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Abstract Following the work of Nalewajski and Parr, there
has been a surge of interest in the use of information theory
to describe chemical bonding and chemical reactions. How-
ever, the measure of “information” used by Nalewajski and
Parr is not any of the usual conventional entropies, chiefly
because the electron density is not normalized to one. The
consequences of this are discussed, and a solution is con-
structed using the shape function and an “entropy of mixing”
term. The same revision, however, cannot be made when if
the Tsallis entropy, instead of the Shannon form, is used.
This serves to emphasize that the Hirshfeld atom is a very
specific result, associated only with logarithmic measures
of information. A less specific derivation due to Nalewajski
provides one resolution to this quandary; this derivation is
analyzed in detail.

1 Introduction

Recently, there has been a surge of interest in the Hirshfeld
or stockholder partitioning of atoms into their composing
fragments [1]. In particular, the Hirshfeld partitioning has
been found to be particularly effective in studying the chem-
ical reactivity of molecules [2–13] and has been used to gain
insights, at both a fundamental and a practical level, into
chemical bonding and molecular structure [14–21]. Much of
this renewed interest may be traced to the work of Nalewaj-
ski and Parr [17,22] which asserts that the electron density of
the Hirshfeld atoms composing an M-atom molecule can be
derived by minimizing the loss of information in molecule
formation, namely,

I
[
{ρA(r)}M

A=1

∣∣∣ {ρ0
A(r)

}M
A=1

]
=

M∑
A=1

∫
ρA(r) ln ρA(r)

ρ0
A(r)

dr (1)
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subject to the constraint that the sum of the atomic densities
equals the density of the entire molecule,

ρmol(r) ≡
M∑

A=1

ρA(r). (2)

In Eq. (1),
{
ρ0

A(r)
}M

A=1 are understood to be “reference” den-
sities, to which the atoms in the molecule are compared. In the
original version of the theory, the reference densities are taken
to be the densities of the isolated atoms, and so the density
of the Hirshfeld atom measures the change in an atom’s elec-
tron density associated with molecule formation, measured
relative to the separated atom limit [22]. It is not surprising,
then, that one can use the Hirshfeld atom to measure both the
proclivity of a site toward chemical reactions [2–12] and the
way electrons “flow” throughout a molecule [2,17].

The “information loss” criterion is not the usual language
used by chemists when defining atoms in molecules. The
chemists’ conception of atoms in molecules is largely based
on transferability. Through experimental or theoretical stud-
ies, we qualify the properties of atoms and functional groups
(e.g., a nitro substituent reduces the reactivity of benzene)
and use this knowledge to infer the chemical behavior of
other similar systems (a nitro substituent will also reduce the
reactivity of naphthalene). Similarly, using our knowledge of
where peaks associated with aliphatic, acylic, and aromatic
protons are found in an NMR spectrum, we can predict the
NMR spectrum of a newly synthesized molecule.

The essential goal of all atom-in-molecule theories, then,
is to allow us to leverage what is well-known about atoms and
functional groups in one setting into a deeper understand-
ing of less familiar molecules and molecular phenomena.
More precisely, we want to maximize the transferability of
the atoms between the “reference” molecule and the “target”
molecule. [10] In an ideal case, the reference system is fully
quantified and we wish to ensure that we can apply
most – ideally all – of the information we know about the ref-
erence system to the unknown molecule. That is, we want to
minimize the loss of information: we want to ensure
that—to the greatest extent possible—the “information” we
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know about the “reference” molecule will also be applicable
in the new system we are yet to quantify [22]. Equations (1)
and (2) are the mathematical statement of this idea: given
that atoms computed from well-understood reference sys-
tems, minimize the loss of information subject to whatever
constraints [in this simple case, only Eq. (2)], are implied by
what we already know about the molecule that our studies
are targeting.

2 Information theory

2.1 Properties of information

A subtle point – one these authors did not recognize in their
earlier work – arises with regard to Eq. (1). In order to qualify
as a measure of the “information change” relative to a refer-
ence, the form in Eq. (1) must satisfy certain axioms [23]: any
function that fails to satisfy these axioms is not a measure of
information. Many of these properties are “obviously” satis-
fied by the form in Eq. (1). This form, however, might not
satisfy some of the other defining properties of information,
namely: [23,24]

(a) Nonnegativity The change in information is nonnega-
tive,

I
[

p(x)| p0(x)
] ≡

∫
p(x) ln

(
p(x)

p0(x)

)
dx ≥ 0 (3)

and is zero only if the reference distribution and the final
distribution are identical.

