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Abstract Yeast two-hybrid (Y2H) screening is a power-

ful method to detect protein–protein interactions (PPI) at

the genomic-scale. A recently proposed framework for

binary interactome mapping recommends the repeated

screening approach to improve the quality of PPI data.

Such repeated screening reveals Y2H interactions ranging

from highly sampled to singleton interactions. The quality

and the biological significance of interactions from distin-

guished sampling classes remain unknown. In order to

systematically characterize such interactions, we have

chosen a dataset of 1,262 interactions that were screened

repeatedly four-times. The interactions were classified as

highly sampled, weakly sampled, and singleton interac-

tions. We assessed the quality of interactions in different

sampling classes using features such as protein structural

properties, conservation in yeast and presence of known

domain–domain interactions that are previously associated

with false positive rates. Our analysis reveals that the

quality of singleton interactions is comparable to that

of highly sampled interactions. Interestingly, singletons

encompass a higher fraction of known domain–domain

interactions than highly sampled ones. Furthermore, we

observed that the singleton interactions are transient in

nature, while the highly sampled interactions are predom-

inantly part of stable complexes. Hence, the repeated Y2H

screening method is ideal for detecting transient PPIs that

are crucial in cellular signaling pathways.
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1 Introduction

Protein–protein interactions (PPIs) are involved in almost

every process of a living cell. Mapping interactions

therefore provides the basis to understand how proteins

function and communicate with each other. A number of

human diseases arise because of aberrant PPIs. Hence, PPI

maps are crucial to understand the molecular mechanisms

behind disease pathogenesis and important for finding new

therapeutic targets [1, 2]. Recently, genome-wide interac-

tome maps of proteins from human and other model

organisms have been created using a variety of high-

throughput technologies such as yeast two-hybrid assays

(Y2H) [3–9] and affinity purification chromatography fol-

lowed by mass spectrometry (AP/MS) [10–12]. Although

Y2H and AP/MS data are of equally high quality, they

interrogate different subspaces within the whole interac-

tome and are complementary to each other [13].

The low overlap between the interactions identified by

different Y2H experiments raises concern about the suit-

ability of the assay to build interactome maps [14]. Even

the high-confidence datasets from two independent Y2H

experiments have only a small fraction of interactions in

Dedicated to Professor Sandor Suhai on the occasion of his 65th

birthday and published as part of the Suhai Festschrift Issue.

A. Vinayagam (&) � E. E. Wanker (&)

Max Delbrueck Center for Molecular Medicine (MDC),

AG Neuroproteomics, Robert-Rössle-Str. 10,
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common [4, 9]. It has been argued that the large number of

false-positives and false-negatives within the PPI data sets

are responsible for the low overlap [15]. However, a recent

study has shown that the fraction of false-negatives is the

primary cause for this phenomenon [13]. To overcome this

problem, a framework for Y2H interactome mapping has

been proposed [16]. This strategy recommends performing

multiple Y2H screens to report all detectable interactions.

Such repeated interaction screening improves the overlap

between different datasets and increases the interactome

coverage [13]. For instance, to identify 90% of all Y2H

detectable interactions, at least six repeated Y2H screens

are necessary [16]. Importantly, in such an approach, one

repeat screen refers to a procedure involving screening and

retesting of interaction pairs, a requirement to remove

various artifactual and spurious hits.

At low repeat numbers, where each repeat detects still a

substantial number of novel interactions, the repeated Y2H

screening yields different types of interactions such as

highly sampled interactions (that are found in almost all

screens), weakly sampled interactions (found in two

experiments) and singletons (interactions detected only in a

single experiment). The quality and the biological proper-

ties of these differently sampled interactions remain

unknown. Previous studies have estimated the precision of

existing interactome maps and associated the false dis-

covery rates to different sequence and domain features [14,

17, 18]. In this study, we have systematically compared the

interactions from different sampling classes with features

such as protein foldability, conservation in yeast, and

presence of interacting domains (known domain–domain

interactions). We found that there is no obvious bias of

false-positive features toward any sampling class, sug-

gesting that the quality of the singleton interactions is

comparable to that of highly sampled interactions. Fur-

thermore, we observed that singleton interactions are

transient in nature compared to the highly sampled inter-

actions, which are often part of proteins complexes.

