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Abstract A detailed comparison of six multivariate

algorithms is presented to analyze and generate Raman

microscopic images that consist of a large number of

individual spectra. This includes the segmentation algo-

rithms for hierarchical cluster analysis, fuzzy C-means

cluster analysis, and k-means cluster analysis and the

spectral unmixing techniques for principal component

analysis and vertex component analysis (VCA). All algo-

rithms are reviewed and compared. Furthermore, compar-

isons are made to the new approach N-FINDR. In contrast

to the related VCA approach, the used implementation of

N-FINDR searches for the original input spectrum from the

non-dimension reduced input matrix and sets it as the

endmember signature. The algorithms were applied to

hyperspectral data from a Raman image of a single cell.

This data set was acquired by collecting individual spectra

in a raster pattern using a 0.5-lm step size via a com-

mercial Raman microspectrometer. The results were also

compared with a fluorescence staining of the cell including

its mitochondrial distribution. The ability of each algorithm

to extract chemical and spatial information of subcellular

components in the cell is discussed together with advan-

tages and disadvantages.

Keywords Chemometrics � Raman spectroscopy � Image

processing � Hyperspectral data

1 Introduction

The analytical power of single-point Raman spectroscopy

has been applied in biological and medical applications, and

in the last decade, microscopic Raman imaging is becoming

more and more popular [1]. The main inherent advantage of

Raman spectroscopy lies in the label-free nature and high

information content of the data. Recent technical progress

has led to the development of sensitive and accurate

microscopic systems for the collection of Raman images.

Using high-magnification microscope objectives, the exci-

tation laser can be focused to a diffraction limited spot of

less than 1 lm diameter from which the Raman scattered

light is collected. As most eukaryotic cells are larger and

contain distinct subcellular compartments, a Raman image

can be significantly more informative than a single Raman

spectrum. Depending on the type and size of a given sam-

ple, image acquisition times range from minutes to hours. In

addition, non-linear spectroscopic techniques such as

coherent anti-Stokes Raman scattering and stimulated

Raman scattering recently emerged to bring the acquisition

times down to seconds per image [2, 3].

Raman microscopes collect a full spectrum for each

image pixel, producing a hyperspectral data set with an

enormous amount of chemical information; thus, the need

for efficient ways for data analysis arises. The most widely
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C. Matthäus � C. Krafft (&) � J. Popp

Institute of Photonic Technology, Jena, Germany

e-mail: Christoph.Krafft@ipht-jena.de

M. Diem

Department of Chemistry and Chemical Biology,

Northeastern University, Boston, MA, USA

J. Popp

Institute of Physical Chemistry and Abbe Center of Photonics,

Friedrich Schiller University of Jena, Jena, Germany

123

Theor Chem Acc (2011) 130:1249–1260

DOI 10.1007/s00214-011-0957-1



accepted way and scope of the current paper are statistical

methods to model the sample (here: a single cell) using the

observed Raman spectra. However, it cannot be excluded

that in the future first principles, semi-empirical, and

empirical force field and molecular mechanics/molecular

dynamics simulations of the spectra and their changes in

cells, tissues, and the organism as a whole might contribute

to a better understanding of the wealth of information. For

further reading, a textbook is recommended as an intro-

duction to vibrational spectroscopy with a focus on bio-

molecules, vibrational circular dichroism, and phase

transitions (non-polar to polar solvents, solid to crystalline

phase) [4].

A fundamental challenge is that the Raman spectrum of

biological macromolecules depends on the structure and

interaction of the monomeric units. For example, the

spectra of proteins and nucleic acids constitute a complex

superposition of contributions from amino acids, nucleo-

tides, and backbone geometry. Furthermore, each Raman

spectrum of a cell contains spectral contributions of

numerous molecules within the laser focus. In the context

of disease recognition by Raman spectroscopy, unsuper-

vised and supervised algorithms have been described [5–7].

Rather than relying on single band intensities, diverse

multivariate algorithms have been developed that use the

entire spectrum for analysis. These methods can be roughly

divided into factor methods that extract spectral informa-

tion, cluster methods for partitioning a data set, and clas-

sification methods for modeling group differences. The

large number of algorithms—implemented in commercial

software as well as in user-written programs—for analyz-

ing the hyperspectral data has motivated us to perform a

comparison of advantages and disadvantages. Examples of

hyperspectral Raman data analysis include cluster algo-

rithms where the clusters and cluster memberships are

defined based on similarity of the spectra. Different

implementations are hierarchical cluster analysis (HCA),

fuzzy C-means (FCM), and k-means cluster (KMC) anal-

ysis. The segmentation can be ‘‘crisp’’ (implying that a

spectrum is assigned to one cluster only) or ‘‘soft’’,

meaning that each spectrum can be assigned to more than

one cluster with probability values between 1 and 0. False

color images can be generated based on the cluster mem-

bership assigned to each pixel in the data set, or by plotting

the probability values of each cluster. The biochemical

content of each cluster is usually analyzed using the

average cluster spectra.

