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Abstract An augmented optimisation of a previously

described (Richings and Karadakov in Mol Phys 105:2363,

2007), variationally stable, Hartree–Fock style excited-

state wavefunction is presented. The matrix of second

derivatives (Hessian) of the electronic energy with respect

to the molecular orbital coefficients is derived, and the

matrix elements, necessary for the evaluation of the

derivatives, are explicitly laid out. The Hessian is then used

in a second-order optimisation procedure to demonstrate

the significant improvement, in comparison with the simple

steepest descent method used previously, in the rate of

convergence of the energies of the selection of small

molecules from the earlier work. The improvement is both

in terms of the computational time required and in the

tighter convergence of the gradient norms. The former

factor is particularly significant when using an unrestricted

reference wavefunction. A brief discussion of the merits

and disadvantages of the use of the Hessian, as well as

ideas for future work to improve to further improve the

method, is also included.

Keywords Excited states � Variationally stable

excited-state wavefunctions � Extended pairing
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1 Introduction

The accurate characterisation of electronically excited

states is of paramount importance in the description of both

absorption (UV/Vis) and emission (fluorescence) spec-

troscopies. In particular, the accurate evaluation of the

energy required to excite a molecule from its ground

electronic state to an electronically excited state is crucial

in interpreting or predicting spectra.

In a previous communication [1], we presented a general

method for calculating the wavefunction and energy of the

first electronic excited state. This technique relies on the

minimisation of the energy of a normalised, trial Slater

determinant, constrained to remain orthogonal to the opti-

mal, ground-state Hartree–Fock (HF) determinant, jU0i,
through the use of a projection operator [2–5]. If

P̂ ¼ jU0ihU0j, then

jUP
1 i ¼ ð1� P̂ÞjU1i ð1Þ

where jU1i is the trial determinant. Assuming that the

wavefunctions are real, then the energy expectation value

of this constrained wavefunction is

E1¼
hU1jĤjU1i�2hU1jĤjU0ihU1jU0iþE0hU1jU0i2

1�hU1jU0i2
ð2Þ

where E0 ¼ hU0jĤjU0i and the constant, nuclear repulsion

can be added to give the total energy. This energy

expression can then be minimised by mixing in the virtual

orbitals in the orthogonal complement to the subspace,

spanned by the spin-orbitals in the trial determinant. The

minimisation occurs by use of the vector of partial deriv-

atives of the energy, taken with respect to the mixing

coefficients of the set of virtual orbitals, fj/tig, a mini-

misation by steepest descent.
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It was found that this method yields energies in excel-

lent agreement with experimental data, with some signifi-

cant improvements over more complex techniques such as

configuration interaction with singles [6], time-dependent

HF, symmetry adapted cluster configuration interaction [7,

8], and equations-of-motion-coupled cluster. However, the

rate of convergence of the procedure was found to be very

slow. It was thus decided to implement a more powerful

optimisation routine using the matrix of partial second

derivatives or Hessian. The advantages of using such a

method are discussed by Fletcher [9], but the main reason

for doing so here is that the choice of the direction of

descent during the optimisation is often more effective than

simply following the direction of steepest descent. The

implications of this will be discussed more fully, later on.

Since our original work, research into calculating elec-

tronically excited states, using single-determinant approx-

imations based on HF and density functional theory (DFT),

has continued in other groups. In the HF arena, Tassi and

co-workers have recently introduced an unrestricted HF

(UHF)-based method to calculate excited states, where

orbitals are varied to minimise the required energy [10].

The variations are restricted and orthogonality is enforced

between the ground- and excited-state orbitals to ensure the

excited state wavefunction is orthogonal to that of the

states below it. The approach has subsequently been

extended to deal with multiple excitations [11].

In the DFT regime, recent work by Ziegler and others

has focused on the constricted variational DFT method to

nth-order (CV(n)-DFT) [12], where the excited-state den-

sity is optimised by use of unitary transformations amongst

the occupied and virtual orbitals. By limiting the varia-

tional space, orthogonality to the ground state is ensured.

The initial implementation used a variational procedure up

the second-order in the transformations, with higher-order

terms (up to n) being treated perturbatively. Subsequently,

the higher-order terms were also included variationally to

give the self-consistent field CV(n)-DFT method (SCF-

CV(n)-DFT) [13, 14]. This may be extended to multiple

excitations, but, similar to our method, suffers from spin-

contamination due to the multi-reference nature of open-

shell systems. The most recent improvement to this class of

methods has been to allow the excited-state orbitals to relax

in response to changes in the Coulomb and exchange

potentials due to the excitation [15]. In the previous

implementations, the occupied b and some, non-partici-

pating a-orbitals were frozen, but here they are allowed to

relax to second-order in the transformations. As such the

method is known as the relaxed-SCF-CV(n)-DFT method

[15].

