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1 � Introduction 

Hybrid methods play an increasingly important role for 
simulations of complex systems in Theoretical and Com-
putational Chemistry and Physics [1–6]. Often, accurate 
quantum chemical methods are combined with less com-
putationally demanding, empirical or semiempirical meth-
ods [3, 4]. A different approach is taken in density-based 
embedding schemes derived from frozen-density embed-
ding (FDE) [7] and in the related partition DFT procedure 
[8, 9]. FDE theory can be derived rigorously in the context 
of density functional theory (DFT). It is based on subsys-
tem density functional theory (sDFT) [10–12], where an 
FDE-like embedding potential appears in the effective 
Kohn–Sham equations for each of the subsystems, due to 
the presence of the other subsystems’ densities. Recent 
reviews are provided in Refs. [5, 13, 14]. Already in 1998, 
the density-embedding idea was transferred to the con-
text of wavefunction(WF)/DFT embedding by Carter and 
coworkers [15] in a hybrid-method fashion. Later, Weso-
lowski [16] provided a more formal theoretical basis for 
WF/DFT embedding from a pure density functional theory 
viewpoint. The two strategies are very similar in the result-
ing working equations. But the different perspectives on 
WF/DFT embedding (either as a pragmatic hybrid method 
or as a rigorous DFT approach with non-Kohn–Sham ref-
erence systems) can lead to intriguing differences concern-
ing formal aspects and the interpretation of the results. In 
this feature article, we want to compare the different view-
points and to elaborate on some of the open conceptual 
issues. Since some of these issues also affect sDFT, we 
will not restrict our discussion to WF/DFT embedding, but 
also consider the DFT/DFT (sDFT) case at some points.

After introducing the theoretical background leading to 
the different points of view in Sect. 2 for sDFT and in Sect. 
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3 for WF/DFT, we discuss formal implications and their 
consequences for the interpretation of results obtained with 
density-based embedding methods in Sect. 4. Illustrative 
calculations are presented in Sect. 5 to assess the relevance 
of these theoretical issues for practical calculations. We con-
clude in Sect. 6.

2 � Background: sDFT versus DFT/DFT 

The basic idea of sDFT is to split the total electron den-
sity into a set of subsystem electron densities. Each sub-
system electron density is then represented in terms of 
a noninteracting reference system, i.e., through a set of 
Kohn–Sham-like orbitals. For simplicity, we will consider 
a two-partitioning case here with an active system A with 
an associated density ρA(r) and an environmental system 
B with a density ρB(r), so that the total density is simply 
ρ(r) = ρA(r)+ ρB(r). Then, the sDFT energy functional 
can be written as a bifunctional [11, 12] (for further details, 
see also the recent reviews in Refs. [5, 14]),

where the index vext refers to the specific total exter-
nal potential vext(r) in this system. The noninteracting 
kinetic energy functional Ts[ρ], the Coulomb energy func-
tional J[ρ], and the exchange–correlation energy func-
tional Exc[ρ] are defined as in the context of Kohn–Sham 
DFT [17]. The nonadditive kinetic energy functional 
T
nad
s

[ρA, ρB] is defined as,

and Vext[ρA + ρB] can be written explicitly as,

The total external potential is usually just the electrostatic 
potential of the atomic nuclei, which can be assigned to 
either subsystem A or subsystem B. Hence, the external 
potential can be split up into vext(r) = v

A
ext(r)+ v

B
ext(r),  

where vAext(r) denotes the electrostatic potential of the 
nuclei in system A only [and correspondingly for vBext(r)].

Minimization of EsDFT
vext

[ρA, ρB] with respect to (w.r.t.) a 
subsystem density, represented in terms of a noninteract-
ing reference system, and assuming all other subsystem 
densities fixed, leads to a set of Kohn–Sham-like equations 
known as Kohn–Sham equations with constrained electron 
density (KSCED) [12]. In these equations, an extra embed-
ding potential of the form

(1)

E
sDFT

vext
[ρA, ρB] = Ts[ρA] + Ts[ρB] + J[ρA + ρB]

+ Exc[ρA + ρB] + Vext[ρA + ρB]

+ T
nad

s
[ρA, ρB]

(2)T
nad
s

[ρA, ρB] = Ts[ρA + ρB] − Ts[ρA] − Ts[ρB],

(3)Vext[ρA + ρB] =

∫

[ρA(r)+ ρB(r)]vext(r)dr.

appears for system A (and correspondingly for system B). 
Approximate forms are needed both for the exchange–
correlation contributions and for the nonadditive kinetic 
energy functional in practical calculations using sDFT. The 
ground-state energy of the system can be found by mini-
mizing the energy w.r.t. all subsystem densities (e.g., in so-
called freeze-and-thaw cycles [12]).

The connection to hybrid-energy schemes becomes 
apparent if we split the energy functionals in Eq. (1). The 
Coulomb energy can easily be partitioned into,

where

Vext can be split into,

where the last line introduces short-hand notations for the 
different contributions. Finally, also the exchange–correla-
tion energy functional can be split up,

where the nonadditive exchange–correlation energy func-
tional Enad

xc [ρA, ρB] is defined analogously to the nonaddi-
tive kinetic energy functional in Eq.  (2). Noting that the 
Kohn–Sham energy functional for a certain external poten-
tial vKext(r) is given as,

we can rewrite Eq. (1) as,

(4)

v
A

emb[ρA, ρB; v
B

ext](r) =

∫

ρB(r
′
)

|r − r′|
dr

′ + v
B

ext(r)

+
δTs[ρ]

δρ(r)

∣

∣

∣

∣

ρ=ρA+ρB

−
δTs[ρ]

δρ(r)

∣

∣

∣

∣

ρ=ρA

+
δExc[ρ]

δρ(r)

∣

∣

∣

∣

ρ=ρA+ρB

−
δExc[ρ]

δρ(r)

∣

∣

∣

∣

ρ=ρA

,

(5)J[ρA + ρB] = J[ρA] + J[ρB] + Jint[ρA, ρB],

(6)Jint[ρA, ρB] =

∫ ∫

ρA(r)ρB(r
′
)

|r − r′|
drdr′.

(7)

Vext[ρA + ρB] =

∫

ρA(r)v
A

ext(r)dr +

∫

ρB(r)v
B

ext(r)dr

+

∫

ρA(r)v
B

ext(r)dr +

∫

ρB(r)v
A

ext(r)dr

(8)

= V
A

ext[ρA] + V
B

ext[ρB] + V
B

ext[ρA] + V
A

ext[ρB],

Exc[ρA + ρB] = Exc[ρA] + Exc[ρB] + E
nad
xc [ρA, ρB],

(9)E
KS
v
K
ext
[ρK ] = Ts[ρK ] + J[ρK ] + Exc[ρK ] + V

K

ext[ρK ],

(10)

E
sDFT

vext
[ρA, ρB] = E

KS

v
A
ext

[ρA] + E
KS

v
B
ext

[ρB] + Jint[ρA, ρB]

+ V
A

ext[ρB] + V
B

ext[ρA]

+ E
nad

xc [ρA, ρB] + T
nad

s
[ρA, ρB]
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where the last line defines the interaction-energy functional 
E
OFDFT
A↔B

[ρA, ρB]. The superscript OFDFT stands for orbital-
free DFT and indicates that this functional will be represented 
in terms of orbital-free density functional approximations in 
practice, which concerns in particular the term Tnad

s
[ρA, ρB].  

