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1  Introduction

It is well known that Hartree–Fock (HF) theory not only 
has been proven to be quite suitable for calculations of 
ground state (GS) properties of electronic systems, but 
has also served as a starting point to develop many-parti-
cle approaches which deal with electronic correlation, like 
perturbation theory, configuration interaction methods and 
so on (see e.g., [1]). Therefore, a large number of sophis-
ticated computational approaches have been developed 
for the description of the ground states based on the HF 
approximation. One of the most popular computational 
tools in quantum chemistry for GS calculations is based on 
the effectiveness of the HF approximation and the compu-
tational advantages of the widely used many-body Møller–
Plesset perturbation theory (MPPT) for correlation effects. 
We designate this scheme as “HF  +  MPPT,” here after 
denoted “HF + MP2.”

There is far less reported experience for the HF studies 
of electronic excited states (ESs). Especially, highly, doubly 
and core hole excited (ionized) states are not often studied. 
It is clear that existing ground state self-consistent field 
(SCF) methods cannot be directly applied to excited states 
of the same symmetry or of the same spin multiplicity as a 
lower state because of the so-called variational collapse i.e., 
the optimization procedure will find only the lowest solution 
of a given symmetry or a given spin multiplicity. Therefore, 
such calculations for ES cannot be considered as routine. 
The most powerful scheme for accurate treatment of ESs is 
based on multireference methods [2–8]. They typically pro-
vide an accuracy of about 0.1  eV but require the expense 
of much computational cost. Thus, it can be quite difficult 
to carry out the corresponding calculations. Such meth-
ods are, however, indispensable to study systems where 
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single-configuration methods cannot be applied. However, 
in cases where a multireference approach is necessary, it is 
clear that the orbitals of a single configuration, together with 
a basis set that has been specifically optimized for a given 
excited state, will prove more appropriate for the devel-
opment of many-body correlation methods than orbitals 
expanded in a basis set constructed for the ground state. Fur-
thermore, it would be very useful to have an analogue of the 
“HF + MP2” formalism for the description of excited states 
which can be adequately described by a single Slater deter-
minant. In doing so, we should take into account that the 
basis functions that are used to construct molecular orbit-
als are typically optimized to describe the ground states of 
atoms. Remembering that the ground and excited states are 
often of quite different character, it is desirable to use differ-
ent basis sets for different states. “The desirability of using 
different basis sets for different states” was already pointed 
out by Shull and Löwdin [9] in 1958. It is especially impor-
tant for highly excited states. We shall show that our meth-
odology allows a basis set to be optimized for the excited 
state under consideration with essentially the same com-
putational efforts as for the ground state. Such an approach 
provides a compact and accurate representation of excited 
state wave functions. On the other hand, finding a method 
that offers a well-balanced treatment of both states is often 
problematic. Accounting for electron correlation in excited 
states is not as straightforward as in the ground state.

In this contribution, we further develop the “HF + MP2” 
formalism for excited states focusing our attention on cal-
culations of the ground state and excited state energies in a 
balanced manner, i.e.,

1.	 Reference configurations are constructed by employ-
ing the same computational scheme. For example, 
the ground and excited SCF functions are constructed 
using the Hartree–Fock equations, whose solutions are 
approximated in one particle basis sets optimized spe-
cifically to the state under consideration.

2.	 Correlation effects are taken into account using compa-
rable schemes for the ground and excited states using, 
for example, many-body Møller–Plesset-like perturba-
tion theory.

Some preliminary results in this direction were reported 
in papers [10, 11]. Here, we extend the theory and practi-
cal calculations to highly doubly excited states and doubly 
ionized core hole states. A simple and easily implemented 
asymptotic projection (AP) method for taking orthogo-
nality constraints into account, which has been proposed 
earlier [12–14], allows one to perform the “HF +  MP2” 
scheme for the ground and excited states with essentially 
the same computational costs. The AP method is based on 
the properties of self-conjugate operators. It is general and 

applicable to any problem that can be cast in the form of 
an eigenvalue equation with some orthogonality constraints 
imposed on the eigenvectors.