The spin-contamination problem afflicts many of the

simple methods used to calculate excited states; one way

to avoid the problem is to use the spin-restricted open-

shell Kohn–Sham DFT method (ROKS), originally aimed

at ground-state calculations [16–18]. More recently, it has

been used to calculate excitation energies and Stokes

shifts [19]. The spin-contamination is avoided by carry-

ing out spin-adaptation during the energy optimisation

rather than being dealt with a posteriori as in the other

methods. In fact, as the singlet and triplet orbitals are the

same, the purification is exact in this case. ROKS avoids

variational collapse, but can suffer from mixing of the

ground and excited states leading to non-orthogonality of

the two states. This is rectified by the use of level

shifting [19].

Straddling the wavefunction and density functional

worlds, the maximum-overlap method (MOM) [20–22]

(related to the excited-state DFT method [23]) takes a

different approach to the optimisation of the excited state.

Orthogonality between the ground- and excited-state orbi-

tals or determinants is not used, but variational collapse is

avoided (although this is not guaranteed) by optimising the

energy such that the occupied orbitals at any particular step

are those which overlap most strongly with those from the

previous step. This method has the advantage over the

others in that higher excited states may be calculated

without the need to calculate all lower lying states first; it

does, however, suffer from the common problem of spin-

contamination.

Also of use in calculating excited states in the HF or

DFT worlds is the optimised effective potential method

(OEP) [24–26] where each orbital obeys a single-particle

Schrödinger equation with local potential Veff. The varia-

tion is in the potential rather than in the orbitals them-

selves, meaning that the usual delocalised exchange

potentials are not needed. Explicit orthogonality to the

ground state is ensured via the orbitals and the method has

the advantage of being able to deal with multiple excita-

tions [27].

The aims of this communication are to present the

derivation of the elements of the Hessian; to indicate how

the Hessian is implemented into the optimisation routine;

to assess the improvements in the convergence rate of the

method; and to indicate the further work that needs to be

carried out to improve the method so that it can compete

with more established methods for calculating excited-state

energies.

2 Second derivative of the energy

For clarity, the notation used previously [1] will be reca-

pitulated in what follows, with further definitions added as

required. For reasons outlined in our earlier work [1], the

gradient vector is only evaluated where the mixing coef-

ficients are zero, and so it will be for the Hessian matrix.
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2.1 Matrix elements

We initially present expressions for the matrix elements,

required for the generation of the Hessian, in terms of the

molecular spin-orbitals in the trial and ground-state deter-

minants. Having done this, it will be impractical, for rea-

sons of space, to then substitute the appropriate expansions

into the expressions for the Hessian elements. The reason

for this is that each matrix element may take a variety of

related forms based upon the orthogonality constraints, as

outlined before [1], placed upon the constituent orbitals.

The Hamiltonian matrix elements involving just the trial

determinant or just the ground-state determinant can be

evaluated as usual, using Slater’s rules [28, 29]. The

complications arise in evaluating matrix elements involv-

ing both the trial and ground-state determinants. By use of

the pairing theorem of Amos and Hall [30], the overlap of

the transformed ith trial and jth ground-state orbitals is

defined:

hijj0i ¼ kidij 0� ki� 1 ð3Þ

Note that in the above and in all following equations,

ground-state orbitals are distinguished from the trial orbi-

tals by addition of a subscript zero.

With the spin-orbitals so paired, the overlap of the two

determinants, each constructed from N spin-orbitals, is

simply defined as

K ¼
YN

i¼1

ki ð4Þ

From this, we can then define a series of cofactors of the

determinant of orbital overlaps, which will be of use

shortly (we will have use for cofactors with between one

and four indices missing from the product)

Ki...p ¼
Y

m¼1

N

m 6¼i;...;p

km ð5Þ

The Hamiltonian matrix element between the trial and

ground-state determinants is defined in Eq. (14) of Ref. [1]

as

H10 ¼ hU1jĤjU0i ¼
1

2

XN

i¼1

hijĥKi þ F̂10;iji0i ð6Þ

where ĥ is the usual one-electron operator and

F̂10;i ¼ ĥKi þ
XN

j6¼i

Kij Ĵ10;j � K̂10;j

� �
ð7Þ

and Ĵ10;j and K̂10;j are generalised Coulomb and exchange

operators such that, for arbitrary orbitals p and

q; hpjĴ10;jjq0i ¼ hpjjq0j0i and hpjK̂10;jjq0i ¼ hpjjj0q0i.