(b) Additivity If two variables are independent, then the to-
tal change in Information is the sum of the changes in infor-
mation of the separate variables.

I
[

p| p0
]

is called the Kullback–Liebler information, and
measures the information loss (or “missing information”)
in p(x) relative to a prior distribution, p0(x). Equivalently,
I
[

p| p0
]

denotes the entropy gain (relative to the prior dis-
tribution) or the conditional information: the amount of infor-
mation contained in p(x), given that p0(x) was already
known.

The derivations of these results is instructive. To prove
nonnegativity, one uses the inequality [25]

ln (K ) ≥ 1 − 1
K (4)

to deduce that, for the Kullback–Liebler conditional infor-
mation,∫

p(x) ln
(

p(x)

p0(x)

)
dx ≥

∫
p(x)

(
1 − p0(x)

p(x)

)
dx

≥
∫

p(x)dx −
∫

p0(x)dx

≥ 0 (5)

Note that the last step is valid only if∫
p(x)dx =

∫
p0(x)dx (6)

and that, because of the possibility of interatomic electron
transfer, Eq. (6) does not generally hold for the electron den-
sities used in Eq. (1). For example, if atom B is less elec-
tronegative than other atoms in the molecule, then charge
transfer from atom B to the other atoms in the molecule gives

NB ≡
∫

ρB(r)dr <

∫
ρ0

B(r)dr ≡ N 0
B, (7)

which violates Eq. (6).
It is not at all clear, then, that the information as defined in

Eq. (1) is always positive. An electron donor’s density may be
expected to decrease almost everywhere during the course of

molecule formation, giving ln

(
ρB (r)
ρ0

B (r)

)
< 0 for most points,

r . This, paradoxically, predicts that atom B gains informa-
tion during molecule formation. (One would expect that, in
the process of “perturbing” an atom from its unbound state,
the missing information would increase, not decrease.) Just
because one or more of the terms in the summand in Eq. (1)
is negative, however, does not mean that the entire summand
is negative. However, before Eq. (1) can be established as a
measure of information, it must be proved that

I
[
{ρA(r)}M

A=1

∣∣∣ {ρ0
A(r)

}M
A=1

]
≥ 0. (8)

If Eq. (8) is not satisfied, the Hirshfeld atom is not truly
information-theoretic (though one might argue that it is “in
the spirit of information theory”).

The fact that the entropy due to independent events must
be the sum of the entropies of the separate events is intui-
tively obvious and, in a continuous context, is manifest when
a probability distribution function can be written as a product
of two pieces, p(x) = f (φ)g(γ ). One then has that∫

p(x) ln
(

p(x)

p0(x)

)
dx =

∫
f (φ)g(γ ) ln

(
f (φ)g(γ )

f 0(φ)g0(γ )

)
dφdγ

=
∫

f (φ)g(γ ) ln

(
f (φ)

f 0(φ)

)
dφdγ

+
∫

f (φ)g(γ ) ln

(
g(γ )

g0(γ )

)
dφdγ

=
∫

g(γ )dγ

∫
f (φ) ln

(
f (φ)

f 0(φ)

)
dφ

+
∫

f (φ)dφ

∫
g(γ ) ln

(
g(γ )

g0(γ )

)
dγ

=
∫

f (φ) ln

(
f (φ)

f 0(φ)

)
dφ

+
∫

g(γ ) ln

(
g(γ )

g0(γ )

)
dγ . (9)

The last step in this derivation is only possible because, since
f (φ) is the probability of observing some value of the vari-
able φ, it must be that∫

f (φ)dφ = 1 =
∫

g(γ )dγ . (10)

It is again unclear as to whether the additivity property of
information is satisfied by the measure of information in Eq.
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(1). One might suspect this is a purely academic point—
that in “real” molecules one can never write the density as
a product of two factors, but this is not the case. Due to
symmetry, in a diatomic molecule, we can write the atomic
densities as a product of two functions,

ρA(r) = σA(rA, θA) f A(φA). (11)

Here, σA(rA, θA) depends on the distance from the nuclear
centre, rA, and the angle in the plane of the internuclear axis,
θA, and f A(φA) depends on the angle about the internuclear
axis, φA. f A(φA) is often simply 1

2π
, but is not constant for

molecular states with nonzero total orbital angular momen-
tum quantum numbers. According to the independence prin-
ciple, the fact that electronic motion about the internuclear
axis is independent of their motion in other directions1 should
allow us to write the information as a sum of two terms of
these types but, because the electron densities in Eq. (1) is
not normalized to unity, the derivation fails.