2 Materials and methods

2.1 Creating a dataset of repeatedly screened Y2H

interactions

We have collected 1,262 human PPIs from two recent

studies that are tested 4-times with repeated Y2H screening

protocols. We refer to this dataset as repeat-Y2H dataset. It

contains PPI data from two independent studies: (1) a

dataset by Venkatesan et al. [16], derived by retesting 5%

subset of space searched for CCSB_HI1 PPI network [6]

with four repeat Y2H screens (1,822 baits against 1,796

prey proteins). (2) A subset of the MDC_MAPK PPI

network (a PPI network created for MAPK signaling

pathways) is derived by selecting the interactions that are

screened four times from the MDC_MAPK network

(unpublished data). In the first dataset by Venkatesan et al.

[16], a single screen refers to the pooled testing of 188

preys against arrayed single baits, with subsequent retest.

For the MDC_MAPK dataset, a single screen refers to the

pooled screening of eight baits against individually arrayed

preys, followed by a subsequent retest of the potential

interacting pairs in a one-to-one manner. These two studies

resulted in 239 and 1,023 PPIs, respectively. Combining

the two datasets shows there is no overlap between the

datasets, thus repeat-Y2H dataset resulted in 1,262 PPIs

that are tested four times in Y2H matrix screening.

2.2 Predicting protein features associated

with false-positive interactions

2.2.1 A literature-based PPI dataset

The Human Protein Reference Database (HPRD) is a lit-

erature-curated database of the human proteome that con-

tains information about PPIs, domain architecture, post-

translational modifications, and disease associations [19].

HPRD is considered as a reference data set for literature-

based PPIs. A recent version (release 7) of HPRD is

downloaded for this study (http://www.hprd.org/). As we

used a fraction of the CCSB_HI1 data for our repeat-Y2H

dataset [6], we removed these interactions from the HPRD

dataset. We found 91 PPIs in the repeat-Y2H dataset that

are already reported in HPRD database.

2.2.2 Predicting protein foldability

We have used FoldIndex to predict whether a given protein

sequence adopts a defined fold or is intrinsically unfolded,

based on the average residue hydrophobicity (Kyte–Doo-

little scale) and the net charge of the sequence [20]. We

have used a perl script that automatically predicts the

protein foldability using the FoldIndex web service (http://

bioportal.weizmann.ac.il/fldbin/findex). The program out-

puts an unfoldability score, where the positive values

represent proteins likely to be folded, and the negative

values represent proteins likely to be intrinsically unfolded.

Unfoldability scores are predicted for 791 proteins that are

part of repeat-Y2H dataset. Out of 791 proteins, 191 are

predicted as intrinsically unfolded proteins.

2.2.3 Predicting conservation in yeast

To detect the yeast orthologues of human proteins we have

used the HomoloGene database (release 63) [21]. The

HomoloGene system automatically detects homologs
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proteins/genes among the annotated genes of several

completely sequenced eukaryotic genomes. We have

downloaded the recent version of HomoloGene from

ftp://ftp.ncbi.nih.gov/pub/HomoloGene/. Out of 791 pro-

teins in repeat-Y2H dataset, we mapped yeast orthologues

for 103 proteins.

2.2.4 Domain annotation and domain–domain interaction

dataset

For each protein in the repeat-Y2H dataset, we have

defined its domains based on the InterPro database version

20.0 [22]. InterPro is an integrative database of protein

families, domains, repeats, and sequence motifs. We have

downloaded the InterPro database from ftp://ftp.ebi.ac.uk/

pub/databases/interpro/. The domain-domain interactions

have been extracted from the DOMINE database version

1.1 [23]. DOMINE is a comprehensive database of known

and predicted protein domain–domain interactions. It

contains interactions inferred from protein structure data

bank (PDB) [24] and those that are predicted by eight

different computational approaches using Pfam domain

[25] definitions. DOMINE is downloaded from http://

domine.utdallas.edu/cgi-bin/Domine. The Pfam based

domain interactions are mapped to the InterPro domain

identifiers using an InterPro to Pfam domain relation table

available within the InterPro database. We have mapped

360 domain–domain interactions to 208 PPIs in repeat-

Y2H dataset.