But also this functional can be considered exact in principle 
and can be understood as a difference of the corresponding 
energy functionals for the total system and the subsystems,

The form of the sDFT energy expression in Eq. (11) shows 
the typical separation into energy components for differ-
ent subsystems as well as an interaction energy, which is 
well known in the case of (additive) hybrid-energy schemes 
[3]. Hence, one may consider this form also as a DFT/DFT 
hybrid method, especially since the approximations needed 
in practice for the exchange–correlation contributions may 
be chosen differently for subsystem A, B, and in the inter-
action-energy term. For example, one could think of prag-
matically using a hybrid XC functional for subsystem A, a 
computationally simpler generalized gradient approxima-
tion (GGA) for subsystem B, and the local-density approxi-
mation (LDA) for Enad

xc [ρA, ρB].
Hybrid-energy schemes can also be defined in a subtrac-

tive fashion, e.g., in the spirit of the ONIOM method [4, 
18]. The sDFT energy functional can be brought into a cor-
responding form by using Eq. (12) and writing,

Again, this has to be understood as an alternative to KS-
DFT in principle. Only at the point where approximations 
are chosen in practice, differences will appear. A compari-
son of Eqs. (1), (11), and (13) indicates that sDFT may be 
regarded either as an alternative DFT formulation, which 
in principle can lead to the exact ground-state energy, or 
as a DFT/DFT hybrid-energy method, which leaves ample 
room for using different approximations for different sub-
systems (and their interaction energy) in practice.

The hybrid-method viewpoint on sDFT becomes fully 
apparent if we abandon the idea of using the energy expres-
sion in a true energy minimization with respect to the sub-
system densities. Instead, pragmatic hybrid methods may 
simply use separate calculations to obtain the different 
energy contributions and charge densities for the subsystems. 

(11)

= E
KS

v
A
ext
[ρA] + E

KS
v
B
ext
[ρB] + E

OFDFT
A↔B

[ρA, ρB],

(12)
E
OFDFT

A↔B
[ρA, ρB] = E

OFDFT

vext
[ρA + ρB] − E

OFDFT

v
A
ext

[ρA]

− E
OFDFT

v
B
ext

[ρB]

(13)

E
sDFT

vext
[ρA, ρB] = E

OFDFT

vext
[ρA + ρB]

+
(

E
KS

v
A
ext

[ρA] − E
OFDFT

v
A
ext

[ρA]
)

+
(

E
KS

v
B
ext

[ρB] − E
OFDFT

v
B
ext

[ρB]
)

.

For example, a DFT/DFT hybrid energy could in practice be 
calculated as,

where subscripts refer to the corresponding (sub-)systems. This 
implies that several independent calculations of OFDFT or KS-
DFT type (using approximate functionals) may have to be car-
ried out. Further details would have to be given to fully specify 
the computational approach. For example, EKS

A
 could be, in 

the simplest case, the result of an isolated system Kohn–Sham 
calculation on subsystem A. Or, it could be obtained from a 
Kohn–Sham calculation employing an additional embedding 
potential, leading to a so-called electronic (or Hamiltonian) 
coupling scheme. Concerning a suitable form of such a poten-
tial, one could resort to a form similar to the embedding poten-
tial in the KSCED equations. But maybe, one would choose a 
potential evaluated for a given set of densities ρA and ρB instead 
of consistently employing a potential functional of these two 
densities. The resulting working equations may appear to be 
very similar, but not all energies and potentials may be obtained 
fully self-consistent in the general hybrid DFT/DFT case.

We would like to note that the expression in Eq.  (14), 
which bears a similar structure as the sDFT energy func-
tional in Eq. (13), is not exactly what one would expect for a 
KSDFT/OFDFT hybrid method in the style of the ONIOM 
approach. There, typically only one local energy correc-
tion for the active region is included using a more accurate 
method. In the present case, now referring to typical approx-
imate versions of KS-DFT and OFDFT, one would consider 
KS-DFT as the more accurate method. Hence, the expected 
form of a KSDFT/OFDFT hybrid energy would be,

This indicates that several degrees of freedom exist in the 
setup of sDFT or DFT/DFT hybrid calculations in practice, 
concerning in particular the choice of approximate energy 
functionals and the way in which the densities used in the 
final energy calculations are obtained (e.g., under the influ-
ence of consistent, non-consistent, or no embedding poten-
tials at all). The last aspect also concerns the choice of free 
variables if a DFT/DFT hybrid-energy expression is consid-
ered a true energy functional (see also the discussion in Ref. 
[14]): Either, we could choose the subsystem densities ρA(r) 
and ρB(r) as functions to be optimized, as in the original 
sDFT method; or, for an energy functional with a partitioning 
as in Eq. (15), it might seem more plausible to consider ρA(r) 
and the total density ρ(r) as free variables, i.e.,

(14)E
DFT/DFT = E

OFDFT
A+B

+
(

E
KS
A

− E
OFDFT
A

)

+
(

E
KS
B

− E
OFDFT
B

)

,

(15)E
KSDFT/OFDFT
A+B

= E
OFDFT
A+B

+
(

E
KS
A

− E
OFDFT
A

)

.

(16)

E
KSDFT/OFDFT

vext
[ρA, ρ] = E

OFDFT

vext
[ρ]

+
(

E
KS

v
A
ext

[ρA] − E
OFDFT

v
A
ext

[ρA]
)

.
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3 � Different views on WF/DFT hybrid methods 

Just like sDFT and methods related to it, also combina-
tions of WF and DFT methods can be understood either 
from a pragmatic multilevel (or hybrid method) perspec-
tive or from a fundamental DFT point of view. These dif-
ferent points of view reflect very different motivations for 
using WF/DFT combinations. One viewpoint assumes that 
an accurate correlated WF method is needed to describe a 
certain active subsystem by means of Quantum Chemistry, 
which is embedded in a larger environment. Since a full 
WF treatment of active subsystem and environment is often 
computationally not feasible, one makes the attempt to use 
a simpler description of the environment in terms of a den-
sity functional theory approximation. We will call this per-
spective on WF/DFT methods the hybrid-method point of 
view. Related to this, a motivation could be to just describe 
changes in the active subsystem caused by the modulation 
of its properties due to the environment. The properties of 
the environment itself are assumed to be of no interest in 
this context. Then, the effect of the environment may be 
considered as a perturbation in the energy and wavefunc-
tion of the active system. DFT in this perturbation-theory 
point of view would only be needed to define an (approxi-
mate) perturbation operator.

The fundamental DFT point of view is quite different. It 
starts from the observation that the use of a noninteracting 
Kohn–Sham reference system may lead to certain difficul-
ties in practical calculations, which may be circumvented if 
a part of the total electron density is represented in terms of 
an interacting system of electrons. This part—typically the 
active center—can then be expressed through a many-body 
wavefunction, while a standard Kohn–Sham-like system is 
used for the remainder (environment).

The reason why we introduce these different approaches 
as different points of view is that the resulting working 
equations may appear very similar (or even identical), but 
can be thought of as being derived in completely different 
theoretical frameworks. Hence, how the results of a WF/
DFT calculation may be interpreted will depend on the 
point of view one is taking on how the working equations 
were derived. This will be explained in the following.

3.1 � The hybrid‑method point of view 

The extension of the discussion in Sect.  2 to WF/DFT 
embedding is straightforward, although even more possi-
ble combinations/approximations arise in practice. We will, 
in the following, only indicate the structure of the energy 
expression, but not indicate explicitly at each time whether 
an actual energy functional is constructed and subsequently 
used in a consistent variational optimization. Rather, we 
will include examples from the literature to indicate which 

strategies are in use for calculating the different energy 
components. The reader is referred to the original work 
by Carter and coworkers [15, 19, 20] as well as to recent 
reviews [1, 5, 14] for additional details.