The present work is arranged as follows: in Sect.  2, 
orthogonality constraints for single determinantal wave 
functions and some existing methods to prevent “vari-
ational collapse” are briefly discussed. Our orthogonality-
constrained HF method for excited states is presented in 
Sect.  3. Unlike existing self-consistent field (SCF) tech-
niques based on the Roothaan open-shell theory [15], 
it does not involve off-diagonal Lagrange multipliers. 
Additionally, equations for basis set optimization are also 
derived. The well-defined Møller–Plesset-like perturbation 
theory based on optimal excited orbitals generated by the 
proposed HF method is the subject of Sect. 4. In addition 
single excitations do not contribute because the excited 
state orbitals, like the ground state orbitals, satisfy the gen-
eralized Brillouin theorem. In Sect. 5, we apply the formal-
ism to highly doubly excited states of atoms as well as to 
doubly ionized core hole states of diatomic molecules.

2 � Specific features of SCF excited states 
calculations

Quantum mechanics requires exact wave functions to be 
orthogonal, but it makes no such demand on SCF func-
tions. Indeed, consider the orthogonality condition for the 
exact many-electron wave functions describing the ground 
state, Ψ0, and the first excited state Ψ1, i.e., (see also [11])

The exact ground state wave function, Ψ0, can be written

where Φ0 is the many-electron ground state SCF wave 
function and χ0 is the correlation correction. Without loss 
of generality, we can require

Similarly, the exact excited state wave function, Ψ1, can 
be written

where Φ1 is the many-electron excited state SCF wave 
function and χ1 is the corresponding correlation correction. 
Again, without loss of generality, we can require

Substituting (2) and (4) into (1), we have

(1)�Ψ0 | Ψ1� = 0

(2)Ψ0 = Φ0 + χ0

(3)�Φ0 | χ0� = 0

(4)Ψ1 = Φ1 + χ1

(5)�Φ1 | χ1� = 0

(6)
�Ψ0 | Ψ1� = �Φ0 | Φ1� + �Φ0 | χ1�

+ �χ0 | Φ1� + �χ0 | χ1� = 0
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or

Thus we see that the SCF wave functions do not, in gen-
eral, satisfy orthogonality constraints analogous to those 
obeyed by the exact wave functions.

It is worth also noting that the imposition of the orthogo-
nality constraint on an approximate lower state wave func-
tion, such as the Hartree–Fock function, does not, in gen-
eral, yield an excited state energy which is an upper bound 
to the exact excited state energy. An upper bound to the 
excited state energy is obtained if we impose the additional 
constraint

which is much more difficult to implement. In practice, if 
the lower state energy and the corresponding wave function 
are known accurately, then the coupling matrix element 
�Φ0|H|Φ1� is expected to be small.

Several useful methods have been proposed to overcome 
the “variational collapse” problem, and a number of differ-
ent schemes have been proposed for obtaining SCF wave 
functions for excited states [10, 16–26]. In recent years, 
there has been renewed interest in the orthogonality-con-
strained methods [14, 27] as well as in the SCF theory for 
excited states [28–32]. It is clear that an experience accu-
mulated for the HF excited state calculations can be useful 
to develop similar methods within density functional the-
ory [33–36]. Some of these approaches [10, 18, 19, 23, 24, 
26, 30–35] explicitly introduce orthogonality constraints 
to lower states. Other methods [21, 22, 25] either use this 
restriction implicitly or locate excited states as higher solu-
tions of nonlinear SCF equations [29]. In latter type of 
scheme, the excited state SCF wave functions of interest 
are not necessarily orthogonal to the best SCF functions for 
a lower state or states of the same symmetry.

In our methodology we impose a constraint upon the 
SCF excited state function so that

i.e., we explicitly introduce the orthogonality constraint 
on Φ1 to the best SCF ground state function Φ0. On the 
one hand, the restriction (8) limits slightly the variational 
degrees of freedom, but, on the other hand, the imposition 
of the constraint (8) has some advantages:

1.	 it preserves the important orthogonality property of 
exact eigenstates;

2.	 any lack of orthogonality of the SCF wave functions 
may lead to excited state energies lying below the 
corresponding exact energies (For example, Cohen 
and Kelly [37] found for the He atom the first singlet 
excited state energy E1 = −2.16984 hartree, whereas 

(7)�Φ0 | Φ1� = −[�Φ0 | χ1� + �χ0 | Φ1� + �χ0 | χ1�]

�Φ0|H|Φ1� = 0

(8)�Φ0 | Φ1� = 0,

the observed energy E1
extract = −2.14598 hartree (See 

also the work of Tatewaki et al. [38]).);
3.	 it allows the study of properties which depend on the 

wave functions of different states, e.g., in the evalua-
tion of transition properties (see also [23, 24]);

4.	 it facilitates the development of a simple perturba-
tion theory expansion for correlation effects in excited 
states [10] (see also Sect. 4).