2.3 Dataset of protein complexes and human kinases

We have compiled the human protein-complex data from

the recently published large-scale studies using a mass

spectrometry-based approach [26]. We further comple-

mented this dataset with the protein-complexes reported in

the HPRD database. This resulted in a comprehensive

dataset of human protein-complexes with 25,595 binary

interactions between 3,598 proteins. We mapped ten

interactions in the repeat-Y2H dataset to protein-complex

dataset and annotated them as part of stable complex. To

define transient interactions, we have mapped 51 known

human kinases [27] to 200 PPIs in the repeat-Y2H dataset

and defined these interactions as transient interactions.

3 Results and discussions

3.1 Classification of interactions based

on Y2H sampling

The interactions in the repeat-Y2H dataset have been

classified into three groups according to their sampling in

four repeated Y2H screens. Highly sampled interactions

were found in at least three screens; weakly sampled

interactions in two out of four screens and singletons were

detected only in one of the four experiments (Fig. 1).

Table 1 shows the number of interactions in each class.

About 56% of the interactions in the dataset are singletons,

weakly sampled and highly sampled interactions account

for 31 and 13% of the PPIs, respectively.

3.2 Highly sampled interactions show a better overlap

with literature-based interactions than singletons

We have analyzed the overlap of interactions in each

sampling class with the literature interactions from the

HPRD dataset. We found 7% overlap between the repeat-

Y2H dataset and HPRD. Strikingly, the overlap increased

to 15% when highly sampled interactions were compared.

However, an overlap of only 5% was observed by com-

paring HPRD with singletons (Fig. 2a). The differences

between the sampling classes were statistically significant

(P value \ 0.0001; Chi-square).

Next, the literature-overlapping interactions were further

grouped into Y2H and non-Y2H detected interactions. We

found that 60% of the literature-overlapping interactions

were found with Y2H screening and 40% with other in vivo

and in vitro assays. We did not observe a significant differ-

ence in the ratio of Y2H and non-Y2H detected interactions

when singletons and highly sampled interactions were ana-

lyzed (P value = 0.87; Chi-square) (Fig. 2b). Although the

singletons show low overlap with the literature, the proba-

bility of detecting singletons by a non-Y2H assay is as good

as for the highly sampled interactions. Thus, we conclude

that singletons are not likely to be false-positive interactions.

3.3 Foldability and conservation of proteins in yeast

have no influence on the sampling of interactions

We have performed a systematic analysis to understand the

influence of sequence properties of proteins on the Y2H

sampling results. Previous studies have shown that the

Fig. 1 Schematic representation of the classification of repeated-

Y2H interactions. Each protein pair is tested with four independent

Y2H experiments and based on the outcome they are classified as

singleton, weakly sampled, highly sampled and non-interacting pairs

Theor Chem Acc (2010) 125:613–619 615

123

ftp://ftp.ncbi.nih.gov/pub/HomoloGene/
ftp://ftp.ebi.ac.uk/pub/databases/interpro/
ftp://ftp.ebi.ac.uk/pub/databases/interpro/
http://domine.utdallas.edu/cgi-bin/Domine
http://domine.utdallas.edu/cgi-bin/Domine


hydrophobicity of proteins influences the false discovery

rates of PPIs [15]. Here, we have therefore investigated the

impact of protein foldability on the Y2H PPI sampling

using the FoldIndex. We observed that 24% of the proteins

in the Y2H data set are intrinsically unfolded. Based on the

foldability score, we then grouped the interacting pairs into

three classes (1) interactions where both partners are

intrinsically unfolded; (2) interactions where one of the

proteins is unfolded; and (3) interactions where both pro-

teins are likely to be folded according to FoldIndex score.

Table 2 shows that there is no obvious bias of protein

foldability with respect to the interaction sampling results

(P value = 0.32; Chi-square). This suggests that the

interaction sampling in Y2H is independent of the protein

foldability.

