has been also 
successfully used by independent authors for that purpose 
[31–33]. It is also among the best performing functionals 
for calculating reaction energies involving free radicals 
[34]. SMD is considered a universal solvation model, due 
to its applicability to any charged or uncharged solute in 
any solvent or liquid medium for which a few key descrip-
tors are known [30].

Unrestricted calculations were used for open-shell sys-
tems, and local minima were identified by the absence of 
imaginary frequencies. All the electronic calculations were 
performed with the Gaussian 09 package of programs [35]. 
Thermodynamic corrections at 298.15 K were included in 
the calculation of relative energies. The rate constants (k) 
were calculated using the conventional transition state the-
ory (TST) [36–38] and 1 M standard state as:

k =
kBT

h
e−(�G �=)/RT

where kB and h are the Boltzmann and Planck constants 
and ΔG≠ is the Gibbs free energy of activation that were 
calculated using the Marcus theory [39, 40].

In addition, since several of the calculated rate constants 
(k) are close to the diffusion limit, the apparent rate con-
stant (kapp) cannot be directly obtained from TST calcula-
tions. The Collins–Kimball theory is used to that purpose 
[41], in conjunction with the steady-state Smoluchowski 
[42] rate constant for an irreversible bimolecular diffu-
sion-controlled reaction and the Stokes–Einstein [43, 44] 
approaches for the diffusion coefficient of the reactants.

These computational details are in line with the quan-
tum mechanics-based test for overall free radical scaveng-
ing activity (QM-ORSA) protocol [45]. It was validated 
by comparison with experimental results and proven to 
produce uncertainties no larger than those arising from 
experiments.

3  Results and discussion

To estimate the pKa values of the investigated compounds, 
we have used the isodesmic method, also known as the 
proton exchange method, or the relative method [46]. It is 
based on the following reaction scheme:

where HRef/Ref− is the acid–base pair of a reference com-
pound. Within this approach, the pKa is calculated as:

Albeit this method has been proven to produce accurate 
pKa values, there are two key factors when using it that 
need to be taken into account to achieve the desired accu-
racy. HRef should be as structurally similar as possible to 
the system of interest, and its experimental pKa should be 
known. In the present case, we have chosen HRef = mela-
tonin (pKa = 12.3) [47] for calculating the pKas of AMK 
and AFMK and HRef = serotonin for c3OHM, 6OHM, 
and NAS. At this point, it is important to note that, albeit 
serotonin has two pKa values, the relevant in this context 
is the second one, which corresponds to the deprotona-
tion of the neutral species from its phenolic site. The value 
used for this pKa corresponds to the average of all the pre-
viously reported ones (pKa = 10.82). The individual val-
ues from which this average was estimated are provided in 
Table 1. The structures of the investigated compounds, and 
those of the molecules used as HRef, as well as the most 
likely deprotonation site for each of them, are shown in 
Scheme 1. The corresponding Cartesian coordinates are 
provided as Electronic Supplementary Material (ESM).

HA+ Ref− ↔ A− + HRef

pKa(HA) =
∆Gs

RT ln(10)
+ pKa(HRef )
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The pKas used for step (1) in the SPLET mechanism are 
reported in Table 2, together with the molar fractions (Mf) of 
the anions at pH = 7.4. The latter are crucial to assess the rela-
tive importance of the SPLET mechanism. It was found that 
for melatonin itself, AMK, and c3OHM, the Mfanion are so low 
that it seems unlikely that the SPLET mechanism significantly 
contributes to the overall reactivity of these compounds. On 
the contrary, albeit the populations of the anions of NAS, 
AFMK, and 6OHM are rather low at physiological pH (0.1, 
4.8, and 1.0 %, respectively), they might still be enough to 
make the SPLET route relevant. This is because the contribu-
tions of this mechanism to the overall reactivity of the studied 
compounds toward free radicals can be estimated as:

where kSPLET and koverall represent the rate constant of the 
SPLET reaction and the overall rate coefficient, respectively. 
Therefore, the number that really matters is the product 

%SPLET = 100×
Mfanion k

SPLET

koverall

Mfanion·k
SPLET. The SPLET contributions, at physiological pH, 

are reported in Table 3, while the influence of the pH on the 
relative importance of the SPLET mechanism is shown in 
Fig. 1. The data in both Table 3 and Fig. 1 correspond to the 
reactions between the studied compounds and the hydroper-
oxyl radical (HOO•).