Recently, spectral unmixing algorithms have been

applied to hyperspectral Raman data sets [8–11]. These

algorithms were first introduced to visible reflectance

spectra from satellite detection systems [12–14]. Most of

them are based on the following assumptions: (1) Pure

pixels are available in the data set; their spectral signature

is then defined to be an endmember. (2) All other pixels in

the data set can be described as a linear combination of the

pure pixel endmembers. The amount each endmember

contributes to a pixel is described by the abundance frac-

tion of that endmember. In general, a spectral unmixing

algorithm finds the most extreme spectra and defines them

as endmembers. If pure spectra are not present in the data

set, mixed pixels can also be used as endmembers in

algorithms like vertex component analysis (VCA) and

N-FINDR [14]. Other algorithms such as iterated con-

strained endmembers (ICE) try to compensate for this

limitation by combining spectral unmixing algorithms with

multivariate curve resolution methods [15]. The abundance

fraction is calculated by fitting the endmembers to each

spectrum in the data set. When the abundance fraction is

plotted versus the pixel coordinates, the contribution of

each endmember can be visualized.

In this paper, we compare the chemical and spatial

information that can be obtained from a Raman hyper-

spectral data set using segmentation algorithms and com-

paring them to spectral unmixing techniques. To

investigate the properties of the algorithms, we have cho-

sen a Raman data set of a cell grown in vitro. The resulting

Raman spectral images were compared with a fluorescence

image after specific staining of mitochondria. The Raman

spectral signatures of subcellular features that were

obtained from each algorithm were compared with each

other and with those reported in reference [16]. Another

summary of multivariate algorithms for the analysis of

Raman hyperspectral data sets was recently published [8].

1.1 Data handling and preprocessing

Raman microscopic imaging is performed using a Raman

spectrometer connected to a confocal microscope with a

motorized stage or a scanning mirror or by global illumi-

nation methods. In all cases, a three-dimensional data set of

dimension Nx 9 Ny 9 NR is collected, where Nx 9 Ny

denotes the number of pixels in the x and y direction and

NR the number of data points in each spectrum. Modern

confocal microscopes allow measuring Raman signals from

a diffraction limited volume in the &0.1 cubic micrometer

range and, consequently, achieving a very high spatial

resolution at the sample.

As all the data analysis algorithms described in the

following sections are applied to two-dimensional data

matrices and the measured data are three-dimensional

hyperspectral Raman data sets, the data set needs to be

reshaped into the two-dimensional matrix of dimension

NxNy 9 NR with NxNy samples and NR data points in each

spectrum. All methods give one matrix in the case of

univariate methods and crisp clustering or more matrices in

the case of FCM and spectral unmixing.
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Before applying any of the imaging algorithms, a quality

test was performed to remove spectra from the data set with

signal intensities below a given threshold. The intensity of

CH valence vibrations from 2,800 to 3,000 cm-1 was used

as criterion. The average of the removed spectra was then

subtracted from the spectra remaining in the data set,

effectively removing constant signals originating from

substrate, medium, and optical elements in the light path

and causing an offset. The spectral contributions of the cell

are better identified without this constant offset. However,

this step is not essential and, in principle, the algorithms

will also work without this quality test.

In general, the statistical data evaluations described here

compare each individual spectrum with all other spectra

within a given data set. The spectra are then sorted

according to their similarities or dissimilarities, without

any external input. For complex data sets, this unsuper-

vised approach is advantageous, since the spectral features

of the constituents are not always known. Clustering

methods relate the spectra by their variations and group

them together based on similarity. Unmixing algorithms

decompose a given data set into a new basis set based on

the greatest variance or dissimilarity. Each spectrum can

then be reconstructed as a linear combination of the new

basis vectors. The individual unmixing methods basically

differ by the type of constraints introduced to find the new

basis. All data analyses were performed in MatLab (The

Mathworks, Natick, MA) using algorithms written in house

and implemented as described in the following sections. A

selection of similar tools is available in a commercial

software package Cytospec (http://www.cytospec.com)

and in an open-source software package hyperSpec for

programming language R (http://hyperspec.r-forge.

r-project.org).

1.2 Hierarchical cluster analysis

Hierarchical cluster analysis (HCA) is a frequently used

algorithm for generating false color images from hyper-

spectral data sets. HCA calculates the symmetrical distance

matrix of size n 9 n between n spectra as a measure of

their pairwise similarity. The algorithm then searches for

the minimum distance, collects the two most similar

spectra into a first cluster, and recalculates spectral dif-

ferences between all remaining spectra and the first cluster.

In the next step, the algorithm performs a new search for

the most similar objects which now can be spectra or

clusters. This iterative process is repeated n - 1 times until

all spectra have been merged into one cluster. The most

widely used implementation of HCA applies Euclidian

distances and Ward’s algorithm for clustering. The algo-

rithm is agglomerative, employing a bottom up approach,

grouping spectra based on the intra-spectral Euclidian

distance, and linking them using the Ward’s criterion of

minimizing loss of information associated to each group

[17]. The distances between the spectra can be visualized

using tree-like, two-dimensional dendrograms in which one

axis refers to the reduction in clusters with increasing

number of iterations and the other axis to the respective

spectral distances. This algorithm enables one to examine

the clustering arrangements with different numbers of

groups and to select a scheme that may be more easily

interpretable. The cluster membership map at a defined

distance is a vector of dimension NxNy 9 1 where each

spectrum is assigned a number from 1 to p. False color

images can be constructed assigning each cluster a color

and the result refolded, thereby creating an image matrix of

dimension Nx 9 Ny 9 1. One inherent disadvantage of

HCA is that it is computationally demanding compared

with other clustering algorithms. This can however be

greatly improved by a parallel implementation of HCA,

e.g. using modern graphics cards [7].