Furthermore, we have tested whether conservation of

proteins in yeast has any influence on the interaction

sampling. Yeast orthologs of repeat-Y2H dataset proteins

were predicted using the HomoloGene database. We found

that *13% of the human proteins in the repeat-Y2H

dataset have yeast orthologues, indicating that these pro-

teins are conserved. The PPI pairs were grouped into three

classes: (1) both the interacting pairs have orthologs in

yeast; (2) at least one of the interacting proteins has a yeast

ortholog; and (3) none of the interacting proteins is con-

served. Table 2 shows that there is no bias of evolutionary

conservation with respect to interaction sampling (P

value = 0.47; Chi-square).

3.4 Singletons are enriched with proteins containing

interaction domains

We have investigated the impact of protein domains and

domain–domain interactions on the results of Y2H interac-

tion sampling. We assigned InterPro domain annotation to

89% of the proteins in the repeat-Y2H dataset (703 out of

791 proteins). For the 703 proteins, 2,528 annotated domains

were identified, indicating that on average each protein has

3.6 domains. Table 3 shows the ten most frequently found

domains in the different sampling classes. Previous studies

have shown that certain protein domains like the Homeobox

domain might be responsible for the identification false-

positive interactions [15]. However, we failed to observe

such specific associations with any sampling class, sug-

gesting there is no bias of false-positive associated domains

with respect to sampling class (Table 3).

However, the different sampling classes correlated with

the appearance of domain–domain interactions. Using the

DOMINE database, we analyzed whether annotated

domain–domain interactions are overrepresented in the

different Y2H sampling classes. To do so, we grouped the

interacting pairs into three classes (1) interactions with

potentially high-confidence domain–domain interactions;

(2) interactions with low-confidence domain–domain

interactions and (3) interaction without any known

domain–domain interactions. Overall, the repeat-Y2H

dataset possess 17% high-confidence and 11% low-confi-

dence domain–domain interactions. Figure 3 shows that

singleton dataset contains a significantly higher fraction of

known domain–domain interactions (both high- and low-

confidence interactions) than the weakly sampled and

highly sampled interaction datasets (P value = 0.001;

Chi-square). This is surprising, as one would expect the

Table 1 Classification of

interaction pairs based on the

sampling in the repeat-Y2H

dataset

Interaction type Venkatesan et al. MDC_MAPK dataset Total number of interactions

Interactions % Interactions % Interactions %

Highly sampled 52 21.7 114 11.1 166 13.1

Weakly sampled 62 25.9 331 32.3 393 31.1

Singleton 125 52.3 578 56.5 703 55.7

Total 239 100 1,023 100 1,262 100

Fig. 2 a Overlap between the interactions in different sampling

classes with the literature-based interactions. For each sampling class,

we computed the percentage of interactions overlapping with HPRD

database. b Fraction of interactions detected with Y2H and non-Y2H

assays for the overlapping literature-interactions
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proteins in the highly sampled interactions to have more

known interaction domains than the singletons. Although

singletons are not well sampled in Y2H screens, they

contain proteins with well-characterized domain interac-

tions. This provides additional evidence that singleton

interactions are not likely to be false-positives and instead

are interactions with biological meaning.

3.5 Singletons are transient protein–protein

associations

Physical interactions between proteins are characterized

either as stable complexes or transient interactions based

on their affinity and lifetime [28, 29]. In a protein complex,

the proteins form stable associations to perform their

functions in the cell (e.g. basic transcriptional machinery).

In contrast, a protein may interact transiently with another

protein to modify its function (for example, a protein

kinase will add a phospho-group to a substrate and thereby

change the activity of a protein). We therefore have

investigated the sampling nature of potentially stable and

transient interactions in the repeat-Y2H dataset.

In order to study the sampling nature of protein-complex

interactions, we mapped the repeat-Y2H dataset to human

Table 2 Comparison of different sampling classes with respect to their protein foldability, and conservation in yeast

Features Interaction class Sampling class Significance of

difference (Chi-square)

(P values)Highly

sampled (%)