We shall be concerned with ground and excited elec-
tronic states which can be adequately described by a single 
determinantal wave function. For simplicity, we consider 
singly excited states and show how our formalism can be 
applied to highly and doubly excited states.

Let Φ0 be the ground state unrestricted Slater determi-
nant constructed from a set of spin orbitals consisting of 
spatial part 

∣

∣ϕα
0i

〉

, (iα = 1, 2, . . . , nα) associated with α spin 
functions and orbitals |ϕβ

0i�, (i
β = 1, 2, . . . , nβ) associated 

with β spin functions, i.e.,

without loss of generality, we define 
nα > nβ , nα + nβ = N , where N is a number of electrons 
and S = Sz = (nα − nβ)/2 is the total spin. Similarly, Φ1 is 
a single unrestricted determinant wave function for the first 
excited state:

Then, one can show [10, 11] that the orthogonality con-
dition (8) is fulfilled if

where |u� =
∑nα

i bi

∣

∣ϕα
0i

〉

. Eq.  (11) requires the orthogo-
nality of all occupied excited state orbital associated with 
α spin functions to the arbitrary vector |u�, from the sub-
space of the occupied ground state orbitals associated with 
α spin functions. In other words the vector |u� is orthogo-
nal to the subspace defined by occupied excited state α− 
orbitals. A similar condition was also used in Refs. [23, 24, 
35]. However, our practical implementation differs essen-
tially from these works. In general, the coefficients bi can 
be determined by minimizing the excited state Hartree–
Fock energy, i.e., the complete variational space can be 
used instead of simply |u� = |ϕα

0n

〉

, where ϕα
0n is the highest 

occupied molecular orbital. However, our computational 
experience showed that such a choice is a good approxima-
tion for |u� and provides very simple implementation dur-
ing SCF iteration procedure. Using a orthoprojector

(9)Φ0 = (N !)−1/2 det

∣

∣

∣
ϕα
01α, . . . ,ϕ

α
0nα;ϕ

β
01β, . . . ,ϕ

β
0nβ

∣

∣

∣

(10)Φ1 = (N !)−1/2 det

∣

∣

∣
ϕα
11α, . . . ,ϕ

α
1nα;ϕ

β
11β, . . . ,ϕ

β
1nβ

∣

∣

∣

(11)
〈

u

∣

∣

∣
ϕα
1j

〉

= 0, j = 1, 2, . . . , nα

Pα
u =

∣

∣ϕα
0n

〉〈

ϕα
0n

∣

∣
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the requirement (11) can be rewritten in a symmetrical 
form, which is useful when deriving the excited state Har-
tree–Fock equations for orbitals, as follows:

This result can be easily extended to higher energy levels. 
For example, for the second excited state the operator Pα

u 
should be substituted by the orthoprojector

It is clear, for arbitrary Kth singly excited state we have

Furthermore, this idea can be extended to doubly, triply etc. 
excited states. In contrast to existing SCF methods for hole 
states, we achieve the effect of the excitation (or ionization) 
of electrons by using orthogonality constraints imposed on 
the orbitals of the doubly excited state’s Slater determinant. 
For example, for description of excitations from ϕα

0k and ϕβ
0l 

ground state orbitals, we require a fulfillment of conditions

and

where Pα
k =

∣

∣ϕα
0k

〉〈

ϕα
0k

∣

∣ and Pβ
l = |ϕ

β
0l��ϕ

β
0l |.

At the HF level of theory, we call this method con-
strained self-consistent field (CSCF).

3 � Hartree–Fock and basis set optimization 
equations for excited states

We shall follow the unrestricted Hartree–Fock (UHF) for-
malism for obtaining the restricted open-shell HF (ROHF) 
functions to derive the Hartree–Fock equations for excited 
states. For the sake of simplicity, we restrict our attention 
to the first excited state. The problem can be described as:

provided that

(12)

nα
∑

j

〈

ϕα
1j|P

α
u |ϕ

α
1j

〉

= 0,

Pα
u =

∣

∣ϕα
0n

〉〈

ϕα
0n

∣

∣+
∣

∣ϕα
1n

〉〈

ϕα
1n

∣

∣ ≡ Pα
u,0 + Pα

u,1etc.

