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�), but keeping all the kinematical and interpretational 
aspects of quantum mechanics untouched. Semiclassical 
methods should therefore be distinguished from quasi-clas-
sical approaches, which are based on the quantum-classical 
correspondence and do not only use classical information, 
but also try to export classical concepts to approximate 
quantum mechanics. The epitome of the quasi-classical 
approach is the use of the Ehrenfest theorem to approxi-
mate the quantum mechanical evolution of wave packets, 
with systematic corrections given by the Wigner–Moyal 
expansion [1].

Semiclassical methods, as understood in this contribu-
tion, attempt to link classical and quantum mechanics in 
a more abstract, less direct way. While for the quasi-clas-
sical program, quantum mechanics is used to construct 
quantities with a direct classical counterpart (like the tra-
jectory defined by the mean position and momentum of a 
wavepacket), the semiclassical program employs informa-
tion extracted from classical trajectories (like their actions 
and stabilities) to construct quantum mechanical objects. 
This difference becomes very explicit when we use semi-
classical methods to construct quantum objects without 
classical analog, such as probability amplitudes.

A major goal of the semiclassical program is the con-
struction of the semiclassical propagator Ksc, the asymptotic 
form (when � → 0) of the quantum mechanical propagator

defined as the matrix element of the time-evolution opera-
tor [2].

As reviewed in [3], the challenge to construct a semi-
classical propagator has a long history. Although already in 
1926 it was clear for Pauli, Dirac and van Vleck that the 
quantum mechanical propagator can be approximated by 

(1)K(q, q′, t) = �q|e− i
�

Ĥt|q′�,
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1  Introduction

Semiclassical techniques attempt to describe quantum phe-
nomena using only classical information as input (besides 
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an object of the form Ksc ∼ e
i
�

R with the classical action 
R appearing as a phase, it took more than 40 years before 
Gutzwiller [4] completed the rigorous construction of the 
semiclassical propagator from Feynman’s path integral. In 
its final form, it reads [5]

where the sum extends over the set of solutions γ of the 
classical problem to join the classical configurations q′ and 
q in time t. As envisioned by Dirac, R is the classical action 
of the trajectory, while A is related to its variations with 
respect to the initial and final configurations, and µ is the 
number of focal points of the trajectory γ.

The derivation of the van Vleck–Gutzwiller propagator 
marks the starting point of modern semiclassical meth-
ods [1, 3, 6]. They have been able not only to capture but 
also to successfully describe interference phenomena, i.e., 
wave effects impossible to describe using quasi-classical 
techniques.

By Fourier-transforming Ksc we get the semiclassical 
(Gutzwiller) Green’s function, the starting point to describe 
stationary properties of quantum systems in the semiclas-
sical limit, and in particular to understand the emergence of 
universal fluctuations in the spectra and eigenfunctions of 
classically chaotic quantum systems [3, 6]. Also, the early 
semiclassical notion of the theory of molecular collisions [7] 
and related approaches in mesoscopic condensed matter to 
describe quantum transport [8, 9] (for reviews see [10–12]) 
connect the van Vleck–Gutzwiller propagator, or the semi-
classical Green function, with the single-particle S-matrix in 
terms of transition amplitudes for transmission and reflection.

The success of the semiclassical methods has been 
restricted, however, predominantly to quantum systems that 
admit a first-quantization description. In fact, the generali-
zation of the van Vleck–Gutzwiller propagator to describe 
systems of interacting particles does not pose any concep-
tual challenge, as the classical limit of the theory is very 
well understood. The semiclassical propagator is now an 
established tool to describe quantum dynamics of molecular 
systems [13–16] and mesoscopic electronic systems [17].

Technical, but not conceptual, problems arise when 
indistinguishability comes into play. Here, the semiclassical 
calculation of ground and (doubly) excited states in helium 
by Ezra et al. [18] marks a successful step in coping with 
strongly interacting two-electron dynamics. The number of 
classical paths we need to construct to calculate the transi-
tion amplitude between different (anti-) symmetrized con-
figurations of a quantum system, however, grows extremely 
fast with the number of particles [19]. The same vast 
increase of the number of classical trajectories that have 
to be taken into account, affects the coupled coherent state 
approach [20], which has been developed for the treatment 

(2)Ksc(q, q′, t) =
∑

γ

Aγ (q, q′, t)e
i
�

Rγ (q,q′,t)+iµγ
π
2

of fermionic many-body systems in phase space. In this 
approach, the wave function is expanded in a (large) set of 
Slater determinants of single-particle coherent states with 
randomly selected initial conditions. The coherent states are 
then evolved along the corresponding classical trajectory.

Moreover, for fermionic systems with spin orbit inter-
actions, hybrid semiclassical approaches exist, which 
describe the orbital motion of non-interacting particles in 
phase space, while the spin is treated in a second-quantized 
approach using spin coherent states [21–28].

Importantly, the emergence of mean-field behavior, an 
expected simplification of the description when the number 
of particles is large, cannot be rigorously included in a nat-
ural way if one sticks to the first-quantized picture where 
the total number of particles N is not defined by the quan-
tum many-body state but is an external parameter deter-
mining the dimensionality D = Nd, where d is the spatial 
dimension, of the system and thereby fixing the structure of 
the very space where the system lives.

These remarks indicate already a possible solution of 
the problem. If a second-quantized picture in Fock space is 
adopted instead, both quantum indistinguishability and flex-
ibility in the number of particles are automatically included 
at the kinematic level: the Fock space of quantum states is 
by definition spanned by states which are correctly (anti-) 
symmetrized, and the number of particles is simply another 
observable represented by a hermitian operator [29]. When 
invoking a Fock space description, this change of perspec-
tive implies for the semiclassical program that particles 
appear as an emergent concept, derived from the more fun-
damental degree of freedom: the quantum field [30].

The development of a semiclassical program for bos-
onic fields has received powerful impact from the experi-
mental realization of their discrete version in the context of 
cold-atom physics [31]. In fact, the theoretical model that 
describes microscopically a system of interacting bosons 
on a lattice, the so-called Bose-Hubbard model [32], is a 
special realization of an interacting bosonic field. Here, 
again, the complementarity between quasi-classical and 
semiclassical approaches has been apparent. Quasi-classi-
cal methods as the ones used in [33] work well as long as 
quantum interference does not come into play and eventu-
ally dominates the dynamics. However, a rigorous deriva-
tion of the van Vleck–Gutzwiller propagator in bosonic 
Fock space was achieved only recently [34].

It is fair to say that the situation in the fermionic case 
is more desperate. Already a quasi-classical approach faces 
a fundamental problem: how to define a sensible classical 
limit if the fermionic fields must obey the Pauli principle 
and therefore admit only non-commutative descriptions? 
The attempts and achievements to associate commuting 
variables to fermionic operators that spans from the 1970s 
well into the 2010s, are still lacking a rigorous microscopic 
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derivation, indicating the complexity of the problem [35–
38]. The importance of the Chemical Physics community in 
this program has been obvious: electronic degrees of free-
dom are fundamental in the realm of molecular reactions. 
Moreover, chemical reactions require, in principle, simula-
tions with anticommuting variables.

In order to avoid these anticommuting variables, in a 
series of important papers, Miller and collaborators pro-
posed to use a heuristic generalization of the Heisenberg 
prescription [36, 37, 39] to construct the classical limit of 
fermionic degrees of freedom (for recent applications see 
[40, 41]). It is a remarkable and valuable feature of this 
approach that it associates correct signs to expressions 
involving anticommuting fermionic operators ĉ, ĉ† and 
respects the Pauli principle. In the simplest example, these 
key features can be seen in the mapping F → Fcl between 
operators F(ĉ, ĉ†) and classical phase-space functions 
Fcl(

√
neiθ ,

√
ne−iθ ), which gives for i �= j 

The (in general continuous) classical phase-space variables 
0 ≤ n ≤ 1 are naturally interpreted as classical fermionic 
occupation numbers with the angles θ as their correspond-
ing canonically conjugated variables.

However, as it is obvious from Eq.  (3), the classical 
Hamiltonian obtained in this way has the physical Fock 
states, defined by

as fixed points of the dynamics and the corresponding semi-
classical propagator is then trivially incorrect in the relevant 
case where it connects physical Fock states. Moreover, as 
discussed at length in Sect. 3, approaching the classical limit 
from the quantum side by means of a formal path integral in 
terms of the fermionic states (introduced by Klauder [35]),

shows that Eq.  (3) can be rigorously obtained from an 
exact path integral representation in terms of the com-
muting fields b. This indicates that in a representation 
where Eq. (3) holds, the quantum mechanical propagation 
between Fock states is not supported by classical trajecto-
ries and the semiclassical limit is problematic.