Weakly

sampled

Singleton

Conservation in yeast Between conserved proteins 0.7 2.2 2.9 0.466

Between conserved and non-conserved protein 21.2 19.8 21.2

Between non-conserved proteins 78.1 78 75.9

Protein foldability Between folded proteins 6.7 6.4 6.9 0.317

Between folded and unfolded protein 38.7 41.8 35.6

Between intrinsically unfolded proteins 54.6 51.8 57.8

Table 3 The ten most frequent InterPro domains found in different

sampling classes

Interpro ID Domain name

Highly sampled

IPR005225 Small GTP-binding protein

IPR016024 Armadillo-type fold

IPR007087 Zinc finger, C2H2-type

IPR001849 Pleckstrin homology

IPR000884 Thrombospondin, type 1 repeat

IPR006941 Ribonuclease CAF1

IPR010909 PLAC

IPR000953 Chromo domain

IPR001806 Ras GTPase

IPR000719 Protein kinase, core

Weakly sampled

IPR011009 Protein kinase-like

IPR000719 Protein kinase, core

IPR002290 Serine/threonine protein kinase

IPR000980 SH2 motif

IPR001452 Src homology-3 domain

IPR001781 Zinc finger, LIM-type

IPR001680 WD40 repeat

IPR013026 Tetratricopeptide region

IPR016024 Armadillo-type fold

IPR013783 Immunoglobulin-like fold

Singleton

IPR011009 Protein kinase-like

IPR000719 Protein kinase, core

IPR002290 Serine/threonine protein kinase

IPR011993 Pleckstrin homology-type

IPR013087 Zinc finger, C2H2-type/integrase, DNA-binding

IPR001452 Src homology-3 domain

IPR001680 WD40 repeat

IPR000980 SH2 motif

IPR005225 Small GTP-binding protein

IPR001909 Krueppel-associated box

Fig. 3 Known domain–domain interactions in the PPIs are compared

against the different sampling classes. The domain-domain interac-

tions are further distinguished as high- and low-confidence domain-

domain interactions
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protein-complexes reported by Ewing et al. [26] and

HPRD. We only detected ten interactions (0.8%) that

overlapped between repeat-Y2H dataset and protein-com-

plexes. However, within these interactions, we found a

significant difference between the singletons and highly

sampled interactions. Figure 4a shows that 3% (5 out of

166 interactions) of the highly sampled interactions are

found in the dataset containing protein complexes. In

contrast, only 0.1% (1 out of 703 interactions) of singletons

was found in the protein-complex data. This difference is

statistically significant with the P value of 0.005 (Chi-

square). This shows that even when the overlap between

Y2H interaction data and protein-complex data are low, the

interactions that are part of complexes are enriched with

highly sampled Y2H interactions.

In order to analyze the sampling behavior of transient

interactions, we have considered kinase interactions as

transient interactions. We defined 200 interactions (15%)

as kinase-interactions in the repeat-Y2H dataset that con-

tain 51 different protein kinases. Then, these kinase-inter-

actions were analyzed in different Y2H sampling classes.

We found that 20% of the singleton interactions are kinase-

interactions, while only 5% of highly sampled interactions

contain kinases (Fig. 4b). This difference is statistically

significant with the P value \ 0.0001 (Chi-square). Thus,

our results indicate that singleton interactions are of tran-

sient nature, and repeated Y2H screens are necessary to

detect such low-affinity interactions.

4 Conclusions

Our systematic analysis addresses the question whether

Y2H interactions found in different sampling classes have

different quality. A simple comparison of the overlap

between different sampling classes with literature-based

interactions might suggest that the singleton interactions

are of poor quality. However, our detailed analysis

revealed that both singletons and highly sampled interac-

tions have an equal probability of being recaptured in

independent, non-Y2H assays. This shows that singletons

consist of true interactions that could even be validated

with an independent assay.

Next, the features of proteins within singletons, weakly

and highly sampled interactions are similar in their folda-

bility, conservation in yeast and domain occurrence. This

suggests that they are similar in quality and none of the

previously associated false-positive features is linked to

any particular sampling class. Hence, the quality of sin-

gletons is comparable to the highly sampled interactions.

Furthermore, the singletons contain a high fraction of

known domain–domain interactions. This implies that

these interactions are feasible and most likely biologically

meaningful interactions.

We show that repeated Y2H screening is advantageous

as it captures the weak and transient interactions. Such

transient interactions are much more difficult to study,

because the conditions required for their identification have

to be established individually. However, we found that

repeated Y2H matrix screening efficiently allows the

identification of transient interactions that are particular

important in cell signaling.
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