Pα
u =

K−1
∑

k=0

Pα
u,k , withPα

u,k =
∣

∣ϕα
kn

〉〈

ϕα
kn

∣

∣.

(13)

nα
∑

j

〈

ϕα
1j|P

α
k |ϕ

α
1j

〉

= 0,

(14)
nβ
∑

j

〈

ϕ
β
1j|P

β
l |ϕ

β
1j

〉

= 0,

(15)EUHF
1 = min�Φ1|H|Φ1�/�Φ1|Φ1�

(16)�Φ0|Φ1� = 0,

(17)

〈

Φ1

∣

∣

∣

{

Ŝ2 − S(S + 1)

}
∣

∣

∣
Φ1

〉

= 0.

Equations (16) and (17) can be written in terms of one-
particle orbitals:

1.	 Orbitals must satisfy the restrictions (12) which ensure 
the orthogonality of Slater determinants (16);

2.	 Equation (17) means that the excited Slater deter-
minant must be an eigenvector of the S2 operator. As 
shown by Fock [39], the condition (17) is fulfilled 
if the set of orbitals associated with the β spin func-
tions lies completely within the space defined by the 
set associated with the α spin functions. This condition 
eliminates spin contamination and can be written as the 
orthogonality constraint [40]:

Qα
1 = I − Pα

1 is the orthoprojector on the subspace of the 
virtual α spin orbitals and

In order to obtain equations for optimal orbitals for the 
first excited state, we use the stationary condition

Lagrange multipliers �o and �s are determined by the 
asymptotic projection methodology [10, 11, 40]. In practi-
cal applications, we invariably invoke the algebraic approx-
imation by parameterizing the orbitals in a finite basis set. 
This approximation may be written

where P1 is an orthoprojector defined by a chosen basis set 
for the first excited state.

Then the variations in orbitals can be divided into the 
following independent parts, e.g., for the α set

where µa, a  =  1, 2, …, A, represents the basis set 
parameters (i.e., the exponents and the positions) and 
∂aP1 = ∂P1/∂µa . The first term in Eq.  (21) does not 
lead to changes in the total energy because it is invari-
ant to any orthogonal transformation of the orbitals of 
any spin among themselves. The energetically signifi-
cant variations are described by the second and third 
terms. The second term corresponds to variations 

(18)
nβ
∑

j

〈

ϕ
β
1j|Q

α
1 |ϕ

β
1j

〉

= 0,

Pα
1 =

nα
∑

i=1

∣

∣ϕα
1i

〉〈

ϕα
1i

∣

∣

(19)

δL = δ







EUHF

1
+ �s

nβ
�

i=1

�

ϕ
β
1i|Q

α
1
|ϕ

β
1i

�

+ �o

nα
�

i=1

�

ϕα
1i|P

α
u |ϕ

α
1i

�







(20)|ϕ1i� = P1|ϕ1i�

(21)
∣

∣δ ϕα
1i

〉

= Pα
1

∣

∣δ ϕα
1i

〉

+ (P1 − Pα
1
)

∣

∣

∣

∣

∣

δ ϕα
1i

〉

+
∑

a

(∂aP1)

∣

∣

∣

∣

∣

ϕα
1i

〉

δµa,
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within the finite-dimensional subspace spanned by the 
chosen basis set. The last term allows this subspace 
to be rotated within the Hilbert space of one-particle 
states to attain the deeper minimum with respect to the 
total energy.

Substituting Eq.  (21) into Eq.  (19) and taking into 
account the independence of the variations and their arbi-
trariness, we obtain the following equations for orbitals 
(see [10, 11] for more details):

and equations for basis set optimization

If the Kth excited state is considered then, as men-
tioned, the projector Pα

u takes the following form 
Pα
u =

∑K−1
k=0

∣

∣ϕα
kn

〉〈

ϕα
kn

∣

∣. Equations  (22) represent the 
orthogonality-constrained HF method in its general form. 
According to the AP methodology, the orthogonality 
constraint of Eqs.  (12) and (18) is satisfied in the limit 
�o → ∞ and �s → ∞,, respectively. By setting �s = 0, we 
can relax the spin-purity constraint (18) and go back from 
ROHF to UHF solutions. By setting �o = 0, we fall back to 
the ground state. The corresponding orbitals form an opti-
mal set which satisfy the generalized Brillouin’s theorem 
(see [40] for more details) and lead to the same total energy 
that the one obtained by the Roothaan procedure. In our 
method, the only additional computation required, beyond 
that arising in the standard UHF scheme, is the evaluation 
of the overlap matrix element �ϕ0n|ϕkn�.