The above matrix elements have been previously

defined in Ref. [1], all involving only occupied orbitals in

both trial and ground-state determinants. We now move on

to describe those matrix elements involving the trial

determinant where one or more orbitals have been substi-

tuted by a virtual orbital (or two) (denoted by the indices

t and u). Initially, we note those expressions used in our

previous work, but not separately presented there. They are

the Hamiltonian matrix elements between a singly substi-

tuted trial determinant (promotion from orbital m to orbital

t), jU1;mti, and the HF ground state. There are three cases

depending on the exact relationship of the two orbitals in

the indexing scheme used.

hU1;mtjĤjU0i ¼
am

2

XN

i 6¼m

hijKimĥþ F̂10;mji0i

þ htjF̂10;mjm0i where t ¼ mþ Nð Þ
ð8aÞ

hU1;mtjĤjU0i ¼ htjF̂10;mjm0i
� aðt�NÞhðt � NÞjF̂10;ðt�NÞmjm0i

where mþ N 6¼ t� 2Nð Þ
ð8bÞ

hU1;mtjĤjU0i ¼ htjF̂10;mjm0i where t [ 2Nð Þ ð8cÞ

where am ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2

m

q
is the overlap between a trial, virtual

orbital and the ground-state orbital with which it is paired

using the extended pairing theorem [31, 32]. The only

previously undefined term above is the Fock-type operator

on the second line of Eq. (8b), which is simply

F̂10;ij ¼ ĥKij þ
XN

k 6¼i;j

Kijk Ĵ10;k � K̂10;k

� �
ð9Þ

The first new equation that we present is that for the

overlap between a doubly substituted trial determinant and

the ground state. Defining jU1;mt;nui as the determinant

obtained from jU1i by replacing occupied orbitals /m and

/n with virtual orbitals /t and /u, respectively, we get the

overlap

hU1;mt;nujU0i ¼ amanKmn dm;ðt�NÞdn;ðu�NÞ
�

�dm;ðu�NÞdn;ðt�NÞ
�
ðm; n ¼ 1; 2; . . .;N;

t; u ¼ N þ 1;N þ 2; . . .; LÞ ð10Þ

where L is the total number of occupied and virtual spin-

orbitals for each spin a or b, or, equivalently, the number

of basis functions. The next set of matrix elements are

those Hamiltonian elements between two singly substituted

trial determinants. As the two determinants contain

orthonormal orbitals, the elements can be expanded

through use of Slater’s rules. There are two such elements
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hU1;mtjĤjU1;mui ¼ dtu

XN

i 6¼m

ijĥþ 1

2

X

j 6¼m

Ĵj � K̂j

� �
ji

* +

þ tjĥþ
XN

j6¼m

Ĵj � K̂j

� �
ju

* +
ð11Þ

where Ĵj and K̂j are the usual Coulomb and exchange

operators between orbitals from the same set. Likewise,

when m = n

hU1;mtjĤjU1;nui¼� hntjjmuiþdtuhnjĥþ
XN

j 6¼m;n

Ĵj� K̂j

� �
jmi

 !

ð12Þ

Here we use the common notation, habjjcdi, to denote an

anti-symmetrised two-electron integral with respect to the

inverse of the inter-electronic distance.

The final set of Hamiltonian matrix elements to consider

are those where a determinant, with two occupied orbitals

substituted by different virtual orbitals, is involved (the

determinant vanishes if the virtual orbitals are the same).

The first is that between the doubly substituted and un-

substituted trial determinant, which may be evaluated using

Slater’s rules. It is simply

hU1;mt;nujĤjU1i ¼ htujjmni ð13Þ

We now turn to the most troublesome integral present in any

of the expressions for the Hessian, the Hamiltonian element

between the doubly substituted trial determinant and the

ground state. The difficulties here arise because the orbitals

in each determinant come from different orthonormal sets.

The general expansion for such an integral was given in

Eq. (6) of Ref. [1]. In the case considered here, the pairing

theorems [30–32] are applied between the trial (both

occupied and virtual) and ground-state orbitals, thus sim-

plifying the equations. It should also be noted that overlaps

between virtual orbitals and the ground-state orbitals need

to be considered in evaluating the overlap cofactors. In

doing so, all vanishing terms can be located, reducing the

effort required in evaluating the matrix elements.