This complication may be due to the fact that in Klaud-
er’s representation the path integral is restricted, namely, 
the integration over the variables b are defined inside the 
unit disk instead of over the whole complex plane. A heu-
ristic incorporation of Langer corrections proposed in [39],

(3)
ĉ

†
i ĉj →

√

ninj(1 − ni)(1 − nj)e
−i(θi−θj),

ĉj ĉ
†
i → −

√

ninj(1 − ni)(1 − nj)e
−i(θi−θj).

(4)ni = 0 or 1 for all i,

(5)|b� =
√

1 − |b|2|0� + bĉ†|0�, with complex b,

(6)

√

n(1 − n) →
√

(

n + 1

2

)(
3

2
− n

)

,

lifts the problem and actually leads to a classical limit that 
gives, for example, agreement with first-order quantum 
perturbation theory by using classical perturbation theory.

As this volume commemorates Greg Ezra’s contribu-
tions to the description of atomic and molecular dynamics, 
we would like to mention that Ezra’s pioneering work on the 
Langer correction to the semiclassical propagator [42] could 
possibly provide the key to make rigorous the promising pro-
posal presented in [37]. It is then tempting to check whether 
Ezra’s insight into Langer corrections within the path inte-
gral formalism in first-quantized systems with would help to 
make Miller’s approach justified from first principles [43].

Here, we follow a different route and present what we 
believe to be the first microscopic derivation of the exact 
propagator between N-particle fermionic Fock states in 
terms of path integrals over commuting, unrestricted classi-
cal fields. Our path integral not only incorporates and gen-
eralizes Miller’s mapping F → Fcl “teaching” the classsi-
cal limit of large N about anticommuting operators, but it is 
supported in the semiclassical limit by classical paths. No 
extra assumptions or corrections are required.

As we will discuss in Sect.  3, the thus derived classi-
cal Hamiltonian corresponds to an approximation of the 
Holstein-Primakoff transformation for a single particle in a 
two-level system, used in [44].

After briefly introducing Grassmann variables in Sect. 2, 
in Sect. 3, we present our derivation of the exact path inte-
gral for fermionic systems. Armed with this object, in 
Sect.  4 we follow the typical semiclassical program: we 
identify both the effective Planck’s constant and the clas-
sical limit of the theory from the phase of the path’s ampli-
tude in the path integral and evaluate the path integral in 
stationary phase approximation to obtain a van Vleck–Gut-
zwiller type propagator for interacting fermionic fields. The 
presentation will be restricted to spin-1/2 systems, although 
a generalization to higher spins is straight forward. Finally, 
in Sect. 5, we use the thus derived semiclassical propaga-
tor to calculate the transition probability from one fermi-
onic Fock state to another one for systems without time 
reversal symmetry, for systems diagonal in spin space but 
time reversal invariant, as well as for time reversal invariant 
spin-1/2 systems non-diagonal in spin space.

Technical details of the derivation of our main results, 
namely the exact complex path integral representation of the 
fermionic propagator in terms of commuting fields, Eq. (19), 
the classical Hamiltonian Eq. (22) and the van Vleck propa-
gator, Eqs. (56, 64) can be found in the appendices.

2 � Grassmann coherent states

In order to derive the path integral representation for the 
fermionic propagator in Fock space, we will use Grassmann 
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coherent states in intermediate steps. They are defined as 
the eigenstates of the fermionic annihilation operators [29],

Here, ĉj and ĉ
†
j  annihilates and creates, respectively, a 

particle in the j-th single-particle state, two states which 
coincide in the orbital degrees of freedom, but differ in 
the spin degree of freedom are accounted for as different 
single-particle states, and are therefore labeled by different 
indexes j.

However, due to the antisymmetry and the Pauli exclu-
sion principle, the eigenvalues of the coherent states have 
to be (complex) anticommuting numbers, called Grass-
mann numbers [29, 45], i.e., for two of these numbers ζ and 
χ 

They also anticommute with the creation and annihilation 
operators,

while they commute with regular complex numbers. The 
anticommuting property also implies ζ 2 = 0.

Integration over a complex Grassmann number is 
defined by

With the properties of the Grassmann numbers, it is pos-
sible to show that the fermionic coherent states are given 
by [29]

where |0� denotes the fermionic vacuum state. Moreover, 
they satisfy

with |n� being an arbitrary Fock state, such that nj ∈ {0, 1} 
is the occupation of the j-th single-particle state. The prime 
at the product indicates that the order of the individual 

(7)ĉj|ζ � = ζj|ζ �.

(8)ζχ = −χζ .

(9)ζ ĉj = −ĉjζ , ζ ĉ
†
j = −ĉ

†
j ζ ,

(10)

∫

dζ ∗dζ1 =
∫

dζ ∗dζ ζ =
∫

dζ ∗dζ ζ ∗ = 0,

(11)

∫

dζ ∗dζ ζ ζ ∗ = 1.

(12)|ζ � = exp

(

−1

2
ζ ∗ · ζ

)
∏

j

(

1 − ζj ĉ
†
j

)

|0�,

(13)�ζ |χ� = exp




�

j

�

−1

2
ζ ∗

j ζj − 1

2
χ∗

j χj + ζ ∗
j χj

�


,

(14)�n|ζ � = exp

(

−1

2
ζ ∗ · ζ

)
∏

j

′
ζ

nj

j ,

(15)

∫

dζ ∗
∫

dζ |ζ ��ζ | = 1,

factors is reversed, i.e., the factor corresponding to the larg-
est possible value is the most left one, while the j = 1 term 
is the most right one.

3 � The path integral in complex variables

3.1 � Derivation

The aim of this part is to derive a path integral representa-
tion of the propagator in Fock space,

to which the stationary phase approximation can be applied. 
Note that for simplicity of presentation, the Hamiltonian has 
been chosen time independent, although the following cal-
culations are also valid for the time dependent case.

The path integral representation is usually achieved by 
applying the Trotter Formula [46], which replaces the expo-
nential in Eq. (16) by the product of infinitely many propaga-
tors with an infinitesimally small time step and by inserting 
the unit operator between two adjacent factors. Since the res-
olution of unity for Fock states is given by a sum, rather than 
an integral, they are not suitable for the construction of a path 
integral. This makes the coherent states the natural choice for 
the representation of the unit operator. However, when apply-
ing the semiclassical approximation to the coherent state path 
integral, one ends up with grassmannian equations of motion. 
On the other hand, it is desirable to have complex equations 
of motion leading to a real action. In order to achieve this, 
one has to find a way to replace the integrals over Grassmann 
variables by integrals over complex ones.

Here, we will give a rough description of the procedure, 
which allows for such a transformation from Grassmann to 
complex integrals. However, it turns out that some of the steps 
contain a certain freedom of choice. The final path integral 
will then depend on the individual choices made during the 
derivation. The derivation for the specific choice presented 
later in this publication, is then carried out in Appendix 1.

After applying Trotter’s formula [46], the first step is 
to insert two unit operators in terms of fermionic coherent 
states between two adjacent exponentials,

(16)K
(

n(f ), n(i); tf

)

=
〈

n(f )

∣
∣
∣
∣
exp

(

− i

�
Ĥtf

)∣
∣
∣
∣
n(i)

〉

,

(17)

K

(

n
(f ), n

(i); tf

)

= lim
M→∞

[
M∏

m=0

(∫

dζ (m)∗
∫

dζ (m)

∫

dχ (m)∗
∫

dχ (m)

)]

×
[

M−1∏

m=0

〈

ζ (m+1)

∣
∣
∣
∣
exp

(

− iτ

�
Ĥ

)∣
∣
∣
∣
χ (m)

〉〈

χ (m)|ζ (m)
〉
]

×
〈

n
(f )|χ (M)

〉〈

χ (M)|ζ (M)
〉〈

ζ (0)|n(i)
〉

,
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where τ = tf /M.
Next, in order to replace the Grassmann integrals by 

complex ones, one has to insert complex integrals such that 
the overlap �χ (m)|ζ (m)� can be written as an integral over a 
product of two factors, with the first one depending only on 
χ (m) and the second one on ζ (m). Here, integrals of the form

will be used, since this choice allows us to construct a path 
integral, which for intermediate times has the same form as 
the one for bosons in coherent state representation [29] (see 
Appendix 1).