In analogy to the subtractive approach in Eq.  (15), we 
can write

For this to be consistent, “DFT” should refer to the same 
type of DFT method in the first and third term on the right-
hand side in all practical (approximate) formulations of the 
method. In additive schemes of the type,

by contrast, it is much more common to choose the approx-
imation (DFT’) for the interaction energy EDFT′

A↔B
 indepen-

dently from the approximation for EDFT
B

. In fact, as we have 
seen above, sDFT uses KSDFT for EDFT

B
, but OFDFT for 

E
DFT′

A↔B
. The corresponding expression in WF/DFT is (see, 

e.g., Ref. [21]),

In Carter’s original work [15, 19], such an expression 
(without selecting KS- or OFDFT at this point) was explic-
itly considered as an energy functional and used to derive 
an extra embedding potential appearing in the WF calcula-
tion on subsystem A as a functional derivative of the inter-
action term with respect to ρA, assuming ρB fixed. Since 
localized phenomena in periodic systems were studied by 
Carter, treating ρB explicitly (in the presence of ρA) was 
avoided using a subtractive ansatz for the actual energy cal-
culation as [19],

Here, EDFT
A

 was calculated for the converged density 
obtained from the embedded wavefunction calculation on 
system A. While this is straigthforward for the electron–
nucleus interaction energy, the electron–electron Coulomb 
energy, and the exchange–correlation energy (once a den-
sity-based approximation has been selected), calculating 
the kinetic energy poses a challenge here: The Kohn–Sham 
expression cannot be used directly, as no Kohn–Sham 
orbitals for this system are determined. Possible solutions 
include calculating this contribution (1) from an explic-
itly density-dependent kinetic energy functional [turning 
“DFT” in Eq. (20) into OFDFT] [19], (2) by approximately 
evaluating Ts with the Hartree–Fock (HF) orbitals underly-
ing the correlated wavefunction calculation [22] [turning 
“DFT” itself into a HF–DFT hybrid-energy expression], 

(17)E
WF/DFT
A+B

= E
DFT
A+B

+
(

E
WF
A

− E
DFT
A

)

.

(18)E
WF/DFT
A+B

= E
WF
A

+ E
DFT
B

+ E
DFT′

A↔B
,

(19)E
WF/DFT
A+B

= E
WF
A

+ E
KSDFT
B

+ E
OFDFT
A↔B

.

(20)E
WF/DFT(Carter)
A+B = E

DFT
A+B

+
(

E
WF
A

− E
DFT
A

)

.
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or (3) by reconstructing an effective Kohn–Sham potential 
and the corresponding orbitals that reproduce the desired 
density, so that Ts can be calculated from those orbitals 
[turning “DFT” into an optimized effective potential (OEP) 
KSDFT], an idea mentioned explicitly already in Ref. [22]. 
Other options and additional approximations are compared 
in Ref. [20].

3.2 � Perturbation‑theory point of view 

The actual research question in many applications of hybrid 
schemes is not related to properties of the entire system 
(A+ B), but rather to how the properties of system A are 
changed by the presence of system B, compared to its prop-
erties as an isolated system. When talking about properties 
related to the electronic structure of A in an sDFT frame-
work, this change is caused by the embedding potential 
given in Eq. (4).

Note that vAemb depends on both ρA and ρB, which can 
change during the (iterative) optimization of the total sDFT 
energy in f&t cycles. This means that also vAemb needs to 
be updated iteratively in sDFT calculations. But assuming 
that it is possible to create a reasonable guess for vAemb with 
fixed approximations for ρA and ρB (e.g., isolated-molecule 
densities), we would have a fixed additional embedding 
potential ṽ(A)emb that may be regarded as an approximate per-
turbation operator for system A [23]. Then, one could try 
to find approximate eigenfunctions and the corresponding 
properties for the modified system-A Hamiltonian,

where NA is the number of electrons in system A. With this 
definition of the perturbation operator, a first-order change 
in the ground-state energy of system A could be calculated 
using standard perturbation theory as,

where �(0)
A

 is the (approximate) ground-state wavefunction 
of the isolated system A. Similarly, the first-order change in 
the wavefunction would give access to modified properties 
of system A. But at that point, questions about the interpre-
tation of subsystem properties in a larger environment may 
arise (see Sect. 4.1).

While we are not aware of actual applications of pre-
cisely this perturbation-theory strategy, there are studies 
making use of similar strategies in which the active-system 
wavefunctions are determined under the influence of such 
an approximate embedding operator for extracting local 
properties (e.g., in Ref. [24]).

(21)ĤA −→ ĤA +

NA
∑

i=1

ṽ
A

emb(ri),

(22)�E
(1)
A

≈

〈

�
(0)
A

∣

∣

∣

∣

∣

NA
∑

i=1

ṽ
A

emb(ri)

∣

∣

∣

∣

∣

�
(0)
A

〉

,

3.3 � DFT point of view

As shown by Wesolowski in 2008 [16], a rigorous com-
bination of WF and DFT methods can be achieved in the 
following way: instead of an independent-particle, single-
determinantal KS system, we can represent the electron 
density of system A by a multi-determinantal wavefunction 
�

MD
A

 of an interacting system of electrons. If the wavefunc-
tion ansatz can lead to the exact solution, we can set up an 
energy functional as,

where ρA is the density associated with �MD
A

. Full minimi-
zation of this functional w.r.t. �MD

A
 and ρB will then lead to 

the true ground-state energy of the system. If the wavefunc-
tion search space does not include the exact wavefunction, 
then formally an additional term has to be included to reach 
the exact ground-state energy [16]. This is due to the fact 
that min

�
MD
A

→ρA
��MD

A
|T̂ + V̂ee|�

MD
A

� is not exactly equal 
to T [ρA] + Vee[ρA] in that case. If the energy is variation-
ally minimized w.r.t. ρA (represented in terms of �MD

A
),  

the same form of the embedding potential as derived in the 
hybrid-scheme point of view arises in the equations that 
determine �MD

A
—apart from the extra term in case of non-

exact wavefunctions. Note the technical similarity of this 
approach to multiconfiguration-DFT methods [25–27].

4 � Implications

The different points of view have some interesting implica-
tions concerning the realm of application of the methods—
in principle and in practice—as well as the interpretation 
of results obtained from calculations based on sDFT and 
WF/DFT embedding methods. Generally speaking, the 
greatest advantage of WF/DFT embedding can be expected 
from the practical ability to overcome the shortcomings 
of approximate DFT methods currently in use, while still 
being able to describe a large system quantum mechani-
cally. One could also argue that WF/DFT embedding can 
be seen as an improvement in QM/MM methods which 
does not rely on any kind of empirical parametrization of a 
force field (apart from parameters in the approximate func-
tionals), and which automatically comes with a (at least 
potentially) consistent electronic/Hamiltonian coupling 
between the subsystems. Consequently, the requirement of 

(23)

E
WF/DFT

vext
[�MD

A
, ρB] =��MD

A
|T̂ + V̂ee|�

MD

A
�

+ V
A

ext[ρA] + Ts[ρB] + J[ρB]

+ Exc[ρB] + V
B

ext[ρB]

+ V
A

ext[ρB] + V
B

ext[ρA]

+ Jint[ρA, ρB] + T
nad

s
[ρA, ρB]

+ E
nad

xc [ρA, ρB],
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an extra density functional correcting for the non-exactness 
of the WF method as derived in Ref. [16], though formally 
correct, may appear counterintuitive when considered from 
a hybrid-method perspective: One sets out to overcome the 
limitations of approximate DFT methods, but then reintro-
duces an additional density functional to correct the accu-
rate wavefunction method. This apparent paradox is eas-
ily reconciled when acknowledging the different points of 
view—one that is motivated by computational practice and 
the other one by formal DFT considerations. Several addi-
tional questions arise due to the fact that wavefunctions and 
densities of different systems are combined for a descrip-
tion of an entire (larger) supersystem, as will be discussed 
in the following.