Left side of Eq.  (23) represent a gradient of the total 
energy with respect to nonlinear basis set parameters {µa} . 
This expression allows these parameters to be determined 
variationally and can be also used to construct an algo-
rithm for optimization based on the gradient-like methods.

Since neither λs nor λo can be infinity in practical cal-
culations, one has to settle on some large finite values. The 
recommended values are λs =  100 hartrees for the spin-
purity constraint and λo = 1000 hartrees for the orthogonal-
ity constraint. They provide target accuracy close to 10−6.

In concluding this section, it is also worth noting that in 

our method all excited configurations based on the excited 

Slater determinant Φ1, viz., Φa
i ,Φ

ab
ij  etc., where i and j refer 

(22)

P1

(

Fα − �sP
β
1
+ �oP

α
u − ǫαi

)

P1
∣

∣ϕα
1i

〉

= 0 , �s, �o → ∞

P1

(

Fβ + �sQ
α
1
− ǫ

β
i

)

P1

∣

∣

∣
ϕ
β
1i

〉

= 0, i = 1, 2, . . . ,M

(23)

nα
∑

i

〈

ϕα
1i

∣

∣(∂aP1)F
α
∣

∣ϕα
1i

〉

+

nβ
∑

i

〈

ϕ
β
1i

∣

∣(∂aP1)F
β
∣

∣ϕ
β
1i

〉

= 0, a = 1, 2, . . .A

to occupied orbitals and a and b to virtual ones, are orthog-
onal both to Φ0 and among themselves. Therefore, these 
functions form the orthonormal basis set in the many-body 
space and can be used, unlike other SCF methods which do 
not satisfy the orthogonality of states in the explicit form, 
to develop many-body methods incorporating the correla-
tion effects, in particular, a many-body Møller–Plesset-like 
perturbation theory (see next Section).

4 � Second‑order correction to the energy 
for excited states

It is known that within the framework of the Roothaan cou-
pling operator approach, there is no unique way of choos-
ing a reference Hamiltonian, H(0), with respect to which 
a perturbation expansion for correlation effects can be 
developed. Several proposals have been made for open-
shell many-body perturbation theory expansions based 
on a reference from the ROHF formalism [41, 42] or the 
unrestricted Hartree–Fock formalism [43, 44]. We follow 
our papers [10, 45] where an alternative technique for the 
open-shell systems has been developed. In our method, the 
second-order correction to the ground state energy can be 
presented by [45]:

The summations are over spin-orbitals. Subscripts i, j and 
a, b correspond to occupied and virtual orbitals of the 
ground state determinant, respectively. Unlike the for-
malism developed in Refs. [43, 44], single excitations do 
not contribute because our orbitals satisfy the generalized 
Brillouin theorem.

An optimum set of MOs obtained by means of 
Eq. (22) allows us to construct a well-defined open-shell 
perturbation theory for excited states which is a natural 
extension of the popular closed-shell MP2. For example, 
the zeroth-order Hamiltonian for the first excited state is 
as follows:

with Fockians

The summation up to M − 1 means that the vector |ϕα
0n is 

excluded from the subspace of virtual orbitals. Remind 
M is the dimension of the basis set for the first ES. We 

(24)E
(2)
0 =

occ
∑

i>j

virt
∑

a>b

∣

∣

(

ϕ0aϕ0i|ϕ0bϕ0j
)

−
(

ϕ0aϕ0j|ϕ0bϕ0i
)∣

∣

2

ǫ0i + ǫ0j − ǫ0a − ǫ0b

H(0) =

nα
∑

m=electrons

Fα(m)+

nβ
∑

m=electrons

Fβ(m)

Fσ =

M−1
∑

i

∣

∣ϕσ
i

〉

ǫσi
〈

ϕσ
i

∣

∣, σ = α,β
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shall also omit the subscript “1” for a given ES and 
Φ1 ≡ Φ(0), Φ0 ≡ Φ

(0)
0 .