2.2 Alternative measures of information

There are a number of different definitions for the informa-
tion that are available, including several that do not satisfy the
axiom of independence. In physics parlance, such entropies
are said to be nonextensive: they do not grow linearly as the
number of “independent” systems increases. (By contrast,
the thermodynamic entropy from classical thermodynamics
is clearly extensive.) One such entropy is the Tsallis, or Hart-
ley, entropy: [26]

ST [p(x)] =
∫

p(x)
(p(x))q−1 − 1

q − 1
dx. (12)

Equation (12) reduces to the Shannon form of the entropy,
SS[p(x)] = −∫ p(x) ln p(x)dx in the limit as q approaches
1. Except in this limit, the axiom of independence does not
hold. (This is apparent from the derivation in Eq. (9), which
hinges on the fact that the logarithm of a product is the sum
of the logarithms.)

Motivated by the Tsallis form of the entropy [27–31], one
can measure the information distance between two probabil-
ity distribution functions using the analogy to the Kullback–
Liebler form, so that

IT
[

p(x)| p0(x)
] =

∫
p(x)

(
p(x)

p0(x)

)q−1 − 1

q − 1
dx. (13)

The author knows of no proof for the nonnegativity of Eq. (13),
which is probably one reason why this is not the preferred
definition of the Kullback–Liebler conditional information

1 This, of course, is not rigorously true for many-electron molecules,
where this symmetry property of the electron density would not be
observed in the electron pair density. (The electron pair density has
symmetries of its own, though.) But for a one electron molecule, this is
certainly the case

in Tsallis statistics, namely [29,30]

I preferred
T

[
p(x)| p0(x)

]

=
∫

p(x)

[
(p(x))q−1−1

q−1 −
(

p0(x)
)q−1−1

q−1

]
dx

∫
(p(x))qdx

(14)

Unlike Eq. (14), however, substituting Eq. (13) for the
Kullback–Liebler information in Eq. (1) leads to the Hirsh-
feld atom. Minimizing

IT

[
{ρA(r)}M

A=1

∣∣∣ {ρ0
A(r)

}M
A=1

]

=
M∑

A=1

∫
ρA(r)

(
ρA(r)
ρ0

A(r)

)q−1

− 1

q − 1
dr (15)

using a Lagrange multiplier, λ(r), to force the Eq. (2), one
has the stationary conditions

0=
δ

(
IT

[
{ρA(r)}M

A=1

∣∣ {ρ0
A(r)

}M
A=1

]
−λ(r)

[
M∑

A=1
ρA(r)−ρmol(r)

])

δρA(r)

λ(r) =
(

ρA(r)

ρ0
A(r)

)q−1(
1

q − 1
+ 1

)
(16)

which leads to the conclusion that
ρA(r)

ρ0
A(r)

= ρB(r)

ρ0
B(r)

1 ≤ A, B ≤ M. (17)

Elementary manipulation using Eq. (2) [cf. Eqs. (42)–(44) in
[32]] leads to the Hirshfeld result,

ρA(r) = ρ0
A

M∑
B=1

ρ0
B(r)

ρmol(r). (18)

While the preceding analysis may be taken as an argument
for the universality of the Hirshfeld form, it should not be
assumed that every reasonable choice for the Kullback–Lie-
bler conditional information leads to the Hirshfeld atom. This
is manifestly not the case for the Rajagopal–Abe form [Eq.
(14)] and, as shown in the Appendix, the Fisher information
measure does not lead to the Hirshfeld atom either.

3 Entropy of mixing and the Hirshfeld atom

The principal weakness in the traditional “information-the-
oretic” of the Hirshfeld atom is their nebulous relationship
to bona fide information theory. In particular, it has not been
demonstrated that the information measure in Eq. (1),

I
[
{ρA(r)}M

A=1

∣∣∣ {ρ0
A(r)

}M
A=1

]
=

M∑
A=1

∫
ρA(r) ln ρA(r)

ρ0
A(r)

dr (19)

satisfies the defining properties of the information, notably
the requirements of nonnegativity and the additivity of the
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information from independent random variables. The ques-
tion arises: is Eq. (19) a measure of the information loss upon
molecule formation or is it merely an “information-theory
motivated” measure of the changes associated with molecule
formation? That is, can Eq. (19) be placed on a firm foot-
ing from the standpoint of information theory, or is it just an
information-theoretic heuristic?