4.1 � Accessible quantities and interpretation

When interpreting results from WF/DFT calculations, it is 
important to keep in mind which quantities are accessible 
through such embedding procedures. When adopting the 
perturbation-theory point of view, we only have access to 
the properties of the active system, modified by the envi-
ronment; no properties of the total system are available. 
For specific applications, this drawback can pragmatically 
be considered an advantage. For example, local excitations 
can be described, which are free from contaminations like 
overdelocalization or mixing with orbitals of the environ-
ment [28]. In case of the hybrid-method point of view, 
total energies of the entire system are accessible, as well 
as subsystem energies and interaction energies between 
the subsystems. Besides these energetic quantities, also 
the subsystem densities and, as their sum, the total electron 
density of the system are available from these calculations. 
Note that approximate schemes of “subtractive” type [see 
Eq. (17)] may yield a total density ρ = ρA + ρB and a local 
correction for ρA [19], which can introduce inconsistencies 
in the interpretation of the total density [14]. If the total 
density is available, then naturally, also all properties that 
can be derived from it are accessible through such a cal-
culation. In these respects, the hybrid-method and the DFT 
point of view agree.

A difference arises, however, concerning the question of 
the wavefunction. Considering WF/DFT a hybrid method, 
we will usually assume that the wavefunction part really 
can be interpreted as a wavefunction of the active system 
under the influence of the environment (similar to a per-
turbation-theory point of view). As a consequence, proper-
ties of the active system could be calculated as expectation 
values of the wavefunction obtained under the influence 
of vAemb. It is also clear that such interpretations are limited 
to cases where the wavefunction still shows similarity to 
the isolated-molecule case, i.e., where the effect of vAemb is 
small. Otherwise, one is in danger of leaving the realm of 

application of such a hybrid method. In the strict DFT per-
spective, however, the correlated wavefunction is merely 
an auxiliary mathematical object to represent the electron 
density, without an own physical meaning. This is simi-
lar to the strict interpretation of a KS wavefunction and of 
KS orbitals, which have a physical meaning only through 
their electron density. But since KS wavefunctions are 
often approximately used to calculate expectation values of 
operators (e.g., of Ŝ2), it is conceivable that the WF/DFT 
community will make continued (and successful) use of the 
correlated wavefunction in the interpretation of properties 
of the active system.

4.2 � Ability to describe strongly coupled systems

Density-embedding schemes making use of an embedding 
potential have been criticized for not being able to describe 
the environment effect on the “many-body fragment state” 
of the embedded fragment [29] if the coupling is strong. 
This was explained by the fact that the embedded fragment 
is an open quantum system, entangled with its environment. 
Reference [29] also correctly points out (however, only in 
a footnote) that this argument only holds if the active sys-
tem is described with an explicit many-body wavefunction 
method and not for pure DFT descriptions. But even in case 
of a WF/DFT description, at least the DFT point of view is 
not affected by this argument, since then the wavefunction 
is merely an auxiliary object for representing the density. 
We note in passing that the application of density matrix 
embedding theory [29], an embedding method which 
solves this problem by using a set of bath states instead of 
an effective embedding potential, requires the knowledge 
of an (approximate) wavefunction for the total system and 
thus, strictly speaking, cannot be combined with a DFT 
treatment of the environment.

From a practical perspective, several possible 
approaches for embedding in strongly interacting systems 
have been presented in the context of density-based embed-
ding approaches [20, 30–33]. These are sometimes called 
“exact” to underline that they can in principle numerically 
reproduce the effect of an exact embedding potential in the 
limit of exact exchange–correlation functionals, infinite 
basis sets, and infinitely high precision in numerical proce-
dures. Even with limitations in practical applications, these 
embedding schemes still can offer accurate results for vari-
ous systems, including strongly coupled ones (e.g., those 
connected through covalent bonds). For some special cases, 
even exact analytical solutions are available [34, 35].

4.3 � Orthogonality between different states

Khait and Hoffmann [36] provided an explicit theoretical 
basis for WF/DFT calculations of excited states based on 
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earlier work by Perdew and Levy [37], which showed that 
every extremum of the energy functional is associated with 
a corresponding stationary-state density. A formal difficulty 
is that the opposite is not always true, so that only a sub-
set of excited states is covered by this argument. Khait and 
Hoffmann argued that different electronic states of the active 
system would lead to different environment densities and 
embedding potentials that differ not only in the ρA-depend-
ent part (active system’s density), but also in the part depend-
ing on the environment density. The analogue in QM/MM 
schemes would be polarizable force fields, in which the envi-
ronmental potential also reacts to the active system’s density. 
A first application of such state-specific embedding potentials 
for excited-state WF/DFT calculations has been presented in 
Ref. [21]. A question that has been brought up in that study 
concerns the orthogonality between wavefunctions for differ-
ent electronic states of the embedded system. A discussion of 
the special case where the environment density is frozen (and 
identical) in all electronic states has been presented in Ref. 
[38]. But since electronic excitations in general can affect the 
entire system, we will be concerned here with the more gen-
eral case in which electron densities of all subsystems may 
change.

Technically, the problem may seem similar to the prob-
lem of non-orthogonality in state-specific multi-configura-
tion self-consistent field (MCSCF) calculations, where the 
underlying orbitals are optimized for each state separately 
and thus are non-orthogonal. Similarly, if the embedding 
potential in a WF/DFT calculation is state specific, the 
orbitals obtained in the wavefunction calculation will be 
different for different states, again leading to non-orthogo-
nality. The important conceptual difference, however, is the 
following: In state-specific MCSCF, we are dealing with 
two different electronic states of the same isolated system, 
which should be strictly orthogonal in principle. In WF/
DFT with state-specific embedding potentials, by contrast, 
orthogonality is strictly required only for total states, not for 
wavefunctions describing one part of the total system. This 
can easily be seen for the limiting case of CASSCF with an 
active space including all (occupied and virtual) orbitals for 
the active subsystem, which is equivalent to a full configu-
ration interaction (FCI) calculation with an obsolete orbital 
optimization step: In case of the isolated active system, 
the results will, for a given one-electron basis, be invari-
ant with respect to orbital rotations, and all (nondegenerate) 
states will be orthogonal. But for the embedded system, the 
change in the embedding potential for different electronic 
states will still change the one-electron integrals and thus 
lead to non-orthogonal wavefunctions for the active part in 
state-specific FCI/DFT embedding.

Analyzing non-orthogonality for the supersystem 
is problematic, since the wavefunction of the environ-
ment (described by DFT) is entirely unknown, which, as 

a consequence, means that also the total wavefunction is 
unknown. And if we assume the strict DFT point of view, 
then even the WF for the embedded part is only an aux-
iliary quantity and may not be interpreted as a true wave-
function describing the embedded electronic system.

For practical purposes, however, it is interesting to 
explore how large the non-orthogonality effects for the 
active system actually are, and how quantities like transi-
tion moments between different electronic states react to 
this effect. This will be tested in Sect. 5.5.