The first such element is that where t = m ? N and

u = n ? N, i.e. the index of the virtual orbital (within the

subspace of virtual orbitals) is equal to that of the orbital it

replaces. This means that the tth virtual orbital is paired

with the mth ground-state orbital and likewise for the uth

virtual and nth ground-state orbital.

hU1;mt;nujĤjU0i ¼
aman

2

XN

i 6¼m;n

hijĥKimn þ F̂10;imnji0i

þ Kmnh N þ mð Þ N þ nð Þjjm0n0i
þ anh N þ mð ÞjF̂10;mnjm0i
þ amh N þ nð ÞjF̂10;mnjn0i

ð14Þ

where, in addition to those explained above, we have

defined one new operator

F̂10;imn ¼ ĥKimn þ
XN

j 6¼i;m;n

Kijmn Ĵ10;j � K̂10;j

� �
ð15Þ

The simplest expansion of the Hamiltonian matrix element

arises when both the tth and uth virtual orbitals are unpaired

with any of the ground-state orbitals i.e. t,u [ 2N.

Nearly all terms are exactly zero so we are simply left with

hU1;mt;nujĤjU0i ¼ Kmnhtujjm0n0i ð16Þ

The next matrix element to consider is the Hamiltonian

element between the ground state and the substituted trial

determinant where t = N ? m and N ? n = u B 2N, i.e.

the tth orbital is paired with the mth ground-state orbital,

but the uth virtual is not paired with the nth ground-state

orbital. If t = u then clearly the matrix element vanishes by

anti-symmetry, otherwise

hU1;mt;nujU0i ¼ amhujF̂10;mnjn0i
� amaðu�NÞh u� Nð ÞjF̂10;ðu�NÞmnjn0i
� aðu�NÞKðu�NÞmn

� h N þ mð Þ u� Nð Þjjm0n0i
þ Kmnh N þ mð Þujjm0n0i

ð17Þ

The expression where N ? m = t B 2N and u = N ? n is

easily found by interchanging m and n, and t and u in the

above equation.

Next, we deal with expansions of the Hamiltonian

matrix element characterised by the fact that substituted

virtual orbitals are both paired with ground-state orbitals,

neither of which corresponds to the excited-state orbital

which has been removed. In effect, this means that the

overlap of the two determinants has two non-zero, off-

diagonal virtual-ground overlaps. As noted above, if t = u,

then the doubly substituted determinant vanishes and so

does the matrix element. Hence we are only concerned

with expansions where this is not the case.

There are three distinct expressions. The first obeys the

conditions that m = u - N and n = t - N are fulfilled;

neither virtual orbital is paired with either of the ground-

state orbitals, of same index as the removed trial orbitals.

The expression is thus

hU1;mt;nujĤjU0i ¼ Kmnhtujjm0n0i
� aðt�NÞKðt�NÞmnhðt � NÞujjm0n0i
� aðu�NÞKðu�NÞmnhtðu� NÞjjm0n0i
þ aðt�NÞaðu�NÞKðt�NÞðu�NÞmn

� hðt � NÞðu� NÞjjm0n0i ð18Þ

A second, more specific, case to consider, is that where

one of the virtual orbitals is paired with the ground-state
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orbital of same index as the excited-state orbital, replaced

by the other virtual orbital. In other words, when either

u = m ? N or t = n ? N, but not both. Taking the first,

then

hU1;mt;nujĤjU0i ¼ Kmnhðnþ NÞujjm0n0i
� anhujF̂10;mnjm0i
þ anaðu�NÞhðu� NÞjF̂10;ðu�NÞmnjm0i

ð19Þ

If t = n ? N, then the expansion can be found by simply

switching the indices m with n, and t with u. Finally, if

u = m ? N and t = n ? N, i.e. both virtuals are paired

with the ground-state orbital of same index as the other

virtual, then

hU1;mt;nujĤjU0i ¼ Kmnhðnþ NÞðmþ NÞjjm0n0i

� aman

2

XN

i 6¼m;n

hijKimnĥþ F̂10;imnji0i

� amhðmþ NÞjF̂10;mnjn0i
� anhðnþ NÞjF̂10;mnjm0i

ð20Þ

If one of the virtual orbitals is paired with the ground-

state orbital of same index as the substituted excited-state

orbital, and the other virtual is unpaired, then

t = m ? N and u [ 2N, or u = n ? N and t [ 2N. For

the former case

hU1;mt;nujĤjU0i ¼ amhujF̂10;mnjn0i
þ Kmnh mþ Nð Þujjm0n0i

ð21Þ

The latter case is simply found by interchanging the indices

m with n, and t with u.