From the analysis in Sect. 2.1, the derivation of many key
properties of the Kullback–Liebler relative information relies
on the fact that statistical probability distribution functions
are normalized to unity. This suggests that instead of con-
sidering comparing the electron densities of the atom in the
molecule to a reference atom, we compare their shape func-
tions. The shape function is the density per particle [33,34],

σ(r) = ρ(r)∫
ρ(r)dr

, (20)

and, combined with the number of electrons,

N [ρ] ≡
∫

ρ(r)dr (21)

fully specifies the state of any system. We propose, then, that
the information loss during molecule formation can be mod-
eled as

I
[
{pA, σA}M

A=1

∣∣∣ {p0
A, σ 0

A

}M
A=1

]
=

M∑
A=1

pA

∫
σA(r) ln

(
σA(r)
σ 0

A(r)

)
dr

+
M∑

A=1

pA ln

(
pA

p0
A

)
, (22)

where Nmol is the number of electrons in the molecule,
pA = NA

Nmol
is the proportion of the electrons in the mole-

cule that are assigned to a given atom (NA is the number of
electrons in atom A) and σA(r) is the shape function of the
atom in the molecule. For the reference systems, σ 0

A(r) and
p0

A denote the shape function and the fraction of the system’s
electrons contained in the reference atom, respectively.

Exploring Eq. (22) term by term, the first term,

Ishape
[
σA| σ 0

A

] ≡ pA

∫
σA(r) ln

(
σA(r)
σ 0

A(r)

)
dr, (23)

clearly measures the information lost due to the change in
shape due to molecule formation. The factor of pA can be
justified on intuitive grounds: it is reasonable to suspect that
the “total information loss” due to the shape deformation is
proportional to the fraction of electrons that are contained
in that atom, so that distortions in the shape function of a
“heavy” atom will be proportionately more important than
that with fewer electrons. Another, equally important, ratio-
nale is that this method for weighting the change in the shape
function gives the first and second term in Eq. (22) a similar
form, which allows the coefficient of pA to be interpreted as
the change in information of atom A during molecule forma-
tion. There is also a rigorous mathematical justification for
the pA coefficient. Duplicates of a system impart no addi-
tional information, because all the information that is con-
tained in the “copies” was already apparent from the original
and, were the factor of pA omitted in Eq. (23), this result

would no longer be obtained. Note that because the shape
function is normalized to unity, I

[
σA| σ 0

A

]
is never negative.

In addition, the additivity of the information in independent
events is preserved.

The second term in Eq. (22) is an “entropy of mixing”
term,

Imix

[
{pA}M

A=1

∣∣∣{p0
A

}M
A=1

]
≡

M∑
A=1

pA ln

(
pA

p0
A

)
(24)

and is directly analogous in form and interpretation to the
eponymous concept in the classical thermodynamics of mix-
tures. The entropy of mixing term is essential: the possibility
of charge transfer between atoms dictates that just because
the shape of an atom does not change during molecule forma-
tion, it does not mean that the atom does not change, and so
information can be lost during molecule formation even if the
shapes of all the molecule’s composing atoms are unchanged,
σA(r) = σ 0

A(r). Because

1 =
M∑

A=1

pA =
M∑

A=1

p0
A (25)

the “mixing” information is always positive and satisfies the
requirement that independent events lead to additive infor-
mation. (These results are the discrete analogue to statements
(a) and (b) in Sect. 2.1. To prove them, merely replace the
integrals in Eqs. (5) and (9) with summations.)

When considering the entropy gain upon molecule for-
mation instead of the information lost, a slight revision to
Eq. (22) should be made. The entropy is an extensive quan-
tity and, in contrast to the information, increases in propor-
tion to the number of distinct “copies” of a molecule under
consideration system. Multiplication of the sum of the infor-
mation lost by the total number of electrons in the system,
Nmol, gives a measure of the entropy gain during molecule
formation [35],

S
[
{pA, σA}M

A=1

∣∣∣ {p0
A, σ 0

A

}M
A=1

]

≡ Nmol · I
[
{pA, σA}M

A=1

∣∣∣ {p0
A, σ 0

A

}M
A=1

]

=
M∑

A=1

NA

∫
σA(r) ln

(
σA(r)
σ 0

A(r)

)
dr

+
M∑

A=1

NA ln

(
pA

p0
A

)
. (26)