4.4 � Polarization versus relaxation

Fully consistent variational WF/DFT calculations, just like 
subsystem DFT calculations, require an iterative update 
of all subsystem densities/wavefunctions under the influ-
ence of the embedding potential. This procedure has to be 
continued until all densities are consistent with the result-
ing total potentials, including the embedding contribution. 
From the fundamental DFT point of view, the resulting sub-
system properties have only an auxiliary function, and only 
properties of the total system may be interpreted. This also 
means that one can interpret the density change of the total 
system (compared to that of the sum of isolated subsystem 
densities) as a polarization effect. But there is no strict jus-
tification for referring to a subsystem density change as a 
physical polarization effect. Rather, this can be called more 
technically a relaxation effect [39, 40].

On the practical side, a natural, though not the only 
possible choice is to start such iterative calculations from 
the isolated subsystems which constitute the total system. 
Hence, it is in fact tempting to interpret the changes in 
properties of the subsystems due to the iterative process 
as a physical consequence of the interaction between the 
subsystems. This can be motivated with the perturba-
tion-theory point of view and often works quite well in 
practice, since many properties have a well-defined local 
character. Prototypical examples are local excitation ener-
gies [see, e.g., Refs. [21, 22, 24, 41] (hybrid WF/DFT 
approaches), and Refs. [28, 42, 43] (embedded linear-
response time-dependent DFT approaches)]. A ques-
tion that arises, however, is whether changes in densities 
or related integrated descriptors like dipole and higher 
multipole moments of individual subsystems may be 
interpreted in practice. This is often done in actual calcu-
lations, and the results usually correlate well with expec-
tations based on experimental findings. For example, the 
change of the dipole moment of water in water has been 
addressed in Refs. [44, 45].

Fundamentally speaking, the well-known problem with 
such interpretations is the following: If ρ1, ρ2 are solutions 
of the subsystem problems adding up to the correct total 
density, then also
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are suitable solutions (as long as they are noninteracting 
v-representable). This has been discussed in the literature 
at several points [13, 20, 35, 46]. These two sets of densi-
ties would give rise to different subsystem dipole moments 
(see also the discussion in Ref. [40]). In fact, if the subsys-
tems are not neutral, but the total system is, then the sub-
system’s dipole moments are origin dependent, while the 
total dipole moment is not (similar problems may occur 
for higher multipole moments even in the neutral case). A 
fundamental solution to this ambiguity has been formulated 
by the requirement of a unique embedding potential for all 
subsystems, which relies on potential reconstruction tech-
niques [20]. A similar approach is used in partition DFT [8, 
9], which yields a unique partitioning into subsystems with 
fractional electron numbers.

In a sDFT calculation, there is in principle no preference 
for any specific partitioning of the density into subsystem 
densities in the limit of using exact functionals. However, as 
Wesolowski and coworkers demonstrate in Ref. [40], this is 
not true in practical calculations which employ approximate 
functionals to evaluate Tnad

s
: If one minimizes the energy with 

respect to the subsystem densities, the use of approximations 
for Tnad

s
[ρA, ρB] leads to an unphysical redistribution of the 

subsystem densities once the exact total density has been 
found. The reason is that the approximate Tnad

s
[ρA, ρB] is 

the only term in the sDFT energy functional which depends 
on the partitioning of ρ = ρA + ρB into its contributions ρA 
and ρB. Note that in certain cases, not only the approximate 
T
nad
s

[ρA, ρB], but also approximations to Exc[ρA, ρB] can 
cause such a redistribution. This can happen (1) if the intra-
subsystem exchange–correlation approximation in sDFT is 
chosen differently from the nonadditive one [e.g., if orbital-
dependent approximations are applied, as is done in Ref. 
[40] for the corresponding embedding potential], (2) if dif-
ferent exchange–correlation approximations for different 
subsystems are pragmatically employed (as in Ref. [47]), or 
(3) in approximate WF/DFT schemes, in which necessarily 
exchange and correlation effects are treated differently for 
the different systems. In practice, however, sDFT and WF/
DFT calculations usually start out from isolated subsystem 
densities and lead to embedded subsystem densities which 
still show similarity to the starting points. They will, in gen-
eral, not lead to the global minimum of the energy functional 
because (1) limitations in the basis set prevent an easy redis-
tribution of density between the subsystems and (2) the start-
ing point of the calculation may lead to local minima which 
correspond to “perturbed” isolated subsystem densities. 
Wesolowski and coworkers mention that the electronic polari-
zation is dominant in case of charged, non-covalently linked 

(24)ρ̃1(r) = ρ1(r)+ δρ(r)

(25)ρ̃2(r) = ρ2(r)− δρ(r)

subsystems [40]. But there are also cases of neutral subsys-
tems for which the electrostatic component is dominant [28, 
47]. Some simple cases will be studied in Sect. 5. This discus-
sion is getting even more difficult if excited states are consid-
ered, where it can be interesting to determine the differential 
polarization of a total system or a subsystem between ground 
and excited states. Also here we note that one typically starts 
from isolated-molecule excitations, which are modulated by a 
comparatively small effect of the environment. The analysis 
in Ref. [21] indicates that the electrostatic terms in fact domi-
nate for the excitations studied there, which can be taken as a 
justification for using the term differential polarization.

An important question for the pragmatic interpretation 
of subsystem and total system properties is in this context, 
whether or not practical WF/DFT and subsystem DFT cal-
culations (relying on approximate analytical rather than 
reconstructed embedding potentials) converge to the same 
resulting densities irrespective of the starting point and the 
way in which the densities are updated in the iterative pro-
cess. Usually, it is assumed that this is in fact the case. We 
will present some illustrative examples also for this ques-
tion in Sect. 5. It should be mentioned that different solu-
tions can certainly be technically provoked if the starting 
points are chosen far from reasonable for a certain target 
system. As an example, consider a pair of neutral fragments 
that form a neutral and rather nonpolar complex. In princi-
ple, we are free to choose the numbers of electrons in the 
embedding calculation such that they correspond to ionic 
isolated systems. As long as the basis set is flexible enough, 
and provided that we have access to (near-)exact embedding 
potentials, the total density should correspond to the neu-
tral total system (see the example of ethane represented as 
CH+

3 · · ·CH−
3  in Ref. [31]). In most practical calculations, 

however, we will work with monomer basis sets and approx-
imate potentials and thus may get trapped in solutions for 
the total density that are close to the initial guess. In fact, 
this can pragmatically be exploited to optimize excited 
charge-separated states [48–50] or other types of diabatic 
states [51, 52] with subsystem DFT. These examples also 
demonstrate that the main problem of approximations in 
T
nad
s

[ρA, ρB] is that they can lead to large discrepancies in 
the total density (compared to KSDFT), independently of 
how the subsystem contributions to the density look like.

5 � Illustrative calculations 

In the following, we present illustrative calculations 
addressing some of the aspects discussed in the previous 
sections. All discussions of results obtained here have to 
be understood from a practical perspective, i.e., assuming 
approximate exchange–correlation and nonadditive kinetic 
energy functionals.
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5.1 � Computational details

If not stated otherwise the following programs and settings 
have been used for all calculations presented in this sec-
tion: Adf [53, 54] was employed for all DFT-based calcula-
tions with a TZP basis [55] and the PW91 [56] functional. 
FDE and sDFT calculations have been carried out with the 
corresponding implementation [57] in Adf applying the 
PW91k [58] functional for the nonadditive kinetic energy; 
monomer basis sets have been employed if not explicitly 
stated otherwise. Molcas [59] has been used for all wave-
function calculations. WF/DFT calculations are carried out 
through an interface [60] integrated into the PyAdf script-
ing framework [61]. The strategy used within that interface 
corresponds to the splitSCF scheme presented in Ref. [62]. 
Supersystem geometries have been optimized with Turbo-
mole [63] employing the BP86 [64, 65] functional and a 
def2-SVP [66] basis. Subsystem geometries were extracted 
from the optimized supermolecular geometries without fur-
ther optimization.