A related scenario yields the final set of matrix elements.

Here the trial determinant is altered by substitution with a

virtual orbital that is not paired with any ground-state

orbital, and another which is paired with a ground-state

orbital of different index to the trial orbital it replaces, i.e.

m ? N = t B 2N and u [ 2N, or n ? N = u B 2N and

t [ 2N. These can both be separated into two sub-cases.

Taking the former as a basis, if t = n ? N, then the

expansion is

hU1;mt;nujĤjU0i ¼ �aðt�NÞhujF̂10;mnjm0i
þ Kmnhtujjm0n0i

ð22Þ

The equivalent situation in the latter case, where

u = m ? N, is easily found by the interchange of the

appropriate indices.

The second sub-case occurs where t = n ? N (or

u = m ? N when indices are swapped) and yields

hU1;mt;nujĤjU0i ¼ aðt�NÞKðt�NÞmnhðt � NÞujjm0n0i
þ Kmnhtujjm0n0i

ð23Þ

This is the final, new matrix element required for efficient

evaluation of the second derivative of the excited-state

energy when all mixing coefficients are set to zero.

2.2 Second derivatives of the trial determinant

Having derived all matrix elements required for the eval-

uation of the analytic Hessian, we present the formula into

which these expressions should be substituted.

To find the Hessian, we take derivatives of the energy

expression with respect to the coefficients of the virtual

orbitals used to modify the trial orbitals, {dmt}. Conse-

quently, only the trial determinant is affected by such

operations. Using the definition of a trial orbital from Ref.

[1]

/
0

m ¼ ~/mh ~/mj ~/mi�1=2; ~/m ¼ /m þ
XL

t¼Nþ1

dmt/t ð24Þ

Remembering that we only evaluate the Hessian when all

mixing coefficients are zero, we note that the derivatives of

the trial orbitals are

oj/mi=odnt d¼0 ¼ dmnj/tij ð25aÞ

o2j/ii=odmtodnu d¼0 ¼ �dmndtuj/mij ð25bÞ

As the trial determinant is just an anti-symmetrised

product of the trial orbitals, we can simply evaluate its

derivatives

ojU1i=odmt d¼0 ¼ jU1;mti
�� ð26aÞ

o2jU1i=odmtodmu d¼0 ¼ �dutjU1ij ð26bÞ

o2jU1i=odmtodnu d¼0 ¼ 1� dutð ÞjU1;mt;nui ðwhere m 6¼ nÞ
��

ð26cÞ

The general expression for the Hessian elements is simply

formed by application of the standard rules of differential

calculus to the energy expression, Eq. (2). Using the

simplified notation, qmt = q/qdmt, we get the rather

cumbersome

onuomtE1 ¼ 1� jhU1jU0ij2
h i�4

� 2 1� jhU1jU0ij2
h i2

homtU1jU0ihU0jU1ionuE
0

1

h�

þ honuU1jU0ihU0jU1iomtE
0

1 þ homtU1jU0ihU0jonuU1iE
0

1

þhonuomtU1jU0ihU0jU1iE
0

1

i

þ 8 1� jhU1jU0ij2
h i

homtU1jU0ihU0jonuU1ijhU1jU0ij2

þ 2 1� jhU1jU0ij2
h i3

honuomtU1jĤjU1i þ homtU1jĤjonuU1i
�

� honuomtU1jĤjU0ihU0jU1i � homtU1jĤjU0ihU0jonuU1i
� honuU1jĤjU0ihU0jomtU1i � hU1jĤjU0ihU0jonuomtU1i
þE0 honuomtU1jU0ihU0jU1i þ homtU1jU0ihU0jonuU1i½ ��g

ð27Þ
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where E1

0
is the energy expression defined as in Eq. (2), but

with orbitals updated according to Eq. (24). Equation (26)

can then be used in this expression to get an equation

involving the matrix elements between different determi-

nants. Subsequently, the various elements in terms of the

different sets of molecular orbitals, as outlined above, can

be substituted in, thus giving a set of working equations

allowing the evaluation of all elements of the Hessian.

3 Computational details

Having derived the necessary matrix elements, a Fortran

subroutine was written to evaluate the required integrals

and to combine them so as to form the Hessian matrix. This

routine was then integrated into the operational code, used

to calculate the excitation energies of molecular systems.