After this insertion, we can decouple ζ (m+1) and χ (m) 
from ζ (m) and χ (m−1) in Eq. (17), such that the integrand for 
the propagator becomes a product, in which the m-th factor 
only depends on ζ (m) and χ (m−1). Therefore, the insertion 
of these integrals allows us to integrate out the Grassmann 
variables exactly after expanding the exponential up to lin-
ear order in τ.

At this point, it is important to note that not only the 
choice of the inserted integrals is not unique, but that, when 
choosing e.g. integrals of the form (18), there is a certain 
freedom in choosing the combinations of k and k′. With the 
choices cf. Appendix 1, one arrives at 

where at final time the integrals over those φ(M)
j  corre-

sponding to empty single-particle states, i.e., for those j 
where n(f )

j = 0, are already evaluated exactly and therefore 
have to be set to zero in Eq. (19). In fact, the integrals over 
those components do not even have to be inserted right 
from the beginning, since

The exact integration over the finally unoccupied states is 
necessary, since the stationarity conditions will not give 
solutions for the phases of these components and there-
fore, these integrals can not be performed in a stationary 
phase approximation. For the same reason, the integrations 
over those φ(0)

j  with n(i)
j = 0 are already performed exactly. 

This means that effects due to vacuum fluctuations [47], 

(18)

∫

C

dφ

∫

C

dµ exp
(

−|φ|2 − |µ|2 + φ∗µ
)

φk
(
µ∗)k′

= π2k!δkk′

(19)

K
�

n
(f ), n

(i); tf

�

=







�

j:n(i)
j =1

2π�

0

dθ
(0)
j

2π
exp

�

−iθ
(0)
j

�







×







�

j:n(f )
j =1

�

C

dφ
(M)
j

π
φ

(M)
j











M−1�

m=1

�

j

�

C

dφ
(m)
j

π





× exp







M�

m=1

�

−
�
�
�φ

(m)
�
�
�

2
+ φ(m)∗ · φ(m−1) − iτ

�
Hcl

�

φ(m)∗, φ(m−1)
��






,

(20)
∫

dχ
(M)
j

∗
∫

dχ
(M)
j exp

(

−χ
(M)
j

∗
χ

(M)
j

)(

1 + χ
(M)
j

∗
ζ

(M)
j

)

= 1.

i.e., the spontaneous creation and annihilation of particles 
out of the vacuum, are treated exactly. Furthermore, for 
m = 0, the integrations over the amplitudes J

(0)
j = |φ(0)

j |2 
for the initially occupied single-particle states j are per-
formed exactly (see Appendix 1 for details of this exact 
integration). As a matter of fact, these integrals could also 
be included in the stationary phase approximation, which 
would eventually result in a multiplication of our result for 
the semiclassical propagator with a factor α = eN/(

√
2π)N , 

where N is the total number of particles, which is the N-th 
power of Stirling’s approximation of n! for n = 1.

Now one might raise the question, why the initial ampli-
tudes related to occupied states are integrated out, but not 
the final ones. Actually, the amplitudes of φ(M)

j  for occu-
pied sites could also be integrated out, which would result 
in dividing the result for the semiclassical approximation 
by the same factor α. However, we choose not to perform 
them, in order to be in accordance with the usual first-quan-
tized semiclassical approach, where the path integral, to 
which the stationary phase approximation is applied, con-
sists of one integration (over the canonical variables cho-
sen as basis) less than those over their canonical conjugate 
variables. For instance, the path integral for the propaga-
tor in configuration space consists (before taking the limit 
M → ∞) of M momentum integrals and M − 1 position 
integrals. Moreover, our choice is supported by the fact that 
it leads to the exact result if the quantum Hamiltonian is 
diagonal and non-interacting.

When comparing the path integral with the correspond-
ing one in first quantization, Eq. (2), the phases θ(0)

j  would 
correspond to the initial momenta of the path. The role 
of φ(M), however, is much more sophisticated. Its phases 
again correspond to the final momenta, while its amplitude 
should somehow correspond to the final position. Yet, the 
value of the latter is not fixed to n(f )

j = 1, which would be 
the expected boundary condition for the paths. This bound-
ary condition is hidden in the integration over φ(M)

j  and is 
determined by the extra factor φ(M)

j  of the integrand. In a 
stationary phase analysis of the integrand, which will be 
performed below, one finally recognizes that indeed both, 
the stationarity condition of phase and amplitude of φ(M)

j , 
are required in order to get the correct boundary condition. 
Thus, the boundary condition at final time is indeed hidden 
in the full integral over φ(M)

j .
Finally, it should be noted that the classical Hamiltonian 

Hcl is not unique, but again depends on the way chosen 
to construct the path integral in complex variables. There 
remains a certain freedom to weigh individual terms in 
the classical Hamiltonian differently, which might help in 
studying effects related to particular parts of the Hamilto-
nian. For instance, in the Hamiltonian given in Eq.  (118) 
in “Appendix 3.1”, the interaction, single-particle ener-
gies and the antisymmetry under particle exchange are 
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weighted exponentially, while the Pauli principle is given 
by an exponential suppression of hopping processes lead-
ing to occupations of one single-particle state by more 
than one particle. However, due to the exponential fac-
tor in the diagonal term of the single-particle part of the 
Hamiltonian, processes quantum mechanically forbidden 
by the Pauli principle are further suppressed energetically. 
This energetical suppression essentially corresponds to the 
heuristic inclusion of a Pauli potential [38, 48–51], i.e., a 
potential, which hinders two electrons to occupy the same 
single-particle state.

For the quantum Hamiltonian considered here,

one possible classical Hamiltonian is given by

where the product in the last line runs only over those val-
ues of j, which are lying between α and β, excluding α and 
β themselves. The case µ = φ∗, i.e., 

will be of particular importance for the continuum limit. 
It is instructive to compare it with the classical electron 
analog model (CEAM) obtained from Miller’s mapping 
which gives in this case

in terms of the, now restricted, variables φα with |φα|2 ≤ 1.
In Eq.  (22), the factors 1 − 2µjφj are a consequence 

of the anticommutativity of the creation and annihilation 
operators (and the Grassmannians) and thus account for 
the antisymmetry of the fermions under particle exchange. 

(21)
Ĥ =

∑

α,β

hαβ ĉ†
α ĉβ +

∑

α,β

α �=β

Uαβ ĉ†
α ĉ

†
β ĉβ ĉα .

(22)

Hcl(µ, φ)

=
∑

α

hααµαφα +
∑

α,β

α �=β

Uαβµαµβφαφβ +
∑

α,β

α �=β

hαβµαφβ

× exp
(
−µαφα − µβφβ

)∏

j

α,β(
1 − 2µjφj

)
,

(23)

Hcl

(
φ∗, φ

)

=
∑

α

hαα|φα|2 +
∑

α,β

α �=β

Uαβ |φα|2|φβ |2 +
∑

α,β

α �=β

hαβφ∗
αφβ

× exp
(

−|φα|2 − |φβ |2
)∏

j

α,β
(

1 − 2|φj|2
)

,

(24)

HCEAM
cl

(
φ∗

, φ
)

=
∑

α

hαα|φα|2 +
∑

α,β

α �=β

Uαβ |φα|2|φβ |2 +
∑

α,β

α �=β

hαβφ∗
αφβ

×
√

(1 − |φα|2)(1 − |φβ |2)
∏

j

α,β
(

1 − 2|φj|2
)

,

Consider for example the following two processes for the 
scattering of two particles in the states 1 and 2 into the states 
2 and 3: in the first process, the particle in state 1 is scat-
tered into state 3, with the second particle staying in state 2,  
while in the second one the particle in state 2 is scattered 
into state 3 and the particle in state 1 is scattered into state 
2. These two processes are the same up to an exchange of 
the two particles. Therefore, these two processes have to 
yield the same contribution, but with a different sign. On 
the other hand, if state 2 is empty, while a particle is scat-
tered from state 1 to state 3, there is no corresponding pro-
cess resulting from an odd number of exchanges of parti-
cles, and thus, the contribution has always to be the same. 
In general, a process where a particle is scattered from 
state α to state β with |α − β| > 1, has to be multiplied by 
a factor of −1 for each occupied state j between α and β
. However, classically the occupations are not restricted to 
0 and 1, but can be any number, such that one ends up with 
a factor interpolating between the two extreme values +1 
for the case without a particle in state j and −1 for the case 
where state j is occupied. Furthermore, the exponential in 
the non-diagonal part of the single-particle term accounts 
for the Pauli principle by the exponential suppression of 
processes, which lead to an enhanced number of particles 
within one single-particle state.