1.3 k-means cluster analysis

The k-means cluster (KMC) analysis belongs to the parti-

tioning methods, and the basic principles were explained

by MacQueen [18]. In general, clustering is the partitioning

of a data set into clusters so that the differences between

the data within each cluster are minimized and the differ-

ences between clusters are maximized according to some

defined distance measure. Similar to the HCA algorithm,

different distance measures can be used in KMC. The

Euclidian distance usually works satisfactorily for the

Raman data sets. The algorithm first selects K random

spectra as starting centroids. Centroids denote the center or

mean of the clusters. Then, the distances are calculated

between every spectrum and these centroids. Subsequently,

each spectrum is assigned to a cluster whose centroid is

nearest. When all spectra have been assigned to the K

centroids, a new set of centroids is calculated based on the

mean of the spectra associated with each centroid. This

process is then reiterated until the assignment does not

change and the incremental improvement is below a given

threshold. An alternative stop criterion is the maximum

number of iterations. Mathematically, the KMC algorithm

relates the NxNy spectra with running sample index i into K

clusters by minimizing the cluster variance with respect to

the means {m1,…,mK}. The cluster variance is then mini-

mized by assigning each spectrum to the nearest cluster

mean mk, by calculating:

CðiÞ ¼ arg min
1\k\K

jjxi � mkjj:

The result of this algorithm is a vector of dimension

NxNy 9 1 where each spectrum is assigned a number
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from 1 to k. The membership from KMC analysis can be

plotted as false color images of dimension Nx 9 Ny 9 1

where each cluster is represented by a color. KMC

analysis can be improved by seeding such as trying out

multiple starting points and choosing the clustering with

lowest cost or using starting points derived by another

method such as HCA.

1.4 Fuzzy C-means clustering

The principle of fuzzy C-means clustering (FCM) is clo-

sely related to KMC as it also assigns each sample to C

centroids. However, instead of crisp partitioning as in

KMC, the output of FCM is a membership function

describing how similar the sample is to that particular

centroid based on distance to the centroids. The degree of

membership can vary between 1 and 0 with 1 being iden-

tical to the cluster center and 0 being no class membership.

FCM cluster imaging uses a fuzzy iterative algorithm that

was introduced by Bedzek et al. [19, 20] to calculate the

membership degree for each spectrum resulting in a vector

of dimension NxNy 9 C since each spectrum has C mem-

bership values. The coefficients of the membership matrix

U are defined by:

uiNS
¼ 1

PC
c¼1

diNS

dcNS

� �2=ðm�1Þ ;

where uiNs is the membership of sample Ns in one cluster,

diNs and dcNs are the distances to the i and cth cluster

centers, and m is the fuzziness factor between 1 and ?. If

m approaches 1, the algorithm resembles the KMC algo-

rithm, and if m approaches infinity, every cluster belongs

equally to all centroids. The membership functions are

normalized in a way that all sample membership functions

add up to one. When the matrix U is found, it can be

reshaped into C images of dimensions Nx 9 Ny 9 1. The

chemical content of the clusters can be analyzed by

investigating the C centroid spectra [21].

1.5 Principal component analysis

Principal component analysis (PCA) decomposes a data

set into a bilinear model of linear independent variables,

the so-called principal components. Pearson initially

proposed the idea in 1901 [22] to explain the variation in

a data set with only a subset of the variables of the ori-

ginal data set. In the version of PCA used here, the

algorithm starts with finding the vector best describing

most of the variation of the data set, referred to as the first

loading vector, and projecting each spectrum onto the

loading vector. The score is defined as the projection of

the sample vector onto the loading vector. The product of

loading vector and score is defined as the first principal

component. The next principal components are the vec-

tors that describe the next largest variation not accounted

for by previous components until all variations are

explained. Mathematically, this can be expressed as

decomposition by:

X ¼ TPT þ E;

with X having NxNy 9 NR dimensions. The scores T are of

NxNy 9 p dimensions with p as the number of principal

components. The loadings P have the dimension

NR 9 p and the residual matrix E that contains the varia-

tion not explained by the principal components is of

NxNy 9 NR dimensions. The matrix T contains p NxNy 9 1

vectors. To show the spatial distribution of the scores, each

vector can be reshaped into p images of dimension

Nx 9 Ny 9 1. These are usually referred to as abundance

images as they represent the abundance of each loading

vector for each pixel. The abundance images are then

plotted in a color-scaled image. By assigning each abun-

dance image an individual color channel, several images

can be combined by overlaying them.