The original code relied on the method of steepest

descent to locate the minimum of the excited-state energy.

By evaluating the gradient vector, the direction of steepest

descent is found, so that by initiating a linear search in the

direction of the negative of the gradient, the minimum in

that direction is found. The occupied orbitals may then be

paired, and a new virtual space found, before a new

direction is chosen, and the process is repeated. Such a

method is very robust, as the search always proceeds in a

downwards direction.

Having implemented the Hessian, it becomes possible to

use a second-order optimisation procedure based on

Newton’s method. The Hessian matrix is inverted using the

Gauss–Jordan method [33] and a direction of search

determined by the evaluation of

x ¼ �g:ðHÞ�1 ð28Þ

at d = 0 where g and H are the gradient vector and Hessian

matrix respectively. A line search [33] can then be per-

formed in this direction. This is done rather than a simple

jump to the point dNew = dOld ? x [9]. The reason for this

is that the line search eliminates the possibility that the full

step given by the Newton method may lead to an increase

in energy, instead finding the lowest point in that direction.

This is the approach taken in our implementation of the

optimisation procedure. In fact, even this method may not

lead to an appropriate direction of descent, particularly if

the initial point is far from the minimum and the Hessian is

non-positive definite. The possibility of this is taken care of

in our code, by reversion to the steepest descent method

when the linear search fails to provide a reasonable energy

decrease. The steepest descent approach ensures that the

minimum is neared, and when the Newton method provides

a reliable search direction, then it is used to maximise the

efficiency of convergence.

4 Comparison of steepest descent and modified newton

optimisation

In this section, the improvements in convergence brought

about by the implementation of the modified Newton

optimisation routine, over the original steepest descent

method, will be presented and discussed. There are two

aspects to this, the total time taken to reach the excited-

state wavefunction from a given starting point, and also the

final gradient norm. The first part is evident, a reduced

calculation times implies an improved optimisation

method. However, the total time is influenced by two

factors, the total number of iterations and the time taken for

each iteration. An increase in the average iteration time is

acceptable if the reduction in the number of iterations

required is reduced by a greater proportion, hence reducing

the overall time taken. With regard to the second aspect

mentioned, when searching for the minimum, we are

searching for the wavefunction where the norm of the

gradient vector, defined as
ffiffiffiffiffiffiffi
g:g
p

, is equal to 0. However,

when dealing with computational procedures, such an

idealised situation rarely, if ever, occurs, due to accumu-

lated rounding errors and the inherent imprecision of the

computer. Our convergence criteria were that the total

energy of the excited state should change by less than

10-12Eh and that no element of the gradient vector should

be greater than 10-10. Once these conditions have been

met, the gradient norm should be as close to 0 as possible.

Tighter convergence of the gradient norm is desirable and

therefore the relative convergence of the two methods will

be compared. It should also be clear that the final excited-

state energy should be the same to a given precision, when

using either of the optimisation methods.

The number of iterations required for each calculation,

the average times for those iterations, as well as the total

calculation times, and the final convergence of the gradient

norms in calculations on the systems considered in our

earlier work [1] are listed in Table 1. Calculations were

carried out AMD Opteron machines rated at 1,795 MHz. It

should be noted here that after corrections to the code and a

change of the machine on which the calculations were

performed, the excitation energies of N2 and C2 (unre-

stricted reference), given in the first paper [1], can be

corrected to 8.104 and 1.158 eV respectively. All calcu-

lations were carried out at the experimental gas-phase

geometries given in Ref. [1] using the 6-31G** basis set.

Examining the table, the conclusions that can be drawn

from the initial data are clear. The use of an optimisation

routine based on a second-order method generally gives

significant savings in the total amount of time required to

find the energy minimum. The exception is hydrogen,

which will be discussed shortly.
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The reason for the decreases in total timings for the

systems including heavier atoms is that the total number of

iterations required is significantly reduced in all cases. At

worst the decrease is by a factor of 10 for C2 (using a

restricted reference wavefunction), and at best a factor of

over 80 in the case of unrestricted reference C2, with the

other two cases falling in between these extremes. For

these systems, the average iteration times are significantly

increased by using the second-order optimisation; ranging

from a factor of 3.8 for N2 up to a factor of 5.9 for unre-

stricted C2. However, these increases are more than out-

weighed by the reduction in the total number of iterations,

meaning that, in all cases, the total times for the calcula-

tions were reduced.