Multiplication of the information by a constant clearly does
not change the particular information-theoretic atoms so de-
rived, as it amounts to nothing more than a change in units.
Using Eq. (26), if we consider K well-separated copies of a
molecule, the “entropy of molecule formation” for the entire
system will be K times that of a single molecule, in accor-
dance with our chemical intuition. Without the factor of Nmol,
one finds that the information lost during molecule formation
is independent of the number of copies of the molecule.
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Expression (26) for the entropy of molecular formation
relative to some reference is easily constructed from its com-
ponents. The key assumption is that the shape functions,
{σA(r)}, and electron fractions, {pA}, of the atoms can be
varied independently. Then, according to the postulate that
the entropy of independent variables is additive, Eq. (26) re-
sults. From Eq. (26) and the definition of the shape function,
Eq. (20),

S
[
{pA, σA}M

A=1

∣∣∣ {p0
A, σ 0

A

}M
A=1

]

= Nmol

(
M∑

A=1

pA

∫
σA(r) ln

(
σA(r)
σ 0

A(r)

)
dr +

M∑
A=1

pA ln

(
pA

p0
A

))

= Nmol

(
M∑

A=1

pA

[∫
σA(r) ln

(
σA(r)
σ 0

A(r)

)
dr +

∫
σA(r) ln

(
pA

p0
A

)
dr
])

=
(

M∑
A=1

Nmol

(
NA

Nmol

)[∫
σA(r) ln

(
pAσA(r)
p0

Aσ 0
A(r)

)
dr
])

=
(

M∑
A=1

NA

[∫
σA(r)

(
ln

(
NAσA(r)
N 0

Aσ 0
A(r)

)
+ ln

(
N 0

mol
Nmol

))
dr
])

= −Nmol ln Nmol
N 0

mol
+

M∑
A=1

∫
ρA(r) ln

(
ρA(r)
ρ0

A(r)

)
dr. (27)

The first term in Eq. (27) is constant, and is usually zero
(unless sums of the charges of the reference atoms do not add
up to the total molecular charge). The second term is exactly
the Nalewajski–Parr expression for the entropy, Eq. (1) [22].
Minimizing Eq. (27) subject to the isodensity constraint, Eq.
(2), then yields the Hirshfeld partitioning, Eq. (18).

The importance of Eq. (27) is clear. We have started
with a mathematical measure of the information lost dur-
ing molecule formation and from it derived the Nalewajski–
Parr entropy, which was originally proposed based on more
heuristic considerations. This reveals, in particular, that the
Nalewajski–Parr entropy is a “real” information-theoretic
measure, never negative and preserving the additive entropies
of independent events. That is, the Hirshfeld atom is really
an “information-theoretic” atom in a rigorous mathematical
sense. Another advantage of Eq. (26) over the original formu-
lation [Eq. (1) or (27)] is that the loss of information due to
charge transfer or “electron mixing,” Eq. (24), has been sep-
arated from the loss of information due to polarization (an
atom’s shape), Eq. (23). This is expected to have conceptual
utility [35].

The primary motivation for presenting the Tsallis form
of the conditional entropy, Eq. (13), is to demonstrate that
the preceding result is not a trivial one. The derivation in
Eq. (27) uses the fact that the logarithm of a product is the
sum of the logarithms, and so this derivation does not work
for the nonlogarithmic Tsallis form [cf. Eq. (13)] – a rig-
orous information-theoretic treatment based on the Tsallis
form leads to a different definition of the atom in a mole-
cule, and not the Hirshfeld form. (A closed form solution,
similar to Eq. (18), does not seem to be attainable in this
case.) Nor does the present method of derivation work for the
Rajagopal–Abe form [Eq. (14)] or the Fisher information (see
the Appendix).

Concluding this section, it is clear from both the Eqs. (26)
and (1) that the entropy gained during molecule formation can
be associated with the quantity

SA
[

pA, σA| p0
A, σ 0

A

]

= Nmol pA

(∫
σA(r) ln

(
σA(r)
σ 0

A(r)

)
dr + ln

(
pA

p0
A

))

=
∫

ρA(r) ln

(
ρA(r)
ρ0

A(r)

)
dr. (28)

It is worth noting that, as per the discussion in Sect. 2.1,
SA
[

pA, σA| p0
A, σ 0

A

]
can actually be less than zero. Given that

the shape-function entropy is never negative, this has a clear
interpretation: an atom that loses electrons upon molecule
formation can “lose” information. This coincides with the
observation, first noted by Sears et al. [36], that electronic
motion is intertwined with entropy. Thus, an atom that loses
electrons can also “gain” information (or lose uncertainty).