In contrast to the ground state case, for the excited state 
it is necessary to take into consideration the orthogonality 
constraints. For the first-order correction to the excited state 
reference function, Φ(1), these constraints have the form

and the constraints determined by the orthogonality condi-
tion for the states in the first-order perturbation theory leads 
to equation

where P
(0)
0 = |Φ

(0)
0 ��Φ

(0)
0 | and 

P
(1)
0 = |Φ

(0)
0 ��Φ

(1)
0 | + |Φ

(1)
0 ��Φ

(0)
0 |Then one can show 

that the Rayleigh–Schrödinger perturbation theory leads to 
the following expression for the second-order correction to 
the ES energy [10]:

Here subscripts “i” and “j” are occupied and “a,” “b” are 
virtual orbitals in Φ(0).

The first term in Eq. (25) is immediately recognized as 
the second-order perturbation theory expression for the 
ground state energy [cf. with (24)]. The second term in 
Eq.  (25) appears because the Hartree–Fock ground and 
excited state functions are not eigenfunctions of the Ham-
iltonian H. In practice, if the ground state and excited state 
energies and the corresponding wave functions are known 
accurately then the coupling matrix element �Φ(0)|H|Φ

(0)
0 � 

〈

Φ(0)|Φ(1)
〉

= 0,

P
(0)
0

∣

∣

∣
Φ(0)

〉

+ P
(1)
0

∣

∣

∣
Φ(1)

〉

= 0

(25)

E(2) =

occ
∑

i>j

virt
∑

a>b

∣

∣

(

ϕaϕi|ϕbϕj
)

−
(

ϕaϕj|ϕbϕi
)∣

∣

2

ǫi + ǫj − ǫa − ǫb

−
〈

Φ(0)|H|Φ
(0)
0

〉〈

Φ
(1)
0 |Φ(0)

〉

is expected to be small (see also [14], Sect. 3.1). Further-
more, as the overlap element �Φ(1)

0 |Φ(0)� < 1, the last term 
in Eq. (25) may be neglected during the first stage of calcu-
lations. We used this approximation here.

Thus, we obtain comparable perturbation schemes for 
the ground and excited state energies. Use of the asymp-
totic projection technique ensures that calculations for 
excited states require practically the same computational 
time as those for the ground state.

5 � Results and discussion

At present, there are only very few published finite basis 
set calculations for excited states (especially for Rydberg 
states [46]) having the same symmetry as the ground state 
which are based on existing Hartree–Fock methods. In this 
section we demonstrate the potential of our methodology 
by means of the HF calculations for highly doubly excited 
3S states of the He atom (2s ns, n = 3, 4, …, 10 and 3s ns, 
n = 4, 5, …, 11), highly excited 1s2 ns (n = 3, …, 9) states 
of the Li atom and of the doubly ionized core hole states 
for some diatomic molecules (CO, NO, LiF) computed at 
the HF + MP2 level of theory.

5.1 � Atoms

For atoms, basis sets of 42s-gaussians were constructed 
according to the even-tempered prescription i.e., the expo-
nents, ζp, were defined by the geometric series:

The parameters α and β were optimized for each atom 
and a given excited state. Information of the even-tempered 
basis sets for low-lying states of the He and Li atom can 
be found in Ref. [47]. More information for highly excited 
state basis sets is available from authors on request.

As a first test for orthogonality-constrained HF method, 
hereafter denoted CSCF for constrained self-consistent 
field, the energies of triplet singly excited 1s ns (n = 2, 3, 
…, 10) states of the He atom were computed and compared 
with the HF energies obtained with the maximum overlap 
method (MOM) [46] which does not use orthogonality 
restrictions. The calculations in [46] were carried out using 
70s even-tempered Slater-type basis functions. The results 
of [46] can be considered as benchmark data. These authors 
used the extended precision in the Mathematica package to 
avoid problems with almost linearly dependent basis set. 
Unlike Ref. [46], our calculations were restricted to nine 
states (up to 1s 10s) because for n > 10 we observed that 
the corresponding basis sets present some linear dependen-
cies and the iterative SCF procedure does not converge. We 
used double precision. The corresponding results are listed 