A (certainly not complete) list of further possible clas-
sical Hamiltonians corresponding to the quantum Hamilto-
nian (21) can be found in Appendix 3.

It is furthermore instructive to see how our approach 
treats the extreme case of a single electron, N = 1, where 
the state space is spanned by two discrete states and anti-
commutation of the fermionic fields does not play a role. 
In this situation, our results can be directly compared with 
existing exact mappings between systems with n = 2 dis-
crete states and a quantum top with total angular momen-
tum s such that n = (2s + 1)/2. In the Chemical Physics 
community, these so-called Meyer–Miller–Stock–Thoss 
(MMST) methods [36, 41, 44, 52] have been successfully 
used to describe non-adiabatic transitions of the nuclear 
dynamics between two potential surfaces corresponding to 
two discrete many-body states of the electrons. The MMST 
method maps the dynamics of a two-level system into the 
problem of a spinning particle, which can be in turn mapped 
into a set of harmonic oscillators by means of the Schwinger 
representation of angular momentum (see [44]). In this way, 
a classical picture for two-level systems is obtained, as a 
basis for standard (continuous) semiclassical approaches.

Our result for the classical limit of a single electron, 
included in Eq.  (23), appears naturally within the MMST 
approach as an approximate version of the Holstein-Pri-
makoff transformation, see [44] for details and [21] for 
an application to spin transport. As it is also shown there, 
this classical limit, however, gives unsatisfactory results 
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when used as starting point of a semiclassical calculation 
of the time evolution of quantum observables. This appar-
ent drawback is fully resolved when taking into account, as 
shown in detail here, that the semiclassical limit where our 
result holds is defined by N → ∞. Therefore, the applica-
tion of our methods to the limiting case N = 1 is expected 
to poorly compare with exact quantum mechanical results. 
However, the main motivation of the present work is to deal 
semiclassically with anticommuting variables, not with few 
discrete degrees of freedom as in [44].

3.2 � Comparison with CEAM and Klauder’s approach

Miller’s heuristic approach can actually be verified by 
extracting the classical Hamiltonian from another path inte-
gral representation. This is by extending the b-fermionic 
states introduced by Klauder in [35],

to the case of multiple single-particle states and define (see 
also [53])

These states define an overcomplete basis for the fermionic 
Hilbert space, as they form the identity

where D denotes the unit disk in the complex plane, and 
therefore can be used to construct a path integral represen-
tation of the propagator in terms of paths b(t) in the space 
of commuting variables b.

The steps of the derivation of the path integral in this 
basis correspond to those one follows to construct the fer-
mionic path integral using coherent states [29, 35]. After 
reaching a form where the classical Hamiltonian can be 
read off from an action functional giving the phase of the 
quantum propagator, we obtain

A short calculation finally shows that the classical Hamilto-
nian (28) obtained using Klauder’s representation is equal 
to Miller’s, Eq. (24), i.e., 

thus providing a rigorous construction of the classical limit 
of the approach by Miller and coworkers [37].

In principle, having at hand a classical Hamiltonian as 
the one in Eq.  (24), a semiclassical analysis of the path 

(25)|b� =
√

1 − |b|2|0� + b|1�,

(26)|b� =
∏

j

(√

1 − |bj|21̂ + bjĉ
†
j

)

|0�.

(27)




�

j

�

D

db
(m)
j

π



|b��b| = 1̂

(28)HKlauder
cl (b∗, b) =

〈

b

∣
∣
∣Ĥ

∣
∣
∣b

〉

.

(29)HKlauder
cl (b∗, b) = HCEAM

cl (b∗, b).

integral in b-representation along the lines presented bellow 
can be carried out. The first step is to consider the classical 
equations of motion

which can be canonically transformed into

Without loss of generality, we consider the many-body 
Hamiltonian (21). Inspection of the associated equa-
tions of motion readily shows that the classical occupa-
tions nj = |bj|2 evolve in time only through the terms that 
depend on the phases θj. Here is where the classical limit 
HCEAM

cl (b∗, b) is problematic: due to the presence of the 
“Pauli” factors 

√
n(1 − n) in Eq. (24) we trivially obtain

Therefore, the classical phase-space manifolds associ-
ated with the physical Fock states, which are defined by 
precisely the condition n = 0 or 1, do not evolve in time 
and there is no way to connect the quantum and classical 
dynamics, neither at the quasi-classical, nor at the semi-
classical level. Remarkably, the classical limit as given for 
example in Eq. (22) circumvents this problem by allowing 
arbitrarily high classical occupation numbers, but penaliz-
ing them in a smooth (but exponentially strong) manner.

It is important to stress that there is no reason why clas-
sical occupations must be bounded, exactly as there is no 
reason why they have to take only integer values. In both 
cases, we are apparently violating what is just a classical 
picture of the fermionic degrees of freedom. However, fer-
mionic fields are essentially non-classical objects and we 
are satisfied with being able to define a consistent classical 
limit by pure formal manipulations. Adopting this pragmat-
ical point of view of defining the classical limit formally 
through the exact path integral, the fields φα in Eq. (23) do 
not need to fit our expectations on how the classical limit 
should look like. All that we ask them for is to correctly 
describe the propagation between physical Fock states.

4 � Semiclassical approximation

The reason for the semiclassical approach to any quantum 
system to be rooted in the path integral formulation is that 

(30)i�
d

dt
b(t) = ∂

∂b∗ HCEAM
cl (b∗, b),

(31)i�
d

dt
nj(t) = ∂

∂θj

HCEAM
cl (b∗, b)

∣
∣
∣
∣
b=√

n exp(iθ)

(32)i�
d

dt
θj(t) = − ∂

∂nj

HCEAM
cl (b∗, b)

∣
∣
∣
∣
b=√

n exp(iθ)

.

(33)
d

dt
nj(t)

∣
∣
∣
∣
n=0 or 1

= 0.
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it accomplishes simultaneously three major goals. First, it 
allows us to identify the classical limit of the theory. Sec-
ond, it serves as the starting point of a systematic station-
ary phase analysis that eventually leads to the semiclas-
sical propagator. Third, it is in the structure of the action 
functional where �eff can be identified. The effective 
Planck constant is not only the dimensionless parameter 
that defines the classical limit �eff → 0, but also the small 
parameter that makes the whole semiclassical approach 
valid. It appears non-perturbatively, if the characteristic 
path integral representation of the propagator,

is written in terms of a dimensionless action R̃,

Inspection of the exponents in Eq. (19) shows that Planck’s 
constant � actually plays a minor role in our case. Clearly, 
� can be absorbed simply by a redefinition of the param-
eters of the Hamiltonian (note that this is not the case in the 
usual phase-space path integral). In order to identify �eff, 
we rescale all the fields in such a way that the exponent 
appearing in Eq. (19) takes the form R̃/�eff with R̃ = O(1). 
Following this recipe, Eq. (19) leads to

showing that in the present approach the classical limit cor-
responds to the limit of large number of particles. In the 
following, we complete the stationary analysis of the exact 
propagator valid in this N ≫ 1 limit.

In Eq. (19) all integrals, that can and should be carried 
out exactly, are already performed, except for the integra-
tion over the initial phase of the first occupied single-par-
ticle state. This integration has to be done exactly because 
of the U(1) gauge symmetry, i.e., the freedom to multiply 
the wave function by an arbitrary global phase. In order to 
perform this integration, one first has to substitute the inte-
grations over the real and imaginary part of φ(m)

j  by those 
over its modulus squared J(m)

j  and phase ϕ(m)
j  and then has 

to substitute the latter by θ(m)
j − θ

(0)
j1

, where j1 denotes the 
first initially occupied single-particle state,

These substitutions can be summarized as

for all j and m ≥ 1, while for m = 0,

(34)K ∼
∫

D[·]eR[·]/�,

(35)K ∼
∫

D[·]eR̃[·]/�eff .

(36)�eff = N−1,

(37)j1 = min
{

j ∈ {1, 2, . . .} : n
(i)
j = 1

}

.