4 Atoms from local conditional probabilities

Nalewajski has asserted that the Hirshfeld partitioning is en-
tirely general, and can be derived from many different mea-
sures of information. To arrive at this conclusion, in much
of his recent work an alternative approach to the Hirshfeld
partitioning has been used [13–15,21]. Indeed, with this alter-
native method, one can derive the Hirshfeld partitioning from
any information measure, as we now rigorously show.

The alternative approach advocated by Nalewajski is based
on the probability that an electron at the point x is assigned
to atom A,

PA(x) ≡ ρA(x)

ρmol(x)
(29)

Here, as before, ρA(x) denotes the electron density of
atom A and ρmol(x) denotes the electron density of the mol-
ecule as a whole. The fact that the atomic densities must
add up to form the molecular density, Eq. (2), imposes the
normalization constraint

M∑
A=1

PA(x) = 1, (30)

while the fact that both atomic densities and the total molec-
ular density are nonnegative implies that PA(x) ≥ 0. Based
on these properties, we conclude that a vector containing the
value of PA(x) for each A,

P(x) ≡ [P1(x), P2(x), . . . , PM (x)]T , (31)

is a valid discrete probability distribution function. We de-
note the prior distribution in a similar way, with P0(x) ≡[P0

1 (x), P0
2 (x), . . . , P0

M (x)
]T

.
In general, a measure of information satisfies several

properties, each of which is chosen to be intuitively reason-
able and useful in a given situation. On intuitive grounds,
however, every measure of the missing information is a
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directed divergence [23]. That is, the quantity of “missing
information,” I [P|P0

]
, must be positive whenever P �=

P0, and zero when P = P0. Any function,

I[P| P0] = 0 P = P0

I[P| P0] > 0 P �= P0 (32)

that satisfies these constraints is a directed divergence. Note,
however, that while every measure of information is a di-
rected divergence, it is unreasonable to assume that every
directed divergence is a measure of information. (The con-
ditions in Eq. (32) are not very restrictive, so some functions
that are directed divergences are too ill-behaved to be rea-
sonable information measures. In addition, every measure of
distance is necessarily a directed divergence, so any mea-
sure of distance will satisfy Eq. (32).) All of the measures of
information considered previously also satisfy Eq. (32). Of
special interest is the Kullback–Liebler information [cf. Eq.
(24)]

I
[P ∣∣P0 ] ≡

M∑
A=1

PA(x) ln

(
PA(x)

P0
A(x)

)
, (33)

which has been the subject of much prior work [13–15,21].
Because the distributions under consideration are appropri-
ately normalized [cf. Eq. (30)], Eq. (33) is a mathematically
acceptable measure of information.

In order to find the atom that minimizes the information
measure (more generally, the directed divergence), we must
minimize I[P| P0

]
subject to the constraint that P(x) is a

valid probability distribution function. Specifically,

Imin(x) ≡ min︸︷︷︸
0≤PA(x)

1=
M∑

A=1
PA(x)

I[P| P0] (34)

From Eq. (32), it is clear that Imin(x) ≥ 0, and that Imin(x) =
0 if and only if P(x) = P0(x). However, since P0(x) is a
valid probability distribution function, choosing PA(x) =
P0

A(x) for all A satisfies the constraints on the minimiza-
tion. Thus, the constaints do not “restrict” the minimiza-
tion, so Imin(x) = 0 and PA(x) = P0

A(x) for all x. This
should be contrasted with the information measure origi-
nally used by Nalewajski and Parr (and rederived in Sect.
3.); when minimizing Eq. (1) [Eq. (26)] the requirement that
the sum of the atomic densities equals the molecular den-
sity [Eq. (2)] generally prevents the missing information,

I
[
{ρA(r)}M

A=1

∣∣ {ρ0
A(r)

}M
A=1

]
, from being zero.

If one chooses the prior distribution according to Hirsh-
feld’s stockholder principle, whereby the probability of an
electron being assigned to a given atom is proportional to
that atom’s “investment” to the density of the pro-molecule,

P0
A(x) ≡ ρ0

A(x)

M∑
B=1

ρ0
B(x)

, (35)

then, by the preceding argument, any measure of
information,I[P| P0

]
, yields the Hirshfeld partitioning. Spe-

cifically, from Eq. (29),

PA(x) = ρA(x)

ρmol(x)
= ρ0

A(x)

M∑
B=1

ρ0
B(x)

= P0
A(x)

ρA(x) = ρ0
A(x)ρmol(x)

M∑
B=1

ρ0
B(x)

.