1.6 Vertex component analysis

Vertex component analysis (VCA) is an unsupervised

spectral unmixing algorithm. VCA is based on the

assumption that each spectrum can be seen as an n-

dimensional vector spanning an n-dimensional Euclidian

space, where each measured wavenumber is assigned to a

coordinate within that space. When all spectra are repre-

sented in the n-dimensional space, they span a simplex. A

simplex is defined as the n-dimensional generalization of a

triangle or tetrahedron to an arbitrary dimension, i.e. the n-

dimensional simplex has n ? 1 corners. VCA utilizes the

fact that each spectral vector belongs to a simplex and that

the vertices of this simplex correspond to the most extreme

spectra in the data set and thereby representing the purest

spectra. Mathematically, VCA decomposes each spectrum

in the data matrix into a linear combination of endmember

spectra and a set of abundances for each spectrum

describing how similar the spectrum is to the endmember.

This can be written as

X ¼ aMT þ E:

X still has the dimension NxNy 9 NR. The abundance

matrix a is of the dimension NxNy 9 p for a model with p

endmembers, and the endmember spectra M have the

dimension NR 9 p. The variance not explained by the

abundance matrix and endmember signatures is called E

and has the dimension NxNy 9 NR. The VCA algorithm

defines the vertex vectors k by finding the spectral vectors

with the largest length:
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k ¼ arg max
j¼1...NXNY

jjyðjÞjj;

with ||y|| being the norm of the spectral vector. The next

endmembers are found by iteratively calculating the

orthogonal subspace to the endmembers already deter-

mined using orthogonal subspace projection. This process

is continued until the desired number of endmembers is

extracted.

Two different implementations of VCA have been

described. The first one uses the complete data set to span

the simplex [23]. The other one applies a dimension

reduction, in most cases a PCA, and uses p principal

components to describe the variation and thereby to

reduce the problem from dimension NR to dimension Np

[12]. The dimension reduction greatly reduces the com-

putational complexity of the problem. The PCA approach

also has the advantage that the endmembers have an

improved signal-to-noise ratio because higher principal

components that are dominated by noise are omitted. To

visualize the abundance of each endmember spectrum,

each abundance vector of dimension NxNy 9 1 in the

matrix a is reshaped into Nx 9 Ny 9 1 images similar to

the PCA images.

1.7 N-FINDR

Similar to VCA, N-FINDR also tries to find endmembers

corresponding to pure spectra. The N-FINDR algorithm

was proposed by Winter [14] to map minerals in geological

images. However, the approach differs as it maximizes the

volume of the n-simplex spanned by the spectra. The

volume is determined by defining a matrix MV containing

the endmember spectra and augmented with a row of ones.

Using the fact that the volume V is proportional to the

determinant of MV,

V Mvð Þ ¼ 1

ðNR � 1Þ! abs Mvj jð Þ:

The algorithm finds the spectral vectors spanning the

largest volume. When the positions of the endmember

signature spectra have been determined, the used

implementation of N-FINDR searches for the original

input spectrum from the non-dimension reduced input

matrix and sets the original spectrum as the endmember

signature. Each pixel is then described as a linear

combination of these endmember spectra using non-

negativity constrained least squares fitting. The output

format of the N-FINDR is analogous to the VCA algorithm

and also results in the matrix being decomposed as:

X ¼ aMT þ E:

Therefore, the visualization of the data is identical.

2 Materials an methods

2.1 Cell culture

Human HeLa cells (cell line CCL-2, ATCC, Manassas,

VA) were grown in 75-cm3 culture flasks (Fisher Scientific,

Loughborough, Leicestershire, UK) with 7 mL of Dul-

becco’s modified Eagle’s medium (ATCC) and 10% fetal

bovine serum (ATCC) at 37 �C and 5% CO2. Cells were

seeded onto and allowed to attach to polished calcium

fluoride windows (Wilmad LabGlass, Buena, NJ), which

were chosen to avoid background scattering that is

observed from regular glass windows. The windows were

removed from the culture medium after 12–24 h, and the

cells were fixed in a 10% phosphate-buffered formalin

solution (Sigma–Aldrich, St. Louis, MO) and washed in

phosphate-buffered saline. For Raman and fluorescence

measurements, the windows with the attached and fixed

HeLa cells were submerged in buffer solution during the

measurement. The fixed cells formed a subconfluent layer

and were completely immobilized on the substrates [16].

2.2 Raman data acquisition

Raman spectra were acquired using a WITec (Ulm, Ger-

many) Model CRM 2000 confocal Raman microscope.

Excitation at 488 nm (*5 mW at the sample) was pro-

vided by an air-cooled Ar-ion laser (Melles Griot, Carls-

bad, CA; Model 532). The exciting laser radiation was

coupled into a Zeiss (Jena, Germany) microscope through a

wavelength-specific single-mode optical fiber. The incident

laser beam was collimated via an achromatic lens and

passed through a holographic band-pass filter before it was

focused onto the sample through the microscope objective.

A Nikon (Japan) Fluor (609/NA 1.00, working distance

2.0 mm) water immersion objective was used. The diam-

eter of the laser focus was calculated as 621 nm according

to the formula 4 � k=p � NA; which is above the Abbe’s limit

of the lateral resolution of 0:621 � k=NA ¼ 303 nm:

The sample was placed on a piezo-electrically driven

microscope scanning stage with an x, y resolution of

*3 nm and a repeatability of 65 nm and z resolution of

*0.3 nm and repeatability of 62 nm. The sample was

scanned through the laser focus in a raster pattern at a

constant stage speed of fractions of a micrometer per sec-

ond. Dissipation of laser-induced heat to the surrounding

aqueous medium and continuous motion prevented sample

degradation in the focal point of the laser beam. Spectra

were collected at a 0.5-lm grid with a dwell time of 0.5 s.