5.2 � Subsystem dipole moments

As discussed in Sect. 4.4, properties of subsystems which 
are part of a supersystem, are, in general, not measurable. 
This is a consequence of the ambiguity in the splitting of 
a supersystem. Nevertheless, assigning the electron den-
sity of a supersystem to molecular subsystems introduces 
a much smaller ambiguity than, e.g., the assignment of 
atomic partial charges by typical population analysis tools, 
as molecular subunits are typically well separated.

Here, we assess whether the dipole moment derived 
from a subsystem density as obtained in a sDFT calculation 
can be considered meaningful. It can be defined as

where the sum runs over all NA
nuc nuclei of the active sub-

system, ZI is the charge and RI are the coordinates of one 
of these nuclei, and r0 is the origin of the dipole moment 
operator. Clearly, with this definition, the dipole moment 
of the total system is recovered as the sum of all subsys-
tem dipole moments for any splitting of the total density. 
In the following examples, we compare these subsystem 
dipole moments to a partitioning based on a Bader analy-
sis (“atoms in molecules”) [67]. The Bader scheme iden-
tifies atoms solely based on the topology of a given elec-
tron density. A subsystem density can then be formulated 
as the sum of densities associated with the atoms of one 
subsystem.

As a test system, we chose the water dimer obtained 
from the S22 test set [68]. We varied the distance between 

(26)µ
A =

N
A
nuc

∑

I

ZI · (RI − r0)−

∫

(r − r0) · ρA(r)dr,

the monomers (measured by the distance of the oxygen 
atoms) and calculated subsystem dipole moments with both 
partitioning schemes discussed above, respectively, for 
each distance. The sDFT data were obtained from densities 
of a converged f&t procedure, while for the Bader analysis 
the density of a converged supermolecular calculation was 
used.

While in sDFT the number of electrons in each subsys-
tem is a fixed input parameter, it is a (generally non-inte-
ger) result in the Bader analysis. Since the dipole moment 
of a charged system is origin dependent, subsystem dipole 
moments based on a Bader analysis are in general also 
dependent on the choice of the origin, although the depend-
ence may be weak. This problem is avoided in an analy-
sis based on sDFT if neutral subsystems are chosen. In the 
Bader results reported here, we chose the center of mass of 
the total system as the origin for the dipole moment opera-
tor. The results are shown in Fig. 1.

Both sDFT and KSDFT predict an increase in the total 
dipole moment compared to the sum of dipole moments 
for the isolated subsystems. Compared to KSDFT, sDFT 
underestimates the total dipole moment at the equilibrium 
distance by a small amount (about 7 %), but this deviation 
quickly decreases for longer distances. Moreover, sDFT and 
the Bader analysis agree in the overall trend of increasing 
magnitude of the subsystem dipole moments with decreas-
ing distance. Also the directions of the subsystem dipole 
vectors are in good agreement: The angles between the 
sDFT and Bader dipole moment vectors are smaller than 3.6 
degrees for all cases considered here, and quickly decrease 

Fig. 1   Top the number of electrons associated with the subsystems 
for the case of the Bader partitioning for two water molecules in a 
water dimer. Bottom subsystem dipole moments obtained from par-
titioning schemes based on a Bader analysis and sDFT, respectively. 
Data are shown for different distances r between the oxygen atoms in 
units of the equilibrium distance r0
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to <1 degree for larger distances. But it can also be seen that 
the dipole moment of one of the water molecules is signifi-
cantly larger than that of the other one in case of the Bader 
partitioning at the equilibrium distance. This is at least par-
tially caused by a small charge-transfer effect observed in 
the Bader scheme, as one of the water molecules has about 
0.04 electrons more than the other one at equilibrium dis-
tance. At large distances, both schemes converge to the 
dipole moments obtained from isolated subsystem cal-
culations. Here, also the Bader partitioning results in the 
expected number of 10 electrons per water molecule within 
the numerical accuracy of the integration grid.

As an additional test system, we considered the gua-
nine trimer from the test set of Ref. [69]. Also for this sys-
tem, we calculated the sDFT and Bader subsystem dipole 
moments for all monomers. The resulting dipole moment 
vectors for the central monomer are shown in Fig.  2. It 
can be seen that the sDFT and Bader subsystem dipole 
moments agree almost perfectly and are considerably dif-
ferent from the dipole moment of the isolated monomer. 
The magnitude of the dipole moment of the isolated central 
monomer is 7.48 Debye, while those resulting from sDFT 
(5.99 Debye) and a Bader analysis (5.95 Debye) are about 
20  % smaller. The angle formed between the isolated-
molecule dipole moment vector and the sDFT one is 4.2 
degrees, and the angle between isolated and Bader dipole 
vector is 5.1 degrees.

Both schemes agree qualitatively to each other and to 
the intuitive understanding of chemical systems. These 
results are thus encouraging for subsystem properties with 
sDFT, especially for properties which cannot be extracted 
as easily from a supermolecular calculation as charges or 
dipole moments.

5.3 � Polarization of a subsystem density

In the following, we provide sample calculations for 
assessing whether subsystem densities obtained from sDFT 
calculations can be considered physically meaningful. In 
order to do this, we will consider a case where an intuitive 
partitioning is possible on the basis of a supermolecular 
KSDFT calculation. Specifically, we look at the difference 
of the electron density in a HCN dimer to the sum of iso-
lated monomer densities,

where ρX is the density of a supermolecular (X = super) or 
a sDFT (X = sDFT) calculation and ρiso

A
 and ρiso

B
 are the 

densities of the isolated monomers (in the structure of the 
dimer). In this way, we can compare how the two different 
methods describe the polarization of the total system.

We then analyze the subsystem densities. In our test 
system, the two monomers are clearly distinguishable for 

(27)δρ = ρ
X − (ρ

iso
A

+ ρ
iso
B
),

sufficiently large separations, since the density in the space 
between the monomers approaches zero. Any reasonable 
method to split the supermolecular density should end up 
with subsystem densities that resemble the results obtained 
from a straightforward geometrical splitting of the super-
molecular density. At smaller distances, by contrast, the 
density in the region between the monomers cannot be 
split up as easily. However, for other parts of the system, 
an unambiguous assignment of density (and difference den-
sity) to a certain monomer is still possible.

Figure 3 shows the density change of a HCN dimer at 
equilibrium distance (Req) compared to the isolated mono-
mers. The dimer is arranged in a linear fashion, forming a 
hydrogen bond from N to H. For the sDFT case, also the 
difference of the subsystem density to the density of an iso-
lated calculation is shown for both monomers; in addition 
to sDFT results employing the default monomer basis sets, 
we also show results obtained with a supermolecular basis.