(36)

Equation (36) is not a trivial result; the fact that the “out-
put” distribution from the procedure, P(x), is equal to the
“input” distribution, P0(x), indicates that the input distribu-
tion is “stable” with respect to the minimization in Eq. (34).
It should be noted that this stability does not depend on the
specific information measure under consideration. Neither
does this stability depend on the prior distribution, P0(x)
– any prior distribution that is a bona fide probability dis-
tribution function (that is, P0(x) must be nonnegative and
normalized) will work. On the basis of the preceding analysis,
we can make the general statement: For any directed diver-
gence, I[P| P0

]
, and prior distribution, P0(x), minimizing

of I[P| P0
]

with respect to the constraint that the function
P(x) be nonnegative and normalized yields the atomic den-
sity,

ρA(x) = P0
A(x)ρmol(x) (37)

The Hirshfeld atom is derived when P0(x) is defined with
Eq. (35). Taking a different prior distribution, e.g.,

P0
A(x) ≡ Z A|x − RA|2

M∑
B=1

Z B |x − RB |2
, (38)

yields an atom based on the relative amount of force exerted
on an electron at x from the atomic nuclei (with atomic num-
bers {Z A} and positions {RA}),

ρforce
A ≡ ρmol(x)

Z A|x − RA|2
M∑

B=1
Z B |x − RB |2

. (39)

Alternatively, if we choose

P0
A(x) ≡

{
1 x ∈ 	A,
0 x /∈ 	A,

(40)

where 	A is an atomic volume derived using Bader’s method
[37,38], then one obtains the Bader’s topological partition-
ing.

The method sketched in Eqs. (29)–(37), which we term
the local conditional distribution method, can be contrasted
with the method used in Sect. 3, wherein integration “adds
up” the contributions to the entropy from all points in space
to provide a “global” measure of the entropy. Also unlike
the local partitioning scheme, the “entropy of mixing” argu-
ment in section 3, is specifically associated with the Hirshfeld



376 P. W. Ayers

atom: non-logarithmic measures of the information – to say
nothing of other measures of the directed divergence – are
associated with different definitions of the atom. In addition,
and again unlike the local conditional distribution method [cf.
Eq. (35)], the stockholder analysis does not directly enter into
the derivation of “entropy of mixing” argument. Thus, based
on the argument in Sect. 3, then, we identify the Hirshfeld
atom as the information-theoretic atom or, rather, the Kull-
back–Liebler information-theoretic atom. The elucidation of
this relationship is the primary contribution of this paper.

5 Summary

This paper addresses, in a rigorous mathematical way, the
uncertainties associated with the information-theoretic ap-
proach to the Hirshfeld atom. By recasting the original for-
mulation of Nalewajski and Parr [22] in terms of the shape
function and an “entropy of mixing” term, one can rigorously
derive the Hirshfeld partitioning. [1] Importantly, this dem-
onstrates that the Nalewajski–Parr information measure sat-
isfies important constraints associated with nonnegativity and
statistical independence. It also seems likely that decompos-
ing the relative information into polarization (shape deforma-
tion) and charge transfer (mixing) components may be useful.
In particular, we learn that atoms which lose electrons during
molecule formation will often, somewhat counterintuitively,
“gain information” relative to their free state.

While the Hirshfeld atom seems to be the “best” atom
from the standpoint of Shannon’s information theory, the
same cannot be said when alternative measures of informa-
tion are used. In particular, even though a naïve derivation
using the Tsallis information will give the Hirshfeld atom,
this result disintegrates when a more rigorous mathematical
track is taken. The same may be said of the Fischer informa-
tion and, presumably, many other methods of measuring the
information also. This, however, does not diminish the impor-
tance of Hirshfeld atom or its information-theoretic deriva-
tion. Rather, it merely serves to emphasize the obvious: there
are many different ways to define an atom in a molecule and,
depending on the criteria used, different definitions result.
This is beneficial: one may choose, in any given situation,
the definition for an atom in a molecule that is most conve-
nient, useful, and appropriate. The Hirshfeld atom and the
entropy of mixing argument presented in Sect. 3 are simple
and intuitive, however, and might plausibly be preferred to
other, more complicated, alternatives.