The excellent confocality of the Raman microscope was

demonstrated in lateral and axial images of lipid droplets

within single cells [24].
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2.3 Fluorescence measurements

The green fluorescence of the Mitotracker� stain was

detected using the confocal Raman setup described above

using 488-nm excitation. To compare the mitochondrial

distribution in Raman and fluorescence images, the Raman

data were acquired first. Then, Mitotracker� stain was

carefully added, and the fluorescence emission of the cell

was rescanned at significantly lower laser power and a

dwell time of 0.2 s per data point [9].

3 Results

To compare the different algorithms, a high-resolution

Raman image of one single HeLa cell was analyzed. The

data set has the dimensions of 120 9 120 9 1,024 pixels

or data points and corresponds to a total area of

60 9 60 lm2. A white light image of the cell is inserted in

Fig. 1a. An intensity plot of the 2,935 cm-1 band is shown

in Fig. 1b. Highest intensities are found for the nucleoli in

the nucleus and for the perinuclear region. Immediately

after the Raman measurement, the cell was stained with the

Mitotracter� fluorescence stain and the image in Fig. 1c

was obtained. The bright green fluorescent areas indicate

high mitochondrial content. The highest fluorescence

intensity was observed in the perinuclear region which

correlates to cytoplasmic regions with high Raman inten-

sities. The white light image of cell in Fig. 1a shows only

weak contrast.

3.1 Hierarchical cluster analysis

To identify subcellular features, such as the nucleus,

nucleoli, and cytoplasm, HCA was performed in the whole

spectral region. The segmentation of the data set into eight

clusters is displayed in Fig. 1d. The image clearly distin-

guishes between different regions in the cytoplasm (light

green and green), regions that correlate with a high con-

centration of mitochondria (yellow, orange, red, and dark

red) and the nucleus as well as nucleoli (light blue and

blue). As the spectra are separated on the basis of Raman

bands and their intensity variations, the average cluster

spectra contain valuable information of the underlying

biochemical differences. Mean spectra representing three

clusters are shown in Fig. 2. These spectra correspond to

the classes with the main spectral differences. Trace 2

represents the nuclear region (light blue in Fig. 1d), trace 3

the perinuclear regions (orange in Fig. 1d), and trace 4 the

outer regions of the cytoplasm (green in Fig. 1d). In the

perinuclear region, membraneous cell organelles such as

the rough endoplasmic reticulum with ribosomes, the Golgi

apparatus, and also mitochondria are found. All three

regions show distinct protein bands at 1,655 cm-1 (amide

I), the extended amide III region between 1,230 and

1,330 cm-1, and the phenylalanine (all symmetrical ring

breathing) band at 1,002 cm-1. Apart from the contribu-

tions of proteins, differences in lipid contributions are

evident. Spectral differences due to lipids are visible at the

shoulder between 2,850 and 2,950 cm-1, which are more

pronounced in cytoplasm and perinuclear regions com-

pared with the nucleus. Various organelles contribute with

signals from cholesterol, phospholipids, and fatty acids

from membrane-rich structures. Such organelles could be

for instance the Golgi, lysosomes, mitochondria, intracel-

lular vesicles, and endoplasmic reticulum that are, how-

ever, not completely resolved in the example here.

As the protein bands dominate in all Raman spectra of

the cell, a difference spectrum (cytoplasm minus nucleus)

was calculated to better visualize lipid and DNA bands as

positive and negative differences, respectively. Spectral

contributions from the phospholipids exhibit distinct fea-

tures in several regions in the spectrum. The long aliphatic

side-chains give rise to C–H stretches between 2,850 and

2,950 cm-1. CH2/3 deformations are found between 1,290

and 1,465 cm-1, and the hydrophilic head groups between

700 and 900 cm-1. A prominent band at 715 cm-1 is

assigned to choline in lipids phosphatidylcholine and

sphingomyelin. In general, it is observed that cytoplasm

and perinuclear regions show relatively high concentra-

tions of lipids opposed to the nucleus region that shows

higher concentrations of DNA related vibrations at 785,

1,095, 1,335, and 1,678 cm-1. Notable nucleic acids rela-

ted vibrations in the cytoplasm regions are attributed to

ribosomal, messenger, and transfer RNA.

3.2 k-means clustering

Similar to the HCA, the KMC algorithm using eight clus-

ters was applied to the same data set for the whole spectral

region. The resulting image is shown in Fig. 1e. The

average cluster spectra from the KMC analysis show very

similar spectral features compared with the HCA and

therefore are not shown. The spatial distributions of the

clusters are, however, slightly different. A separation of the

nucleus from the perinuclear and cytoplasm regions is

obvious. Furthermore, the algorithm recognizes a thin layer

around the nucleus. The nuclear membrane may be too thin

to actually be spatially resolved. However, it is possible

that the lipids of the highly folded membrane contribute to

the Raman signal from that region. The differences com-

pared with HCA can be attributed to the differences in

approaching the clustering problem. The centroid-based

approach of KMC uses random starting points, compared

with the agglomerative approach of HCA. The different

starting centroids in KMC may result in slightly varying
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cluster membership maps, as the assignment of clusters is

based on distances from centroid to spectrum instead of the

intra-spectral distances. In particular, the reproducibility of

KMC is problematic for a large number of clusters. Here,

KMC was repeated several times and gave stable and

reproducible results for up to eight clusters. The results

were less reproducible for more clusters.