The reduction was most pronounced in the case of C2

using an UHF determinant as the ground state, where there

was a reduction in the total time by a factor of over 12. This

improvement is mainly due to the extremely slow con-

vergence of the wavefunction and energy, in terms of the

number of iterations needed, using the steepest descent

approach. The slow optimisation indicates a relatively flat

energy surface where the minimum energy is reached by a

series of short steps. The use of the full Hessian clearly

generates more effective search directions, for the linear

search, in locating the minimum.

In the case of H2, the total calculation time increased by

about 40 %, with respect to the original steepest descent

procedure, when using the Hessian-based optimisation.

There are two reasons for this: first is the rise in average

iteration time by a factor of 7.2, coupled with a decrease in

the number of iterations by a factor of only 7. The actual

optimisation thus takes slightly longer for the second-order

approach. There is also an increase in the time of non-

iteration parts of the code by about 0.018 s for the second-

order calculation. However, as both calculations only take

on the order of one second, the loss in time is not

problematic.

The second point to note from the table is that the con-

vergence of the gradient norms, in all cases when using the

Hessian, is tighter than when using just the gradient infor-

mation, sometimes by several orders of magnitude. This

reflects the better characterisation of the energy surface

when using second derivatives of the energy function. It

should, however, be pointed out that the energies obtained

were the same regardless of optimisation technique.

In conclusion, the use of a full, analytic Hessian matrix

increases the amount of CPU time required for each iter-

ation, but the fact that the majority of terms in Eq. (32) are

already calculated when evaluating the energy and gradient

means that this increase is not of major significance. Allied

with the large reduction in the number of iterations needed

to get an excitation energy, the use of the Hessian-based

method is much the preferable method on time grounds.

It should, however, be noted that the optimisation times

were very slow in the larger molecules, even with the

improvements afforded by the introduction of the second-

order method. This will become even more of a problem if

it is desired to perform calculations on larger molecules or

to use larger basis sets. A major bottleneck appears to be

the need to carry out large numbers of 4-index transfor-

mations to get the necessary integrals to evaluate the

matrix elements described earlier. Clearly further work will

be required to improve this significantly, but the benefits of

using the more sophisticated optimisation are, nonetheless,

clear.

Also of concern when doing calculations using larger

molecules and/or basis sets is the storage of the large,

double-precision Hessian matrix. To overcome this scaling

issue, it would be possible to use an iterative method to

solve Eq. (33), in the form g = -H.x, without storage of

Table 1 Comparison of convergence rates, both in terms of number of iterations and timings, and final gradient norms between the optimisation

methods using steepest descent and those using a Hessian-based technique on small molecular systems

Steepest descent Modified newton

Iterationsa Averageb Totalc Normd Iterationsa Averageb Totalc Normd

H2 35 0.0225 0.834 7.45 9 10-8 5 0.1622 1.20 1.97 9 10-8

H2O 99 313 31,452 1.45 9 10-6 6 1,314 10,835 8.96 9 10-10

C2
e 109 748 82,595 1.59 9 10-6 11 4,298 56,078 4.52 9 10-11

C2
f 1,520 728 1,107,902 8.76 9 10-7 18 4,330 86,666 2.18 9 10-7

N2 122 1,297 159,938 3.08 9 10-7 7 4,885 44,426 9.56 9 10-11

a Total number of iterations required to reach convergence
b Average CPU time per iteration in seconds
c Total CPU time for the calculation in seconds
d Final gradient norm,

ffiffiffiffiffiffiffi
g:g
p

e Results obtained using a RHF ground-state wavefunction
f Results obtained using a UHF ground-state wavefunction
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the elements of the Hessian. As motivation for future work,

we provide a brief outline of how such a method could be

implemented for our problem based upon the method of

conjugate gradients [33].

Initially, we form the gradient vector, g, at the starting

point of the energy iteration and also form a trial search

direction vector, x0. We can then form the vector

v0 ¼ r0 ¼ gþH:x0 ð29Þ

It can easily be seen that this vector can be formed on-the-

fly, i.e. without ever storing the whole Hessian matrix; its

product with the trial vector can be formed element-by-

element by evaluating the Hessian terms as necessary.