The difference density for the total system at equilib-
rium distance shows the same qualitative behavior for the 
sDFT and supermolecular calculation. However, the agree-
ment is not quantitative due to the approximation used for 
T
nad
s

[ρA, ρB]. In panels b, d, and f of Fig. 3, an additional 
error source is the restriction to monomer basis sets in the 
subsystem calculations, which is the usual setup in mul-
tilevel calculations. By comparison of panels b and c in 
that figure, we see that the additional basis functions lead 
to a better agreement of the total density. The correspond-
ing subsystem density plots suggest that in the calculation 
with a supermolecular basis, additional density is shifted 
from the right toward the left monomer. Qualitatively, the 
shown polarization of the subsystem densities obtained 
from the sDFT calculations match the corresponding part 
of the polarization of the supersystem almost perfectly for 
both setups. No contributions are visible on the respective 
other monomer. Only in the space between the subsystems, 

Fig. 2   Dipole moment vector of the central monomer in the guanine 
trimer from Ref. [69] calculated with a subsystem density derived 
from a Bader analysis (green arrow), a sDFT calculation (purple 
arrow), and for an isolated calculation (black arrow). As an origin for 
the dipole moment vectors, we chose the center of mass of the central 
monomer. The environmental monomers are shown in gray
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slight deviations are visible, which is attributed to the fact 
that sDFT allows the densities of different subsystems to 
overlap.

The situation for a larger distance (here: 3Req) between 
the monomers is depicted in Fig. 4. Here, the results based 
on sDFT and a supermolecular calculation agree even bet-
ter (for sDFT, only calculations with monomer basis sets 
are shown). The polarization of the subsystem densities, 
which can in this case unambiguously be identified from 
the supermolecular density difference, are perfectly repro-
duced in the subsystem density difference plots.

One may argue that these results are almost trivial, but 
note that the systems are neutral and thus correspond to 
cases where it should not be taken for granted that purely 

electrostatic polarization effects are dominant in sDFT cal-
culations with approximate Tnad

s
[ρA, ρB] functionals [40]. 

However, due to the low-density overlap in the region 
between the subsystems, the non-electrostatic components 
are very small (especially for the larger separation).

These results demonstrate that density changes observed 
in typical sDFT calculations may in fact be useful for 
approximate analyses of physical polarization effects of a 
subsystem by its environment. But it has to be kept in mind 
that this behavior cannot be considered completely general. 
Often, the outcome of sDFT calculations will be influenced 
by practical limitations of the minimization procedure 
(e.g., monomer basis sets), which can trap the electronic 
structure at solutions close to the starting point. If large 
density changes are observed with flexible basis sets, this 
may be taken as a warning not to consider this a physical 
polarization effect, but rather as artificial charge-leaking or 
overpolarization effects [70, 71]. The background is that 
approximations in Tnad

s
[ρA, ρB] do not only lead to unphysi-

cal redistributions of density between the subsystems for a 
given, optimum total sDFT density as discussed in detail 
in Ref. [40]. In addition, and maybe more importantly, 
deficiencies in approximations for Tnad

s
[ρA, ρB] can lead to 

unphysical discrepancies between sDFT and KSDFT total 
electron densities.

5.4 � Influence of the starting point for f&t calculations

To elaborate on the role of the starting point for sDFT cal-
culations, we use a simple test case to analyze these effects 
during a f&t optimization. In general, iterative approaches 

Fig. 3   Density differences w.r.t. the densities of the isolated mono-
mers for an HCN dimer at equilibrium distance (Req). a Supermolec-
ular density, b, c sDFT total density, d, e subsystem density of the left 
monomer, and f, g of the right monomer from an sDFT calculation. 
The density differences in panels b, d, and f have been obtained in 
sDFT calculations using monomer basis sets, the ones in panels c,  e, 
and g in sDFT calculations with supermolecular basis sets. Blue posi-
tive regions, Red negative regions, isovalue: 10−3

Fig. 4   Density differences w.r.t. the densities of the isolated mono-
mers for an HCN dimer at three times the equilibrium distance (3Req). 
Note that the distance in the picture does not reflect the true distance 
between the monomers. a Supermolecular density, b sDFT density, 
c/d subsystem density of the right/left monomer from an sDFT cal-
culation. Blue positive regions, Red negative regions, isovalue: 10−4
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can be sensitive to the initialization of the calculation. 
Either the convergence behavior or, even worse, the final 
result of the calculation may be affected.

Our test system consists of a water molecule pincered 
by two ammonium ions (see Fig. 5). It is clear by symme-
try that the dipole moment of the water molecule along the 
axis formed by the nitrogen atoms in the ammonium ions 
(here: the x-axis) should vanish. We performed iterative 
f&t calculations with three slightly different setups. In each 
case, the initial environmental densities are obtained from 
isolated calculations on the subsystems. In each setup, we 
carried out iterations up to full convergence.

Setup 1: For every f&t cycle first, an FDE calculation is 
performed on one of the ammonium ions, then on the water 
molecule, and finally on the other ammonium ion. Each 
updated density is directly used in the calculation of the 
next subsystem.

Setup 2: For every f&t cycle, first an FDE calculation is 
performed on the water molecule and then on each of the 
ammonium ions.

Setup 3: The same ordering as in Setup 1 is used, but 
in the first f&t cycle, more precisely in the first two FDE 
calculations, the second ammonium ion is not part of the 
environment.

Setup 1 and Setup 3 induce an unphysical polarization in 
the first f&t cycle due to a nonsymmetric setup, which can 
actually be seen in the x-component of the dipole moment 
of the central water molecule and must be cured in the 
following cycles. The procedure in Setup  2, by contrast, 
starts with a symmetric setup. Still, a polarization into the 
x-direction can (and actually does) occur in further cycles, 
because the ammonium ions are not updated synchro-
nously. Each of the setups could at least in principle lead to 
different results.

To analyze the effects, we monitor the evolution of the 
x-component of the dipole moment vector during the f&t 
cycles, as shown in Fig. 6. Comparing the first two setups, 
it is obvious that a faster convergence can be achieved with 
a better choice of the starting point. Despite the unpolarized 
starting point, also in Setup 2 an intermediate polarization 
is observable simply due to the asynchronous update of the 

ammonium ions. The behavior of Setup 3 is similar to the 
one of Setup 1, but much more pronounced. Nevertheless, 
all setups finally converge to the correct solution.

While the setups presented above only change the inter-
mediate behavior during the f&t procedure, it is trivially 
conceivable that also differences in the final results can be 
provoked. For the present system, we can for instance com-
pare two additional setups, in which two of the molecules 
are combined in one subsystem, while the third molecule 
represents a subsystem on its own. If the two ammonium 
ions are combined into one fragment, the resulting total 
density will be strictly symmetric. But if one ammonium 
ion is combined with the water molecule, then the resulting 
total density shows an asymmetry due to the asymmetric 
description of the two water–ammonium contacts.

5.5 � Orthogonality of states 

In Sect. 4.3, we have discussed that orthogonality between 
the electronic ground state and one or several excited states 
in WF/DFT embedding should be required for total wave-
functions rather than for the wavefunction of the active 
system only. This poses a formal problem, as the total 
wavefunctions are unavailable in WF/DFT calculations. 
Nevertheless, wavefunctions and properties derived from 
them (like transition moments) from embedded calculations 
are often interpreted. Hence, it is interesting to explore 
how severe non-orthogonality effects actually are in WF/
DFT calculations with state-specific embedding potentials. 
Note that we use the term “state-specific” here to indicate 
that different environmental densities are employed in the 
setup of the embedding potentials. In addition to that, there 
is always a state specificity due to the dependence of the 
embedding potential on the active subsystem density [21, 

Fig. 5   A water molecule symmetrically pincered by two ammonium 
ions

Fig. 6   x-Component of the dipole moment for the embedded water 
molecule as depicted in Fig. 5 with respect to the iteration count in a 
f&t procedure according to the different setups described in the text. 
Red dots and solid line: Setup  1; green triangles and dashed line: 
Setup 2; blue stars and dotted line: Setup 3
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38]. In the following, we consider the π → π
∗ excitation of 

formaldehyde in the presence of two flanking water mole-
cules (see Fig. 7). For the energetically lower-lying n → π

∗ 
excitation, the problem vanishes, because the two states 
involved in the transition are orthogonal by symmetry. This 
still holds if state-specific embedding potentials are used, at 
least if they have the same symmetry as the active system.