3.3 Fuzzy C-means clustering

A five-cluster FCM model was fitted to the cell using a

stop criterion of 0.0005 for the minimal amount of

improvements and a fuzziness parameter of m = 1.2.

Then, the denominator of the membership function

becomes 10. Like in the other clustering methods, the

nucleus is colored dark blue, perinuclear areas red, and

cytoplasm cyan and light blue in Fig. 1f. Spectra from the

different areas are mostly equivalent with the ones

obtained by HCA and are therefore not shown. The image

reveals some indications that further subcellular details

are detected by the FCM model (orange) that were not

resolved in the HCA and KMC images. A disadvantage of

FCM is that the nucleoli inside the nucleus have not been

resolved. Instead, clusters representing cytoplasmic and

perinuclear region appear in the nucleus. An advantage of

FCM is that a lower number of clusters are needed to

visualize the main spectral differences present in the data

set. Here, the main spectral features correspond to

nucleus, cytoplasm with mitochondria, and cytoplasm

without mitochondria as shown in Fig. 2. This may be

because the transitions are much better represented by the

membership functions compared with crisp clustering

algorithms. However, FCM does suffer from similar

problems as KMC regarding the reproducibility, and one

also has to take into account the setup of the factor m for

the fuzzy algorithm to obtain the best results, which

means that the approach is not completely unsupervised,

per se. However, m was not varied here.

Fig. 1 a White light image of the cell. b Intensity plot of 2,935 cm-1

Raman band. c Fluorescence image tracking mitochondria. d HCA

image using eight clusters. e KMC image using eight clusters. f Five-

cluster FCM cluster image g PCA image. h VCA image. i N-FINDR

image. Images g, h, and i were constructed using three components

represented by green, blue, and red. The clusters in d and e are

assigned to cytoplasm (light green and green), perinuclear region

(yellow, orange, red, and dark red), nucleus (light blue), and nucleoli

(blue)
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3.4 Principal component analysis

PCA decomposes the data set into a smaller set of linear

independent vectors, called principal components (PCs).

The score values of each PC become a measure of the

contribution of the corresponding loading vector to each

spectrum. Therefore, plotting the score values in an image

gives the spatial distribution of that loading. Clustering

approaches separate areas within the cell by assigning

distinct clusters. This is not always possible in biological

samples due to the nature of biological material, as there

are nearly no crisp transitions between different regions or

compartments. FCM can compensate for this limitation

using soft cluster assignments. PCA imaging is a purely

mathematical approach which is more reproducible and

requires lower computation times. For illustration, PC1 to

PC3 of a PCA was calculated for the Raman image of the

single cell without mean-centering of the data set. In

Fig. 1g, the distribution of the PC1 is plotted in green, PC2

in blue, and PC3 in red. The image is dominated by blue

and green colors and reveals only low contrast. The cor-

responding loading vectors are displayed in Fig. 3, traces

1–3. PC1 exhibits high score values throughout the cell,

since PCA finds a pseudo-average spectrum. In this par-

ticular case, the first loading is more similar to cytoplasm

spectra as the number of spectra from the cytoplasm in the

cell is larger compared with spectra from the perinuclear

and nuclear regions. This is also evident from the spectral

features of the loading that are similar to cytoplasm spectra

obtained by cluster analysis. Negative features of the sec-

ond loading describe the spectral contributions of the

nucleus, and positive features spectral contributions of

lipids. Interestingly, the PC2 loading resembles a pseudo-

difference spectrum between nucleus and cytoplasm from

the cluster analysis (see Fig. 2, trace 1). Consequently, the

blue color of PC2 score in Fig. 1g is found in the nucleus

and perinuclear region of the cytoplasm and overlaps with

the green color of PC1 score. The PC3 loading is also

associated with the perinuclear region and indicates higher

contents of lipids visible in the region 2,850–2,900 cm-1

and in the CH2/3 deformations found between 1,200 and

1,350 cm-1. The overlay of the red color of the PC3 score

with in the blue color of the PC2 score gives a violet color

in Fig. 1g. The signal-to-noise ratios decrease from PC1 to

PC3 because the spectral variances also decrease from PC1

to PC3, whereas the noise is distributed throughout the

PCs. Consequently, the higher PCs are dominated by noise

and were not displayed.

3.5 Vertex component analysis

Vertex component analysis is a spectral unmixing algo-

rithm that searches for a preselected number of endmember

spectra and describes all the spectra in the data set on the

basis of these endmembers by a fitting routine. The amount

that each endmember contributes to a spectrum is the

abundance value for that endmember.