(38)φ
(m)
j =

√

J
(m)
j exp

[

i
(

θ
(m)
j − θ

(0)
j1

)]

,

(39)
φ

(0)
j = n

(i)
j exp

[

i
(

θ
(0)
j − θ

(0)
j1

)]

if j �= j1,

After these substitutions, it is easy to see that the remain-
ing dependence of the path integral on the global phase 
θ

(0)
j1

 is given by exp[i(Nf − Ni)θ
(0)
j1

], with Ni/f =
∑

j n
(i/f )
j  

being the initial, respectively, final total number of par-
ticles. Therefore, the integration over the global phase 
simply yields a factor 2πδNf ,Ni

, which accounts for the 
conservation of the total particle number. The remaining 
integrals over J(m)

j  and θ(m)
j  are then performed in station-

ary phase approximation, where (similar to the derivation 
of Stirling’s approximation) for consistency and in order 
to include the behavior of the integrand especially for 
small occupations correctly, it is important to include the 
factors

in the stationarity analysis. For intermediate times, 
1 ≤ m < M, the stationarity conditions for J

(m)
j  and θ(m)

j  
can be combined to the conditions

In the same way, the conditions for m = M can be written 
in the form of Eq. (42) with m = M as well as the boundary 
condition

Note that a linear combination of the stationarity conditions 
for θ(M)

j  and J
(M)
j  is required to get the stationary phase 

conditions in this form.
Since the integration over the initial phase is performed 

only for occupied states, and the amplitude of φ(0)
j  is equal 

to the initial occupation of the site n(i)
j , the stationarity con-

dition for θ(0)
j  yields Eq. (43) with m = 0. When finally tak-

ing the continuous limit τ → 0, these conditions result in 
the equations of motion

along with the boundary conditions

(40)φ
(0)
j1

= exp
(

iθ
(0)
j1

)

.

(41)
√

J
(m)
j = exp

[

log
(

J
(m)
j

)

/2
]

(42)i�
(

φ
(m)
j − φ

(m−1)
j

)

= τ
∂Hcl

(

φ(m)∗, φ(m−1)
)

∂φ
(m)
j

∗ ,

(43)−i�
(

φ
(m+1)
j

∗ − φ
(m)
j

∗) = τ
∂Hcl

(

φ(m+1)∗, φ(m)
)

∂φ
(m)
j

.

(44)J
(M)
j = n

(f )
j .

(45)i�φ̇(t) = ∂Hcl(φ
∗(t), φ(t))

∂φ∗(t)
,

(46)−i�φ̇∗(t) = ∂Hcl(φ
∗(t), φ(t))

∂φ(t)
,

(47)
∣
∣φj(0)

∣
∣2 = n

(i)
j ,

∣
∣φj(tf )

∣
∣2 = n

(f )
j
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with φj1(0) = 1. It is important to note that the equations of 
motion (45) and (46) are complex conjugates of each other, 
such that for J single-particle states we get J complex (or 
correspondingly 2J real) equations of motion with 2J real 
boundary conditions. Therefore one can always find at least 
one solution without the complexification necessary for the 
bosonic coherent state propagator [33, 54]. Therefore, the 
classical Hamiltonian and action will also be real.

We also point out the key difference in the role of the 
boundary conditions in Eq. (47) when compared with the deri-
vation of the classical limit from the path integral in the stand-
ard first-quantized case. In the latter case, boundary conditions 
are imposed at the level of the path integral and therefore are 
not subject to the stationary phase conditions. Contrary to the 
bosonic case where this observation remains true [34], here 
again we encounter that the classical limit of fermionic fields 
displays counter-intuitive features: the boundary conditions 
(47) that allow for multiple solutions of (45, 46) are them-
selves obtained from a stationary phase argument, and the 
corresponding quantum fluctuations must be considered at the 
same footing as the fluctuations around the classical solutions.

Evaluating the exponent of the path integral along the 
stationary point (including all additional phase factors orig-
inating from the boundary terms m = 1, M) then yields the 
classical action

of the mean-field trajectories defined by the equations of 
motion (45) and the boundary conditions (47). In Eq. (48) 
the real functions θ(t) and J(t) are defined through

It is worth to note, that the equations of motion (45, 46) in 
these variables can also be written as the real equations

where φ∗
j (t) and φj(t) should be understood as functions of Jj(t) 

and θj(t) according to Eq. (49). Thus, the classical trajectory 
lives on a symplectic manifold in phase space, which is here 
defined as {(J, θ) : Jj=1,2,... ∈ [0, ∞), θj=1,2,... ∈ [0, 2π)}. 
Moreover, the theory of canonical transformations [55] can be 
applied to show that the Poincaré-Cartan 1-form

is invariant under canonical transformations.
The derivatives of the action can be found by applying 

the equations of motion to the integrand to read

(48)Rγ

(

n
(f ), n

(i); tf

)

=
tf∫

0

dt
[
�θ(t) · J̇(t) − Hcl

(
φ∗(t), φ(t)

)]
,

(49)φj(t) =
√

Jj(t) exp
(
iθj(t)

)
.

(50)J̇(t) = 2

�

∂Hcl(φ
∗(t), φ(t))

∂θ(t)
,

(51)θ̇(t) = −2

�

∂Hcl(φ
∗(t), φ(t))

∂J(t)
,

(52)θ · dJ − Hdt

where Eγ = Hcl(φ
∗(0), φ(0)) is the energy of the trajectory.

Finally, the propagator Eq. (16) reads

where the sum runs over all “classical paths” γ which sat-
isfy the equations of motion (45) and the boundary condi-
tions (47), while Aγ is given by the still pending integra-
tions over the second variation of the paths.

As is shown in Appendix 2, Aγ can be written as

with N = Ni = Nf  being the total particle number and IN 
the N × N unit matrix. Moreover, Pf  is the matrix of the 
projector onto the subspace of the states which are occu-
pied at final time, such that e.g. 

For later reference, we also define Pi, which is defined in the 
same way as Pf , but selecting the initially occupied single-
particle states, as well as the complements P̄i/f  of Pi/f . With 
these matrices, one can also define the (orthonormal) matrix

shifting all components of a vector corresponding to an ini-
tially (finally) unoccupied single-particle state in front of 
all the others.

Finally, in Eq. (57) X(t) satisfies the differential equation

with initial condition

(53)
∂Rγ

(
n(f ), n(i); tf

)

∂n(i)
= −�θ(0),

(54)
∂Rγ

(
n(f ), n(i); tf

)

∂n(f )
= �θ(tf ),

(55)
∂Rγ

(
n(f ), n(i); tf

)

∂tf
= −Eγ ,

(56)Ksc
(

n
(f ), n

(i)
; tf

)

=

∑

γ

Aγ exp

[
i

�
Rγ

(

n
(f ), n

(i)
; tf

)]

,

(57)

Aγ = 1
√

2π
N−1

exp







i

2�

tf�

0

dtTr

�

∂2Hcl

∂φ(t)2
X(t)

�






det
�

IN + exp
�
−2idiag

�
Pf θ(tf )

��
Pf X(tf )P

T
f

�− 1
2

,

(58)
Pf n(f ) = (1, . . . , 1

︸ ︷︷ ︸

N

)T.

(59)Qi/f =
(

P̄i/f

Pi/f

)

,

(60)

Ẋ(t) = i

�

∂2Hcl

∂φ∗(t)2
− i

�

∂2Hcl

∂φ∗(t)∂φ(t)
X(t)

− i

�
X(t)

∂2Hcl

∂φ(t)∂φ∗(t)
+ i

�
X(t)

∂2Hcl

∂φ(t)2
X(t),
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The same differential equation, however with different ini-
tial conditions, was encountered previously in derivations 
of a semiclassical propagator for bosonic many-body sys-
tems in coherent state representation [33, 54]. The solutions 
given there indicate, how to find X(t): Consider a solution 
ψ(t) of the equations of motion with initial conditions Y 
and W, whereby each pair (Yj, Wj) are canonically conju-
gate variables. Possibilities for the choice of these pairs are 
e.g. (Rψj(0), Iψj(0)), where R and I denote the real and 
imaginary part, respectively, (

∣
∣ψj(0)

∣
∣, arg ψj(0)) with arg ψ 

denoting the phase of ψ, or (ψj(0), ψ∗
j (0)). Then, the differ-

ential equation (60) is solved by the function

evaluated at the initial conditions corresponding to the tra-
jectory γ.

Finally, in order to find the solution for X(t), the varia-
bles Y and W need to be chosen such that for t = 0, Eq. (62) 
also satisfies the initial condition (61), which yields

Eventually, the semiclassical amplitude Aγ can be written as

with P′
i and P′

f  being the matrices resulting from Pi and Pf , 
respectively, by removing the first line. The determinant 
consisting of the matrices

(61)X(0) = QT
i

(
0

exp
[
2idiag

(
P′

iθ(0)
)]

)

Qi.

(62)−∂ψ(t)

∂W

(
∂ψ∗(t)

∂W

)−1

,

(63)(Yj, Wj) =
{

(ψj(0), ψ∗
j (0)), if n

(i)
j = 0 or j = j1

(n
(i)
j , θj), else.