We make use of the state-interaction module [72] of 
Molcas to calculate the overlap between wavefunctions 
for different states of the active subsystem. In a FCI cal-
culation, the states are, in a given basis, independent of the 
composition of the orbitals. Thus, when using state-specific 
embedding potentials, a non-orthogonality of the states 
can occur solely due to the environment. We performed 
embedded FCI calculations in a minimal basis with five 
f&t iterations to ensure full convergence of the subsystems 
w.r.t. each other. The environment was polarized w.r.t. the 
ground-state density or the excited-state density, respec-
tively. The overlap of the resulting states was calculated to 
be 4× 10−4 and is obviously very small. One could, how-
ever, argue that this result is simply a consequence of the 
inflexible basis.

Because of this, we looked at the same excitation using 
a much larger basis (cc-pVQZ) for the active subsystem. As 
a FCI calculation is unfeasible in this basis, we performed 
CASSCF calculations with a full-valence active space of 12 
electrons in 10 orbitals. We performed state-specific CAS-
SCF calculations with different environments. All embed-
ding potentials applied were self-consistently optimized 
to the ground- or excited-state wavefunction density. The 
resulting overlaps are compiled in Table 1.

The state-specific wavefunctions for ground and excited 
state in the absence of an environment have an overlap of 
2.66 %. While this effect is not very large, the influence of 
the environment on the overlaps is even much smaller than 
this: With a state-specific embedding potential, the overlap 
reduces a tiny bit to 2.59  %; if both states are described 
with a ground-state-like embedding potential (still contain-
ing the state specificity caused by the active system’s den-
sity), the overlap is 3.35 %. An additional test employing 

a fixed ground-state density for the ρA-dependent terms 
in vAemb (i.e., using a linearized embedding potential) and 
a ground-state-like environment (not shown in Table  1) 
resulted in the same overlap within the precision shown 
here. In conclusion, the change in the ground–excited state 
overlap compared to the overlap for the isolated molecule 
in state-specific calculations is almost negligible.

The magnitude of the transition-dipole moment in the 
isolated case changes from 1.796 Debye when this over-
lap is ignored to 1.749 Debye if the states are used which 
result from solving the generalized eigenvalue equation in 
the state-interaction module of Molcas. This is a decrease 
of about 2.6  %. In a fully state-specific environment, the 
corresponding change is from 2.054 Debye to 2.008 Debye 
(2.2  % decrease). For a ground-state-like environment, 
the transition-dipole moment changes from 2.076 Debye 
to 2.014 Debye (3.0  % decrease). Hence, the change in 
transition-dipole moment due to orthogonalization appears 
mainly to be caused by the state-specific CASSCF pro-
cedure and is only mildly affected by state specificity 
introduced through the embedding potential. Overall, we 
observe only small changes in the transition moments. This 
may change, however, for different types of excitations, 
e.g., transitions with large charge-transfer character.

6 � Conclusions and outlook

Wavefunction/DFT embedding represents a very active 
field of research, both concerning fundamental theoretical 
issues and practical implementations of this general strat-
egy. We have outlined here that different points of view 

Fig. 7   Formaldehyde flanked by two water molecules in a C2v sym-
metry

Table 1   Overlap integrals between the CASSCF(12,10)/cc-pVQZ 
wave functions of ground and π → π

∗ excited states of formalde-
hyde in the presence or absence of an embedding potential due to two 
water molecules as depicted in Fig. 7

The orbitals of the states indicated by G (ground state) or E (excited 
state) have been optimized state specifically (SS) in either no environ-
ment (−), a ground-state polarized environment (vG

emb
), or an excited-

state polarized environment (vE
emb

). The emphasis highlights whether 
the overlap is caused by the state specificity of orbitals (in bold val-
ues) (through the SS-CAS procedure), of vemb (italic values) (through 
a change in the environment density), or both (bolditalic values). 
Note that all embedding results shown here also carry a state depend-
ence through the dependence of vemb on the density of the active sys-
tem

State (environment) G (–) E (–) G (vG
emb

) E (vG
emb

) E (vE
emb

)

G (–) 1.0000

E (–) 0.0266 1.0000

G(vG
emb

) 0.9984 0.0474 1.0000

E(vG
emb

) 0.0105 0.9951 0.0335 1.0000

E(vE
emb

) 0.0026 0.9938 0.0259 0.9993 1.0000



	 Theor Chem Acc (2015) 134:97

1 3

97  Page 14 of 15

can be adopted—either a pragmatic hybrid-method point 
of view, which for the active system shows some similari-
ties to a perturbation-theory approach, or a fundamental 
DFT point of view, in which the wavefunction of the active 
part just has the role of an auxiliary object to represent the 
total electron density. We have addressed the issue of non-
orthogonality between different states of the active sys-
tem if consistent, state-specific embedding potentials are 
employed. This problem is only technically similar to the 
problem of non-orthogonal states in state-specific multi-
configuration SCF calculations. But fundamentally speak-
ing, orthogonality can only be required for total states in 
WF/DFT embedding calculations.

In our discussion about excited states in WF/DFT 
embedding, it has to be kept in mind that, in the hybrid-
method point of view, only excited states localized in the 
active system (described by wavefunction methods) can 
be accessed. In the strict DFT perspective, this depends on 
how technically the excited states are approached. If they 
are calculated, as in Refs. [21, 22, 73] as differences of 
energies of specific states, one is effectively relying on the 
Perdew–Levy stationarity principle [37] for excited states 
as generalized by Khait and Hoffmann [36], which is weak 
because it does not cover all states. Furthermore, practical 
searches for stationary states have so far only considered 
excitations localized in the WF system, while it should in 
principle also be possible (though more difficult) to find 
excitations localized in the environment. Even inter-sub-
system charge-transfer excitations may be accessible with 
a pragmatic strategy similar to the one in Ref. [50]. But it 
seems that resonance interactions leading to delocalized 
excitations over subsystem boundaries will be hard to inte-
grate into such a formalism. They may be easier to describe 
in a response-theory framework, similar to the subsystem 
TDDFT formulation in Ref. [74]. Such a response frame-
work has been formulated in the context of WF/DFT meth-
ods by Höfener et al. [75].

As another issue, we discussed possible reservations 
concerning the term “polarization” in the context of WF/
DFT and subsystem DFT. As shown in previous work, there 
is an ambiguity in the subsystem densities and electrostatic 
moments [13, 20, 35, 46]. But there is no ambiguity in the 
total sDFT density, so that one may very well interpret total 
density changes compared to isolated systems as polariza-
tion effects. These results can also directly be compared 
to supermolecular KSDFT calculations or to experimen-
tal data (if available). The change in the density of a cer-
tain subsystem, by contrast, is ill-defined in FDE-based 
embedding schemes [40]. Approximations in Tnad

s
[ρA, ρB] 

may, in principle, lead to a nonphysical partitioning of 
the total density into subsystem contributions. But more 
severely, they can lead to nonphysical total electron densi-
ties if the variational conditions allow. This always has to 

be kept in mind when interpreting electron densities from 
density-based embedding and partitioning methods. In 
practice, however, when one starts from meaningful (usu-
ally isolated) fragment densities and avoids overpolariza-
tion effects either pragmatically through small basis sets or 
through special correction terms in the nonadditive kinetic 
energy potentials [70, 71] if necessary, subsystem densities 
and their changes may still often be useful for interpreta-
tion purposes.
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