After PCA for dimension reduction, a VCA model with

five endmembers was calculated for the Raman image of

the single cell. Three vertex components (VCs) were

found to represent cytoplasm, perinuclear areas, and the

nucleus. A plot of the distribution of the endmembers is

shown in Fig. 1h with the cytoplasm colored in green, the

nucleus in blue, and the perinuclear areas in red. The

corresponding endmember spectra in Fig. 3 are assigned

to cytoplasm, nucleus, and perinuclear areas, respectively.

The other two endmember spectra represent spectral

information that could not clearly be assigned to cellular

features.

The endmembers and abundances of VCA have higher

chemical relevance and can easier be interpreted as the

loadings and scores of PCA that can contain both positive

and negative values. The low contrast in Fig. 1g is con-

sistent with overlapping spectral contributions in PC1–

PC3. The contrast is improved in Fig. 1h because the

spectral contributions in VC1–VC3 are better separated. In

Fig. 2 Average spectra from HCA representing the nucleus (trace 2),

perinuclear area (trace 3), cytoplasm (trace 4), and difference

spectrum between perinuclear areas and nucleus (trace 1). The lower
wave number regions are amplified by a factor of three
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particular, signatures of the nucleus and the mitochondria

are well defined as evident in Fig. 3.

Compared with the results of cluster analysis, VCA

gives nearly the same spatial information. The cytoplasm,

perinuclear regions, nucleus, and nucleoli are clearly visi-

ble in Fig. 1h. The spectral signatures of each region can be

analyzed using the endmember spectra, which, as expected,

show very similar information to those obtained by HCA

and KMC analysis. The advantage in VCA is, however,

that transitions between regions are much better explained

as combinations of the endmembers describe all the

information in the data set.

3.6 N-FINDR

The N-FINDR algorithm calculated a five endmember

model. Three endmembers were found to correspond to

cytoplasm, perinuclear areas, and nucleus as in the VCA

algorithm. The resulting image is shown in Fig. 1i with

cytoplasm colored green, nucleus blue, and perinuclear

areas red. The endmember signature spectra are shown in

Fig. 3, traces 7–9 representing cytoplasm, nucleus, and

perinuclear areas, respectively. The contrast and the spatial

distribution of the components are similar in Fig. 1h, i

obtained by the VCA and N-FINDR algorithm, respec-

tively. The first difference is that the endmember spectra

are not reconstructed using the PCA dimension reduction

as in the VCA. Therefore, the signal quality of the end-

member corresponds to the signal-to-noise ratio of the

original spectra and not the PCA dimension reduced ver-

sion. Second, the N-FINDR algorithm searches for the

position of the spectrum which corresponds to the original

spectrum from the data set and uses it for as an endmember

for spectral unmixing. Due to the lower signal-to-noise

ratio, a detailed assessment of the chemical information is

impossible.

4 Discussion

Six different multivariate methods were compared to assess

a Raman image of a single cell. Although the chemical

image in Fig. 1b has a good contrast, the chemical infor-

mation content of multivariate approaches is superior.

Subcellular features including their spectral signatures

were identified such as the nucleus, the nucleoli, mito-

chondria, and cytoplasm. The perinuclear distribution

correlated well with the fluorescence image of the cell

tracing the mitochondria. However, the fluorescent Mito-

tracker label did not reveal information on the nucleus or

other parts of the cytoplasm. Using Raman imaging, more

Fig. 3 Loading vectors PC1 to PC3 of a PCA representing a pseudo-

average spectrum mostly correlated with cytoplasm (trace 1), the

differences from cytoplasm to the nucleus (trace 2) and the

differences between cytoplasm and perinuclear regions (trace 3).

VCA endmember signatures representing cytoplasm (trace 4), nucleus

(trace 5), and perinuclear regions (trace 6). N-FINDR endmember

signatures for cytoplasm (trace 7), nucleus (trace 8), and perinuclear

regions (trace 9). The lower wave number regions are amplified by a

factor of three
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prominent features have been observed in other cells such

as lipid droplets, apoptotic bodies, or the malaria pigment

hemozoin as reported in the literature [1]. Among the main

advantages of Raman imaging of cells is that no labels are

required to obtain detailed information on the cell mor-

phology and biochemistry that makes the approach par-

ticular interesting for live cell studies.

Clustering approaches have frequently been applied in

the past. HCA, KMC, and FCM gave similar segmentations

as displayed in Figs. 1c, d, and e. Differences were evident

at transitions between subcellular features that demonstrate

limitations of clustering approaches. In transition areas,

spectra are found with mixed signals from each region

potentially giving an extra cluster. A large number of

clusters are often needed to describe all relevant regions

properly, which complicates the interpretation. In this

particular case, eight clusters of the crisp algorithms were

required to differentiate the nucleoli from the nucleus, and

several clusters differentiate both cytoplasm and perinu-

clear regions. This is due to small transitions and slight

intensity differences between each cluster. The number of

clusters was reduced to five for the soft clustering approach

FCM because transitions between subcellular features

could be described better.

The bottom up clustering of HCA is apparently very

effective in resolving small differences between spectra.