It was found that the SPLET route is rather fast for 
AFMK and c3OHM, while it is near to or within the dif-
fusion-limited regime for NAS and 6OHM. However, 
after considering the corresponding Mfanion, it became evi-
dent that only for NAS, AFMK, and 6OHM, the SPLET 
mechanism is the key one, regarding the HOO• scavenging 
activity at physiological pH (Table 3). Moreover, for mela-
tonin, AMK, and c3OHM, the SPLET route is predicted to 
be only of minor importance, compared to other reaction 
mechanisms such as HT and RAF, in the whole range of 
pH (from 0 to 14). On the contrary, SPLET becomes the 

Table 1  Experimental values for the pKa of serotonin, corresponding 
to the deprotonation of the phenolic OH

Ref. pKa

11.26 Ref. [48]

10.73 Ref. [49]

10.4 Ref. [50]

10.89 Ref. [51]

10.82 Average

Scheme 1  Structures of the 
investigated compounds and the 
HRef. The circles highlight the 
most likely deprotonation site

Table 2  pKa values and molar fraction of the anion 
(

Mfanion
)

 at 
pH = 7.4

pKa Ref. Mfanion

Melatonin 12.3 [47] <10−4

NAS 10.7 This work 0.001

AMK 16.8 [52] <10−9

AFMK 8.7 [52] 0.048

c3OHM 15.1 This work <10−7

6OHM 9.4 This work 0.010
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route contributing the most to the peroxyl scavenging activ-
ities of NAS, AFMK, and 6OHM at pH values above 7.8, 
5.9, and 7.0, respectively (Fig. 1). SPLET is particularly 
important for the phenolic compounds (NAS and 6OHM), 
and such importance increases with the pH.

Accordingly, it is recommended to include the SPLET 
mechanism in future studies of melatonin-related com-
pounds. Additionally, it is crucial to fully characterize 
the acid–base equilibria of these compounds, since such 
equilibria may significantly influence their activity and 
mechanisms of action. This is particularly important when 
analyzing reactions that occur in biological systems, since 
the pH of the environment could vary depending on the 
investigated region of the system. For example, in the case 
of melatonin-related compounds, they can be present in 
different organs of the human body.

4  Conclusions

The results from the theoretical investigation presented in 
here indicate that the SPLET mechanism is likely to play a 
key role on the free radical scavenging activity of phenolic 

Table 3  Rate constants of the SPLET reaction (kSPLET, M−1 s−1), 
overall rate coefficient (koverall, M−1 s−1) at pH = 7.4, and SPLET 
contributions to the overall reactivity (%SPLET) at the same pH

* Before including the molar fractions

kSPLET* koverall %SPLET

Melatonin 8.28E−04 1.90E+01 ~0.0

NAS 7.95E+09 5.50E+06 78.8

AMK 4.77E+01 1.35E+02 ~0.0

AFMK 3.38E+04 1.62E+03 99.7

c3OHM 4.57E+06 2.84E+06 ~0.0

6OHM 8.23E+09 8.39E+07 95.7

Fig. 1  Influence of the pH on the relative importance of the SPLET mechanism in the •OOH scavenging activity of the studied compounds
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melatonin-related compounds. Moreover, they support the 
importance of fully characterizing the physicochemical 
properties of chemical compounds with antioxidant proper-
ties, in particular acid–base equilibria, since they may sig-
nificantly influence other properties and biological effects. 
It seems also relevant to call attention to the fact that iden-
tifying relatively low populations of anionic species, pre-
senting the phenolate moiety, is not enough to rule out their 
role in the scavenging activity of chemical compounds. The 
key number to consider should be the product of the molar 
fraction by the corresponding rate constant, at the pH of 
interest.
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