(64)

Aγ =

�
�
�
�
�det




1

2π i�

∂2Rγ

∂

�

P
′
f n

(f )
�

∂
�
P

′
in

(i)
�





×
�

det Qf Qi exp






i

2�

tf�

0

dtTr
∂2Hcl

∂φ∗∂φ






× exp






i

2

�

j:n(f )
j =1

θj(tf ) − i

2

�

j:n(i)
j =1

θj(0)






× det
�

A − BC
−1

D

�− 1
2
.

(65)A =
∂

(

P̄f φ
∗(tf ), J

min
{

j∈{1,2,...}:n(f )
j =1

}(tf )

)

∂
(
P̄′

iφ
∗(0)

) ,

(66)B =
∂

(

P̄f φ
∗(tf ), J

min
{

j∈{1,2,...}:n(f )
j =1

}(tf )

)

∂
(
P′

iθ(0)
) ,

accounts for the vacuum fluctuations that have been 
treated exactly. Note that in Eq. (64), the Solari-Kochetov 
extra-phase

typically arises in a semiclassical approximation of the 
propagator in coherent state representation [33, 56–58], 
while in the standard (first quantized) van-Vleck–Gut-
zwiller propagator [5], this phase is absent, due to the 
Weyl (symmetric) ordering of the Hamiltonian with 
respect to position and momentum operators. For Bosons, 
the Solari-Kochetov phase can be absorbed in the action 
by replacing the bosonic creation and annihilation opera-
tors according to â

†
j âj′ → (â

†
j âj′ + âj′ â

†
j )/2 [33], which 

corresponds to Weyl ordering of the quantum Hamilto-
nian. In the same way, for the propagator in spin coherent 
states, this phase is absent in Weyl ordering [59]. How-
ever, this vanishing of the Solari-Kochetov phase in these 
cases is due to the fact that the classical Hamiltonian is 
obtained out of the quantum one by the simple replace-
ments â

†
j → φ∗

j  and âj → φj, which is not valid here. 
Therefore, it seems that here this phase can not be elimi-
nated by changing the chosen ordering of the fermionic 
creation and annihilation operators.

Due to their definition Eq.  (59), the determinants 
det Qi/f  depend only on the choice of the initial and final 
occupations and accept only the values ±1. Note that this 
sign also depends on the definition of the Fock states, while 
the product of both depends only on the relative changes 
between the initial and final state and therefore is independ-
ent of the exact choice of ordering of the single-particle 
states.

It is important to notice that in Eq. (64) the determinant 
det(A − BC−1D) depends only on the derivatives of the 
values of the trajectory at final time with respect to the ini-
tial conditions and should, therefore, be possible to calcu-
late in an actual application. Moreover, we expect that this 
determinant is just the product of the exponentials of the 
final and initial phases of the final unoccupied states, which 
can be set to zero. Thus, we assume this determinant to be 
equal to one. However, up to now, we did not succeed in 
proofing this conjecture rigorously and therefore, we will 
keep this determinant in the following.

(67)C =
∂

(

P′
f J(tf )

)

∂
(
P′

iθ(0)
) ,

(68)D =
∂

(

P′
f J(tf )

)

∂
(
P̄′

iφ
∗(0)

) .

(69)exp

(
i

2�

∫ tf

0

dtTr
∂2Hcl

∂φ∗∂φ

)



Theor Chem Acc (2014) 133:1563	

1 3

Page 11 of 22  1563

5 � Transition probability

5.1 � General semiclassical treatment

Knowing the propagator enables us, in principle, to calcu-
late the quantum probability to measure the Fock state n(f ) 
after preparing the system of spin-1/2 particles in the initial 
Fock state n(i) and letting it evolve for some time t. Com-
puting this probability is usually non-trivial, since the sin-
gle-particle states can on the one hand be chosen arbitrarily, 
and may thus not necessarily be eigenstates of the single-
particle Hamiltonian, and on the other hand, interactions in 
general induce a coupling between different single-particle 
states. This probability is given by the modulus square of 
the overlap between the time evolved state and 

∣
∣n(f )

〉
,

Using the semiclassical approximation (56), it is given by a 
double sum over trajectories,
 

Upon applying an energy or disorder average, the action 
difference gives rise to huge oscillations, such that most 
contributions to the averaged double sum will cancel, 
except if the paths γ and γ ′ are correlated. The types of tra-
jectory pairs, which we will consider in the following are 
depicted in Fig. 1. The simplest type of correlation arises 
for γ = γ ′. This is known as the diagonal approximation 
[60]. The second derivatives of the action with respect to 
the initial and final Fock state in the prefactor can then be 
used to transform the sum over trajectories into an integra-
tion over the initial phases. Then, the diagonal approxima-
tion yields,

which we will refer to as classical probability. Here, φ(t) 
is the solution of the equations of motion Eq. (45) with the 
initial condition φj(0) =

√

n
(i)
j exp

(

iθ
(i)
j

)

. It is worth to 
notice that the exact treatment of the vacuum fluctuations 
gives rise to a renormalization of the transition probability 
by the additional factor det

(
A − BC−1D

)−1
.

Further pairs of correlated trajectories are those given 
by γ and its time reverse, γ ′ = T γ. However, the time 
reverse of a trajectory exists only if the system is time 
reversal symmetric. Moreover, the initial and final occupa-
tions, respectively, of both trajectories in the double sum 

(70)P
(

n(f ), n(i); tf

)

=
∣
∣
∣

〈

n(f )
∣
∣
∣K̂

(
tf

)
∣
∣
∣n

(i)
〉∣
∣
∣

2

.

(71)P
(

n(f ), n(i); tf

)

≈
∑

γ ,γ ′
Aγ A

∗
γ ′ exp

[
i

�

(
Rγ − Rγ ′

)
]

.

(72)

Pcl

(

n
(f ), n

(i); tf

)

=
2π∫

0

dN−1θ(i) det
(

A − BC
−1

D

)−1

× δ

(∣
∣φ(tf )

∣
∣2 − n

(f )
)

,

of Eq. (71) have to be the same. On the other hand, if γ has 
initial occupations n(i) and final occupations n(f ), the initial 
occupations of its time reverse are given by the time reverse 
of n(f ) and the final ones by the time reverse of n(i). There-
fore, in order to pair γ with its time reverse, we need time 
reversal symmetry and also the final Fock state has to be 
the time reverse of the initial one. To this end, one has to 
replace the sum over trajectories from n(i) to n(f ) by a sum 
over trajectories ending at the Fock state T n(i) originating 
from time reversing the initial one. To this end, the actions 
in the exponential need to be expanded in the final Fock 
state around T n(i) up to linear order, while the prefactor 
is assumed to vary only very slightly with n(f ), such that it 
can be simply replaced by T n(i). For pairs γ ′ = T γ this 
procedure then gives the contribution

with the difference �R = Rγ − RT γ in the actions of γ and 
T γ. Since for time reversal symmetric systems, the energy 
of a trajectory and its time reverse is the same, we easily get

In the next steps, we assume—in accordance with the cases 
considered below—that the difference �R, is independent 

(73)

∑

γ

Aγ A
∗
T γ exp

(
i

�
�R

)

× exp
[

i
(

θ (γ )(tf ) − θ (T γ )(tf )

)

·
(

n
(f ) − T n

(i)
)]

,

(74)�R = �

tf∫

0

dt
(

θ (γ ) · J̇(γ ) − θ (T γ ) · J̇(T γ )
)

.

Fig. 1   The quantum transition in a system of spin-1/2 particles in the 
semiclassical limit. A trajectory γ is paired with a partner trajectory 
γ ′, where γ ′ can be either γ itself, or its time reverse. The annotations 
at the arrows indicate the symmetry class required for the correspond-
ing pairing to be present
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of the trajectory. This is usually the case, since the second 
part of the integral in the action difference can be related 
with the first one by making use of the nature of the time 
reversal operation. However, as we will see later, �R does 
not vanish in general. Moreover, we can savely assume 
that θ (T γ )(tf ) depends on the initial phases of γ, only (and 
through them on the initial Fock state).

Upon disorder average, the phases θ(γ )
j (tf ) behave, for 

chaotic systems, like linearly distributed random variables 
between 0 and 2π. Thus, treating them as random variables 
and performing the average, yields a δn(f ),T n(i), such that one 
gets after utilizing the second derivative of the action again

The action difference �R strongly depends on whether the 
system is diagonal in spin space or not.