ζp = αβp, p = 1, 2, . . . ,M

Table 1   Constrained self-consistent (ECSCF) Hartree–Fock energies 
(in hartrees) of triplet 1s ns (n = 2, 3, …, 10) states of the He atom 
and energy difference between the MOM method (EMOM) and the one 
proposed here (E), ΔHF = ECSCF – EMOM (μhartrees)

State ECSCF (this paper) EMOM [46] ΔHF

1s2s 3S −2.174 250 72 −2.174 250 78 0.06

1s3s 3S −2.068 484 88 −2.068 484 95 0.07

1s4s 3S −2.036 436 35 −2.036 436 42 0.07

1s5s 3S −2.022 582 55 −2.022 582 62 0.07

1s6s 3S −2.015 357 22 −2.015 357 34 0.12

1s7s 3S −2.011 117 33 −2.011 117 58 0.25

1s8s 3S −2.008 418 90 −2.008 419 01 0.11

1s9s 3S −2.006 595 66 −2.006 595 90 0.24

1s10s 3S −2.005 306 45 −2.005 306 75 0.30
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in Table  1. One can see that the largest deviation from 
benchmark results is only 0.30 μhartrees.

In Tables  2 and 3, triplet doubly excited energies of 
2s ns (n = 3, 4, …, 10) states and 3s ns (n = 4, 5, …, 11) 
states of He, computed at the CSCF level, are presented. 
Calculations of Ref. [46] were restricted to only singly 
excited states. Therefore, we compare our CSCF calcula-
tions with accurate theoretical calculations based on a 
configuration interaction approach with the explicitly cor-
related Hylleraas basis set functions [48]. One can see that 
the accuracy of the CSCF calculations is improved when 
n increases. This observation is in agreement with Ref. 
[46]. whose authors pointed out that “In those states where 
n ≫  1, the electrons are spatially well separated and one 
might anticipate intuitively that they will be weakly cor-
related and that the Hartree–Fock method, which neglects 
such effects, may be an excellent approximation.”

In Table  4, we compare our CSCF excited doublet 1s2 
ns (n =  3, …, 9) energies and excitation energies of the 

Li atom to the “exact” energies obtained with the most 
accurate configuration interaction wave function using the 
Hylleraas basis set [49]. The calculations show that the cor-
relation energies Eexact − ECSCF for different excited states 
are very similar, since they mainly arise from the 1s–1s 
correlation. As a result, excitation energies based on the 

Table 2   Doubly excited energies (hartrees) computed at the con-
strained self-consistent Hartree–Fock level (method proposed in this 
paper) and their comparison with “exact” values for the 2s ns (n = 3, 
4, …, 10) states of He

a  Configuration interaction method with the Hylleraas basis set func-
tions

State ECSCF (this work) Eexact [48]a ECSCF − Eexact

2s3s 3S −0.584 843 21 −0.602 577 51 0.017 734 30

2s4s 3S −0.541 993 88 −0.548 840 86 0.006 846 98

2s5s 3S −0.525 150 96 −0.528 413 97 0.003 263 01

2s6s 3S −0.516 757 01 −0.518 546 37 0.001 789 36

2s7s 3S −0.511 964 04 −0.513 046 50 0.001 789 36

2s8s 3S −0.508 969 03 −0.509 672 80 0.001 082 46

2s9s 3S −0.506 966 91 −0.507 456 06 0.000 489 15

2s10s 3S −0.505 538 99 −0.505 922 15 0.000 383 16

Table 3   Doubly excited energies (hartrees) computed at the con-
strained self-consistent Hartree–Fock level and their comparison with 
“exact” values for the 3s ns (n = 4, 5, …, 11) states of He

a  Configuration interaction method with the Hylleraas basis set func-
tions

State ECSCF (this work) Eexact [48]a ECSCF − Eexact

3s4s 3S −0.272 245 05 −0.287 277 14 0.015 032 09

3s5s 3S −0.250 554 08 −0.258 133 98 0.007 579 90

3s6s 3S −0.240 598 58 −0.244 807 49 0.004 208 91

3s7s 3S −0.235 129 72 −0.237 672 21 0.002 542 49

3s8s 3S −0.231 791 54 −0.233 433 33 0.001 641 79

3s9s 3S −0.229 600 06 −0.230 719 09 0.001 119 03

3s10s 3S −0.228 079 97 −0.228 880 00 0.000 800 03

3s11s 3S −0.226 915 03 −0.227 577 80 0.000 662 77

Table 4   Excited doublet 1s2ns (n =  3, 4, …, 9) energies (hartrees) 
and excitation energies ΔE (eV) computed at the constrained self-
consistent Hartree–Fock level with respect to the 1s23s state and their 
comparison to “exact” [49] values for Li atom

a  Configuration interaction method with the Hylleraas basis set func-
tions

State ECSCF (this work) Eexact [49]a ΔE (eV)