From this starting point, we can then perform the following

iteration (valid for symmetric matrices, which the Hessian

is), from i = 0 to a point where the calculation is

considered converged [33].

ai ¼ �
ri:ri

vi:H:vi

ð30aÞ

xiþ1 ¼ xi þ aivi ð30bÞ
riþ1 ¼ ri þ aiH:vi ð30cÞ

bi ¼ �
riþ1:riþ1

ri:ri

ð30dÞ

viþ1 ¼ ri þ bivi ð30eÞ

As the initial step in this iteration, we can form the

product of the Hessian with vi, on-the-fly, and store the

result. This vector can then be used to form ai and then ri?1

by taking the inner product with vi and simple

multiplication by a scalar, respectively. All other terms

can be formed using scalar and vector multiplication only,

and as such, each iteration in this procedure can thus be

carried out by evaluating the Hessian elements just once. In

practice, the iterations would continue until the norm of the

residual vector ri falls below some pre-determined, small

value, at which point xi becomes the search direction used.

There would also need to be a check performed at the start

of the sequence of iterations to check whether the Hessian

is positive definite, if not a simple, steepest descent

procedure can be reverted to for the energy minimisation.

At no point during the iterations is the whole Hessian

stored so this method of generation of the search directions

may be used in calculations on larger systems than those

considered here. It will be useful to examine the utility of

such a method in work to be carried out subsequently, in

particular the trade off between the reduced memory

demands and the need to repeatedly evaluate the same

Hessian elements.

The use of an iterative method to generate the search

directions for the energy optimisation would also mean the

effort required in inverting the Hessian matrix, a process

which scales with the cube of the product of the numbers of

trial occupied and virtual orbitals (i.e. of order N3(L -

N)3), can be avoided. It would thus be useful to examine, in

later work, the relative merits of the direct solution of

Eq. (33) by Hessian inversion and the iterative solution of

the same as outlined above in terms of the time taken.

Finally, it should be remarked that other optimisation

routines, more sophisticated than steepest descent but less

demanding than use of the full Hessian, were tried in

implementing this excited-state method. In particular, the

BFGS routine [33] using an approximate Hessian, updated

after each iteration, was tested. However, this method

failed to locate the energy minimum, the reason apparently

being that our method relies on creating a new trial orbital

space in which to search at each stage. This means that the

updating of the Hessian, based upon past search directions,

is completely inaccurate, leading to search directions

which are of no use in decreasing the energy towards the

minimum. It would, however, be useful in further work to

experiment further with the energy optimisation routines in

the hopes of finding a method more powerful than steepest

descent but requiring less computational effort than form-

ing and storing the full Hessian.

In particular, it has been suggested that the use of uni-

tary orbital transformations would make procedures based

upon approximate Hessians workable for this method of

calculating excited-state energies. To do so it would be

necessary to define a unitary matrix, A, acting on the space

of all trial orbitals (occupied and virtual) to produce an

updated, and hopefully improved, set of occupied orbitals.

For each set of spin-orbitals, labelled by x (which can be a
or b), we let

UTðxÞ ¼ /o
1ðxÞ. . ./o

NðxÞ/v
Nþ1ðxÞ. . ./v

LðxÞ
� �

ð31Þ

which can then be updated as

UðxÞ ! U
0 ðxÞ ¼ AðxÞUðxÞ ð32Þ

The variables, we are trying to optimise, then become the

elements of the matrices A(a) and A(b). A possible

downside of this method would be that the gradient ele-

ments would no longer just be calculated at points where

the variables were zero, meaning added complexity in

these evaluations. However, further investigation into the

possibilities of this approach would be worthwhile.

The problems surrounding the storage of the Hessian as

well as the need to speed up the calculations are major

issues which will need to be addressed if this method is to

become competitive with other, established methods for

calculating excited states e.g. CC2. In addition, it would

also be useful in further work to use the Hessian’s eigen-

values to examine the stability of the wavefunctions gen-

erated here to ensure that they do in fact represent energy

minima rather than saddle points.
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With reference to the capabilities of the other single-

determinant-type methods mentioned in the introduction,

further work would be useful to see whether we can extend

our method to deal with multiple excitations as the UHF

method of Tassi et al. [10, 11] or the CV(n)-DFT family

[12–15] can, or whether the spin-contamination issues

outlined in our earlier paper [1] can perhaps be dealt with

in a similar way to ROKS [19], where spin-purification

takes place during the optimisation. Contrary to some of

the other methods, ours uses a full variational space, with

all excited-state orbitals being optimised, and ensures

orthogonality to the ground state, a feature of the exact

solution. In conclusion, the idea of using simple wave-

functions or densities to calculate excited states, giving

results in decent agreement with experimental data, is of

significant interest. This is particularly true when dealing

with large molecular systems and it is to be hoped that

future investigations will continue to yield promising

results.
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