5.2 � Systems diagonal in spin space

If the system is diagonal in spin space, i.e., the Hamiltonian 
does not consist of terms giving rise to spin-flips, the time 
reversal operation amounts to a complex conjugation only, 
and therefore

It also implies that, on the classical level, the time reverse 
of φ(t) is given by φ∗(tf − t). With this information, it is 
easy to prove that time-reversed paths have the same action, 
�R = 0. Thus, in semiclassical approximation, the averaged 
transition probability for a spin-diagonal system is given by

This is, apart from the renormalization of the classical tran-
sition probability due to the exact treatment of the vacuum 
(see Eq. (72)), exactly the same result found previously for 
bosonic, spinless systems [34].

5.3 � Systems non‑diagonal in spin space

If the system’s Hamiltonian is non-diagonal in spin space, 
the time reversal operation is not just complex conjugation, 
but also demands an exchange of the spin-up and spin-
down components while at the same time introducing a 
relative minus sign between them,

Here σ̂j,y is the y-Pauli matrix for the j-th state and K̂ 
denotes complex conjugation. Important examples of sys-
tems with such time reversal operations are for instance 

(75)Pcl
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)
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(
i

�
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)

.

(76)T n(i) = n(i).

(77)P
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n(f ), n(i); tf

)

≈ Pcl

(
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)(
1 + δn(f ),n(i)

)
.

(78)T̂ =




�

j

�
−iσ̂j,y

�



K̂ .

systems with a Rashba spin-orbit coupling [61], which is 
of key importance in semiconductor spintronics, but more 
recently has also been realized using ultra-cold atoms [62].

On the classical level, this means that the time reversal 
of φ = (φ↑, φ↓)T, where φ↑(↓) is the vector containing all 
spin-up (spin-down) components of φ, is given by

and therefore also

For the action difference, this yields

where N↑(↓) is the total number of spin-up (spin-down) par-
ticles in the initial state.

Thus, invoking the widely used nomenclature of the ran-
dom matrix symmetry classes and quantum chaos [6], one 
finally finds for the averaged transition probability in semi-
classical approximation

Here, GUE (Gaussian Unitary Ensemble) means that the 
average runs over systems without time reversal symmetry, 
while for GOE (Gaussian Orthogonal Ensemble) and GSE 
(Gaussian Symplectic Ensemble) the average is over time 
reversal invariant spin-1/2 systems, which are diagonal and 
non-diagonal in spin space, respectively. This result and in 
particular the origin of the deltas is illustrated in Fig. 1.

It is important to note that, the probability to find 
n(f ) = T n(i) is zero on average for the GSE case, if N is 
odd. However, the transition probability is a strictly positive 
quantity. Therefore, in order to become zero on average, it 
has to be zero for each disorder realization. In other words, 
for a time reversal symmetric system, which is non-diago-
nal in spin space, the transition from an initial Fock state to 
its spin reversed version is semiclassically prohibited,

for an odd total number of particles. This is consistent with
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Similar to the proof of Kramer’s degeneracy [2], one can 
show that Eq. (84) implies that for an odd number of parti-
cles and a symplectic time reversal symmetry, the transition 
from a Fock state to its spin reversed version is exactly for-
bidden quantum mechanically.

On the other hand, if the total number of particles is 
even, and hence the total spin is integer, the transition prob-
ability is always enhanced by a factor of two compared to 
the classical one, if the final Fock state is the time-reversed 
version of the initial one.

6 � Conclusions

We presented a rigorous derivation of fermionic path inte-
grals representing quantum transition amplitudes in Fock 
space in terms of unrestricted, commuting complex fields. 
In the context of semiclassical approaches, we believe 
that this result represents an important improvement over 
previous approaches. First, we replace the anticommuting 
(Grassmann) variables, usually assumed to be the most nat-
ural representation of a fermionic path integral, by complex 
variables in the path integral. In this way, the propagator 
can be given a direct physical interpretation as a complex-
valued amplitude. Second, the path integral is unrestricted 
(defined over the whole complex plane) and therefore 
avoids the complications due to the definition of path inte-
grals in compact phase spaces.

Most notably, in the approach presented here, a Hamil-
tonian classical limit can be identified which leads to real 
actions and therefore explicit interference. After applying 
the stationary phase approximations to the path integral. In 
the semiclassical limit (of large particle number), we are 
able to derive as our major result a van Vleck–Gutzwiller 
type propagator for fermionic quantum fields.

In contrast to the approaches of [37, 39], here the semi-
classical approximation as well as the classical limit is 
obtained from an exact path integral. However, there is still 
a freedom of choice for the classical Hamiltonian, which 
should be investigated further. Hence, we do not exclude 
the possibility, that by a certain choice, the classical lim-
its of [37, 39] can be recovered. Moreover, it remains to be 
explored, which classical limit is best suited for calcula-
tions and simulations. This may actually even depend on 
the actual problem at hand.

In Sect. 5, we applied our results to the calculation of tran-
sition probabilities in the fermionic Fock space, and found 
a rich dependence of many-body interference effects on the 
universality class of the system. For systems with spin-orbit 
interaction that belong to the symplectic class, our results 
predict the exact cancelation of the transition probability 
between time-reversed many-body states, if the total number 
of particles is odd. This prediction that can be independently 

demonstrated to be a consequence of Kramer’s degeneracy, 
is a very stringent test for the correctness of our approach. If 
the total particle number is even, however, the same transi-
tion is not only allowed, but its probability is enhanced by a 
factor of two compared to the transitions to other states. For 
systems without spin-flip mechanisms, we recover the coher-
ent backscattering previously found for bosons [34]. Upon 
destroying time reversal symmetry all these effects vanish, 
and the transition probability profile can be assumed to be 
more or less constant for all Fock states.

Finally, we would like to note that, although the path 
integral Eq.  (19) is restricted to the particle picture, i.e., 
to the case that a particle is defined through an occupied 
single-particle state, it is also possible to construct a path 
integral in the hole picture (for more details see “Appendix 
3.2”), where a particle is defined as an unoccupied single-
particle state.

The major principle restriction of applicability of our 
approach is that the number of fermions N ≫ 1 should be 
large enough (our experience in the bosonic case indicates 
that N ∼ 10 is enough). Therefore, within this regime, elec-
tronic systems such as quantum dots, coupled discrete sys-
tems like spin chains modeled by Heisenberg or Ising type 
Hamiltonians, and molecular systems described by a dis-
crete set of single-particle orbitals can be addressed. Still, 
then exist practical limitations of semiclassical approaches 
in concrete applications, related, e.g., to the solution of the 
shooting problem and the correct evaluation of amplitudes 
and Maslov indexes. We hope that our approach is still ben-
eficial for the Chemical Physics community.

Finally, we remark that for treating emergent universal 
quantum fluctuations in mesoscopic systems we only need 
to verify that the classical limit displays chaotic behavior, a 
substantially easier task.

Further applications of the semiclassical methods along 
the lines presented here like the description of many-body 
spin echoes [63] are presently under investigation.
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Appendix 1: Derivation of the path integral

For simplicity, in this section, we assume a quantum hamil-
tonian given by

The result for a non-diagonal interaction Uαβγ ν, however, 
is given in Appendix 3 In order to get from Eq. (17) to the 

(85)
Ĥ =

∑

α,β

hαβ ĉ†
α ĉβ +

∑

α,β

α �=β

Uαβ ĉ†
α ĉ

†
β ĉβ ĉα .



	 Theor Chem Acc (2014) 133:1563

1 3

1563  Page 14 of 22

complex path integral Eq. (19), the following two integrals 
with j, j′ ∈ N0, will be inserted:

(86)

2π∫

0

dθ

∫

d2φ exp
(

−|φ|2 + φ ∗eiθ − ijθ
)

φj′ = 2π2δj,j′

(87)
∫

d2φ

∫

d2µ exp
(

−|φ|2 − |µ|2 + φ ∗µ
)

φj
(
µ ∗)j′ = π2j!δj,j′ ,

for the unoccupied ones, it is important to notice, that the 
term χ(0)

j

∗
ζ

(0)
j  does vanish when integrating over ζ (0). This 

is because of the properties of the Grassmann integrals 
Eq. (10) and the fact, that there is no ζ (0)

j

∗
 for those compo-

nents, for which n(i)
j = 0.

The thus obtained expression is the starting point for an 
iterative insertion of integrals of the form of Eq.  (87). For 
1 ≤ m < M, an evaluation of the overlaps and matrix elements 
of Eq. (17) containing ζ (m) yields the following expression:

Thereby d2µ = dRµdIµ, i.e., the integrations over φ 
and, in the second case, over µ run over the whole com-
plex plane. One should notice, that the first of these two 
integrals is just the second one, but with the modulus of µ 
already integrated out.