CSCF «Exact» 
[49]a

1s23s 2S −7.310 207 76 −7.354 098 42 0 0

1s24s 2S −7.274 883 90 −7.318 530 85 0.961 0.968

1s25s 2S −7.259 978 78 −7.303 551 58 1.367 1.375

1s26s 2S −7.252 316 91 −7.295 859 51 1.575 1.585

1s27s 2S −7.247 864 34 −7.291 392 27 1.696 1.706

1s28s 2S −7.245 049 87 −7.288 569 83 1.773 1.783

1s29s 2S −7.243 155 19 −7.286 673 59 1.825 1.835

Table 5   Total energies (hartree) for the ground (GS) and doubly 
ionized states (DIS) calculated at different levels of approximation, 
namely at the constrained self-consistent Hartree–Fock level and at 
the HF + MP2 level

T, D and S refer to triplet, doublet and singlet of two holes created on 
different atomic sites, respectively
a  Core level notations of Ref. [51] are used, for example, core level 
C1s−1 O1s−1 means double core hole state obtained by removing 
electrons from the 1s carbon core orbital and from the 1s oxygen core 
orbital

Molecule Core levela CSCF HF + MP2

CO GS −112.776 750 −113.103 104

DIS

C1s−2 −88.253 476 −88.694 091

O1s−2 −69.636 053 −69.866 416

C1s−1 O1s−1, S −81.367 221 −81.666 059

C1s−1O1s−1, T −81.367 167 −81.665 687

NO GS −129.264 594 −129.623 929

DIS

O1s−2, D −86.091 825 −86.341 259

N1s−2, D −96.024 538 −96.399 098

LiF GS −106.988 804 −107.245 424

DIS

F1s−2 −52.645 367 −52.816 963

Li1s−1 F1s−1, S −79.049 260 −79.232 405

Li1s−1F1s−1, T −79.049 465 −79.232 198
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CSCF method are in good agreement with those computed 
with highly correlated methods.

5.2 � Molecules

In this subsection, we apply our HF + MP2 methodology 
on doubly ionized core hole states. It is known that double 
core ionization potentials are more sensitive to changes in 
the molecular environment [50]. It is worth also noting that 
there exist very few reported applications for double core 
hole (DCH) states, especially of open-shell molecules [51, 
52]. For molecules under consideration (CO, NO, LiF), 
basis sets consisting of 30s9p distributed Gaussians were 
used. The exponents and positions of functions were deter-
mined by minimizing the HF energy for each individual 
state. Each p-functions were presented as a linear combina-
tion of two s-functions (so-called lobe representation). In 
Table 5, we present total energies for the ground (GS) and 
doubly ionized states (DIS) calculated at different levels of 
approximation (CSCF and HF + MP2). Using these data, 
double core hole ionization potentials were calculated (see 
Table  6) and compared for the NO molecule with results 
of Ref. [52] and for closed-shell molecules with results of 
Ref. [51] and available experiment [53]. In Refs. [51, 52], 
the corresponding calculations were carried out at the self-
consistent field (SCF) level of theory and using the com-
plete active space self-consistent field (CASSCF) method. 
It is worth noting that the SCF and CASSCF calculations 
in these works were performed using a large cc-pVTZ basis 
set.

One can see that our results at the CSCF and HF + MP2 
level of approximation are in acceptable agreement with 
experiment and other calculations performed at the corre-
sponding level of approximation.

We conclude that the developed constrained HF + MP2 
formalism can be applied to both atoms and molecules 

and to a wide class of physically different states, includ-
ing highly excited states and core excited states, with a rea-
sonable accuracy. However, it is also worth noting that the 
proposed approach cannot be directly applied to important 
class of singlet excited states which are usually described 
in terms of two open-shell determinants. Preliminary appli-
cations of our modified methodology to this problem can 
be found in Ref. [54] where a partially restricted Hartree–
Fock wave function for singlet excited states is introduced.
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