The approach, however, can run into problems in some

cases resolving larger spectral differences. This limitation

is avoided in KMC and FCM, as the centroid-based

approach nearly always finds clusters to explain large

differences. KMC and FCM, however, encounter prob-

lems with the reproducibility of the results, as both

approaches use random starting points. The concept of

FCM differs from HCA and KMC since the assignments

are not crisp. The membership functions make it possible

to better explain transitions than crisp clustering, but its

also more computational intensive than KMC. HCA

requires the highest computational power for large data

sets as distance matrices are calculated (n - 1) times for

n spectra.

Principal component analysis performs a decomposi-

tion of the data set in a sense that the variations are

described in lower dimensions. This results in a number

of loading vectors with a corresponding set of score

values. This allows clear imaging of transition regions as

each pixel is composed of contributions from each load-

ing. A high score value for one loading vector can be

interpreted as a high contribution of the features in the

loading vector, similar to the membership functions in

FCM. However, scores and loadings are purely defined by

a mathematical algorithm, and the chemical interpretation

is not straightforward as positive and negative values

exist, and spectral contributions of a chemical feature can

be distributed over several principal components. This

was observed in PC2 and PC3 for the perinuclear areas.

For the Raman image of the single cell, the number of

principal components was set to three and corresponds to

the expected number of main spectral components. PC1 to

PC3 describe 99.64% of the spectral information. That

means nearly all variations are explained in the first three

components. Therefore, three loading vectors contain

almost all chemical differences between the regions as

opposed to crisp clustering that needed eight clusters and

FCM clustering that needed five clusters. Disadvantages

include that the image often has a low contrast, and the

loadings are not readily interpretable as they can be

positive and negative and can consist of overlapping

contributions.

The spectral unmixing algorithms VCA and N-FINDR

address some of the problems of PCA. By calculating

endmember spectra and describing the rest of the spectra

as a linear combination of the endmembers, readily

interpretable and chemically relevant spectral information

is obtained. The endmembers were similar to the cluster

centroids and could be assigned to cytoplasm, perinuclear

region, and nucleus. Furthermore, abundance plots of the

endmembers reveal high contrast images as seen in

Fig. 1h and i. Analogous to the image reconstruction after

PCA using three PCs, the abundance plots of three end-

members were considered for image reconstruction. In

combination with the dimension reduction by PCA, VCA

is faster and less computationally complex than

N-FINDR.

Clustering and spectral unmixing algorithms depend on

preprocessing procedures such as intensity normalization

and baseline correction. Here, preprocessing was kept to a

minimum. First, the constant spectral background was

subtracted that contain spectral contributions of the sub-

strate, buffer, and optical elements in the light path. Sec-

ond, Raman spectra with intensities below a threshold were

removed from the data set. A baseline correction was not

required as single HeLa cells give only low fluorescence

background under the experimental conditions. The cell

was immersed in a buffer solution, and in this case, the

absolute intensities of the spectra can be considered as

density of biomolecules that is relevant information. This

information would be lost after normalization, and we

found that the nucleoli inside the nucleus could no longer

be resolved by cluster analysis (Fig. 4). The results of

vector normalization are shown as an example. Similar

results were obtained using other normalization routines

such as multiplicative signal correction (not shown). As

mean-centering of the data set before PCA would also

remove a significant amount of variation, it was not applied

here. Systematic experiments are required to further study

the effects of preprocessing on the algorithms.
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5 Conclusions

Additional multivariate algorithms for analysis of Raman

spectroscopic images may become useful in the future.

Some of them are iterated constrained endmembers algo-

rithm (ICE) presented by Berman et al. [15], self-modeling

curve resolution presented by Awa et al. [25], and simplex

identification via split augmented Lagrangian by Lopes

et al. [26], which addresses the problems in spectral

unmixing by calculating artificial endmembers. There are

also people who are developing molecular level theories

and models to better understand, interpret, and assign

Raman modes that probe molecular vibrations. Molecular

dynamic simulations can be implemented in classical,

empirical, semi-empirical, and/or quantum chemical/

mechanical first principles. Biomolecules were simulated

making up cells and its various components proteins, lip-

ids, carbohydrates, and nucleic acids. For example, the

conformational structures of protonated polyalanine pep-

tides were investigated in the gas phase using a combina-

tion of quantum chemical calculations and vibrational

spectroscopy [27]. Concepts, simulations, and challenges

were reviewed for coherent multidimensional vibrational

spectroscopy of biomolecules [28]. Here, the basic princi-

ples of modern two-dimensional infrared spectroscopy are

analogous to those of multidimensional NMR spectros-

copy. The combination of these approaches and theories to

model molecular biological systems with the algorithms

described in this paper might offer advantages and oppor-

tunities to focus on Raman spectral details in local regions

of interest.

The application of these algorithms is not restricted to

the assessment of Raman spectroscopic images from single

cells, but they also can be adapted to the analysis of Fourier

transform infrared (FTIR) spectroscopy, vibrational circu-

lar dichroism, Raman optical activity, and related hyper-

spectral data from tissues. The confocal nature of Raman

microscopy allows collecting depth profiles as shown for

single cells [24] and skin [29], and the combination of the

lateral information with the axial resolution even enables

three-dimensional reconstruction of samples. Finally,

Raman and FTIR imaging can be applied to any hetero-

geneous sample. Powerful multivariate algorithms will

open new applications for label-free and non-destructive

analyses.
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