The first of these two integrals is used to decouple ζ (0) 
from ζ (1) by the following identity:

with µ(0)
j = n

(i)
j exp(iθ

(i)
j ) for all j ∈ {1, . . . , J}, where J 

is the number of single-particle states taken into account. 
Note that here, for the initially unoccupied single-particle 
states, the phases θ(i)

j  are arbitrary but fixed, e.g. to zero, 
while the integration runs only over those initial phases θ(i)

j , 
for which n(i)

l = 1. In this way, the integrals, that have to be 
performed exactly, in order to get a reasonable and correct 
semiclassical approximation for the propagator are already 
done, and do not have to be carried out later.

For the Ni =
∑J

j=1 n
(i)
j  initially occupied single-particle 

states, the identity follows directly from Eq.  (86), while 
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With the help of the integral Eq. (87), the coefficients a(m), 
b(m), c(m) and d(m) can successively—starting from m = 1 
– be written as
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with c(1)
1 = c

(2)
1 = c

(3)
1 = c

(4)
1 = 1.

It is important to notice, that the integral over φ(m) and 
µ(m) selects only the k = 1 terms of the occurring sums. 
Therefore, the terms with k ≥ 2 can be varied, in order to 
modify the final path integral in the desired way.

Finally, for m = M, a similar argument as for m = 0 
allows to restrict the integrals over φ(M) again to those 
Nf =

∑J
j=1 n

(f )
j  components with n(f )

j = 1, while setting all 
the other components of φ(M) to zero.
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�






×
�
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(m)
min (α,β)

∞�
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c
(4)
k

�

φ
(m−1)
min (α,β)

��

µ
(m)
min (α,β)

∗�k

�

×







J−1�
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


,

After this the m-th factor in the product over the 
timesteps only depends on ζ (m+1) and χ (m), such that one 
can easily integrate out the intermediate Grassmann vari-
ables ζ (1), . . . , ζ (M) and χ (0), . . . , χ (M−1) by using

Moreover, the integrals over ζ (0) and χ (M) yield

(94)

�

d2Jζ

�

d2Jχ exp
�
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


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


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
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j

�





=
J�
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�
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(m)
j φ

(m)
j

�

,

(95)

�
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�
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�
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�

×




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�
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�





×


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,
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α
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.

(97)
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−ζ (0) ∗ · ζ (0)
�





J−1�

j=0

�

1 + ζ
(0)
J−j µ

(0)
J−j

∗�




×
J�

j=1

�

ζ
(0)
j

∗�n
(i)
j =

�

j:n(i)
j =1

µ
(0)
j

∗



	 Theor Chem Acc (2014) 133:1563

1 3

1563  Page 16 of 22

After performing these integrals, one notices, that the 
inserted integrals have been chosen such, that the resulting 
sums can be performed and yield exponentials, such that the 
propagator is, after integrating out µ(1), . . . , µ(M) as well as 
φ(0) and undo the expansion in τ, given by the path integral 
Eq. (19), where the classical Hamiltonian is given by

(98)

�

d2Jχ(M) exp
�

−χ (M) ∗ · χ (M)
�





J−1�

j=0

�

χ
(M)
J−j

�n
(f )
J−j





×
J�

j=1

�

1 + χ
(M)
j φ

(M)
j

∗� =
�

j:n(f )
j =1

φ
(M)
j

(99)

Hcl

(
µ ∗, φ

)
=

∑

α

hαα µα
∗φαf1

(
µα

∗, φα

)

+
∑

α,β

α �=β

Uαβ µα
∗ µβ

∗φαφβ f3
(
µα

∗, φα

)
f3

(
µβ

∗, φβ

)

+
∑

α,β

α �=β

hαβ µα
∗φβ f2

(
µα

∗, φα

)
exp

(
−µβ

∗φβ

)

×
∏

l

α,β
g
(
µl

∗, φl

)
,

where f1, f2, f3 and g are arbitrary analytic functions satis-
fying the following conditions:

Moreover, as in Sect. 3, the product in the third line runs 
only over those values of j, which are lying between α and 
β, excluding α and β themselves,

Appendix 2: The semiclassical amplitude

The semiclassical amplitude is given by the integral over 
the exponential of the second variation of the path integral 
around the classical path which can be written as,

(100)f1(0, φ) = f2(0, φ) = f3(0, φ) = 1

(101)g(0, φ) = 1

(102)
∂

∂µ∗ g
(
µ∗, φ

)
∣
∣
∣
∣
µ∗=0

= −2φ.

(103)
∏

j

α,β
. . . =

max (α,β)−1
∏

j=min (α,β)+1

. . .

(104)
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with

Moreover, diag(v) is the diagonal d × d-matrix for which 
the (j, j)-th entry is equal to vj, where d is the dimensional-
ity of the vector v and Pi/f  and P′

i/f  are defined as the N × J 
and (N − 1) × J-matrices, respectively, which project onto 
the subspace of initially and finally occupied single-particle 
states, with the latter excluding the first occupied one,

where j1 < · · · < jN ∈
{

j ∈ {1, . . . , J} : n
(i)
j = 1

}

 and 

j′1 < · · · < j′N ∈
{

j ∈ {1, . . . , J} : n
(f )
j = 1

}

 are the ini-
tially, respectively finally, occupied single-particle states.

For later reference, we also define P̄i/f  as the comple-
ment of Pi/f  as well as

which are the (orthogonal) matrices, which put the com-
ponents corresponding to initially and finally unoccupied 
single-particle states to the first J − N positions, and those 
corresponding to occupied single-particle states to the last 
N positions, i.e., 

The integral over δθ (0) is given by

where X(1) is defined as

(105)O(m) =





∂φ(m)

∂θ (m)

∂φ(m)

∂J(m)
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

.
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,
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,
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Qi/f n(i/f ) = (0, . . . , 0

︸ ︷︷ ︸
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︸ ︷︷ ︸
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)T.
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,

It can be shown, that Eq. (111) can also be written as

with

Now, consider the integral

with

For m = 1 this is exactly the integral in Eq.  (104) after 
integrating out δθ (0) and thus defines X(2). One then recog-
nizes, that after the m-th integration, the integral is again of 
the form of Eq. (114) up to the (M − 1)-th integration. With 
this observation, the semiclassical amplitude is given by
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In the continuous limit, the discrete set of X(m) turns into a 
function of time X(t), and (by expanding it up to first order 
in τ) is given by Eq. (60), and the semiclassical amplitude 
can be written in the form given in Eq. (57).

Appendix 3: Possible classical Hamiltonians

In this part, we state different possibilities for the classical 
hamiltonian as can be derived out of similar calculations as 
in Appendix 1 without going further into detail.

Appendix 3.1: Classical Hamiltonians in the particle 
picture

First, we present two possibilities arising directly from the 
derivation presented in Appendix 1, but restrict ourselves 
to those, which contain µ and φ in a symmetric way and 
omitting the one already stated in Sect. 3. These examples 
shall just illustrate, which kinds of classical Hamiltonians 
are possible:
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
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

,

Next, consider the more general case, that the quantum 
Hamiltonian is written in the form

By splitting the interaction term also into (pairwise) diago-
nal and non-diagonal terms, one can in a similar way as in 
Sect. 7 construct the following classical Hamiltonian
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(120)
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where f1, f2, f3 and g are again arbitrary analytic functions 
satisfying Eqs. (100–102). Thereby, one should notice, that

is the second smallest number out of the set {α, β, ρ, ν} and

the second largest number out of the set {α, β, ρ, ν}.

min
{
{α, β, ρ, ν} \ {min (α, β, ρ, ν)}

}

max
{
{α, β, ρ, ν} \ {max (α, β, ρ, ν)}

}

Appendix 3.2: Classical Hamiltonians in the hole picture

The cases considered above, we call particle picture, since 
the boundary conditions are such, that 

∣
∣φj

∣
∣2 = 1 corre-

sponds to the j-th single-particle state being occupied, 
while 

∣
∣φj

∣
∣2 = 0 corresponds to the j-th single-particle state 

being empty. However, the role of occupied and unoccu-
pied states can be reversed, if Eqs. (88) are replaced by
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,

where the integrations over θ (i) and φ(0) run over those components,  
which are initially empty µ(0)

j = (1 − n
(i)
j ) exp(iθ

(i)
j ), as well as
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Inserting the integrals like this results in the following path integral:

with the classical hamiltonian

(125)
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