6 Appendix

Nalewajski and Parr have asserted that the relative Fisher
information,

I F
[
{ρA}M

A=1

∣∣∣{ρ0
A

}M
A=1

]
=

M∑
A=1

〈
ρA(r)

∣∣∣∣∇
[

ln

(
ρA(r)
ρ0

A(r)

)]∣∣∣∣
2
〉
,

(41)

can, like the Shannon information, be used to derive the
Hirshfeld atom [14,17]. Taking the functional derivative of
expressions like Eq. (41) is, however, quite difficult, and sub-
ject to error. In particular, before using formula like those of
Gelfand and Fomin [39] one must be careful to ensure that
the assumptions implicit in the derivation of those formulas
are satisfied. The surest way to proceed is to use the definition

of the functional derivative, by which we identify δ I F

δρA(r) with
the coefficient of δρA(r) in the Taylor series expansion of

I F
[
{ρA+δρA(r)}M

A=1

∣∣∣{ρ0
A

}M
A=1

]
−I F

[
{ρA}M

A=1

∣∣∣{ρ0
A

}M
A=1

]
.

Proceeding in this manner, and neglecting terms of higher-
order in δρ(r) whenever they appear, we have

I F
[
{ρA + δρA(r)}M

A=1

∣∣∣{ρ0
A

}M
A=1

]
− I F

[
{ρA}M

A=1

∣∣∣{ρ0
A

}M
A=1

]

=
〈
(ρA(r) + δρ(r))∇

[
ln

(
ρA(r)+δρ(r)

ρ0
A(r)

)]
· ∇
[

ln

(
ρA(r)+δρ(r)

ρ0
A(r)

)]〉

−
〈
(ρA(r))∇

[
ln

(
ρA(r)
ρ0

A(r)

)]
· ∇
[

ln

(
ρA(r)
ρ0

A(r)

)]〉

=
〈
(ρA(r) + δρ(r))∇

[
ln

(
ρA(r)
ρ0

A(r)

(
1 + δρ(r)

ρ0
A(r)

))]

·∇
[

ln

(
ρA(r)
ρ0

A(r)

(
1 + δρ(r)

ρ0
A(r)

))]〉

−
〈
(ρA(r))∇

[
ln

(
ρA(r)
ρ0

A(r)

)]
· ∇
[

ln

(
ρA(r)
ρ0

A(r)

)]〉

=
〈
(ρA(r) + δρ(r))∇

[
ln

(
ρA(r)
ρ0

A(r)

)
+ ln

(
1 + δρ(r)

ρ0
A(r)

)]

·∇
[

ln

(
ρA(r)
ρ0

A(r)

)
+ ln

(
1 + δρ(r)

ρ0
A(r)

)]〉

−
〈
(ρA(r))∇

[
ln

(
ρA(r)
ρ0

A(r)

)]
· ∇
[

ln

(
ρA(r)
ρ0

A(r)

)]〉

=
〈
δρ(r)∇

[
ln

(
ρA(r)
ρ0

A(r)

)]
· ∇
[

ln

(
ρA(r)
ρ0

A(r)

)]〉

+2

〈
ρA(r)∇

[
ln

(
1 + δρ(r)

ρ0
A(r)

)]
· ∇
[

ln

(
ρA(r)
ρ0

A(r)

)]〉

=
〈
δρ(r)∇

[
ln

(
ρA(r)
ρ0

A(r)

)]
· ∇
[

ln

(
ρA(r)
ρ0

A(r)

)]〉

+2

〈
ρA(r)∇

[
ln

(
ρA(r)
ρ0

A(r)

)]
· ∇
[

δρ(r)
ρ0

A(r)

]〉
. (42)

The last line uses the Taylor series for the logarithm, ln (1 + x)

= x − x2

2 + . . .. Next, from the identity ∇2( f (x)g(x)) =
g(x)∇2 f (x)+2∇g(x) ·∇ f (x)+ f (x)∇2g(x), one obtains

2

〈
ρA(r)∇

[
ln

(
ρA(r)
ρ0

A(r)

)]
· ∇
[

δρ(r)
ρ0

A(r)

]〉

=
〈
ρA(r)∇2

[
δρ(r)
ρ0

A(r)
ln

(
ρA(r)
ρ0

A(r)

)]〉

−
〈
ρA(r)

(
δρ(r)
ρ0

A(r)

)
∇2
[

ln

(
ρA(r)
ρ0

A(r)

)]〉

−
〈
ρA(r) ln

(
ρA(r)
ρ0

A(r)

)
∇2
(

δρ(r)
ρ0

A(r)

)〉
(43)
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and, applying Green’s theorem, one obtains

2

〈
ρA(r)∇

[
ln

(
ρA(r)
ρ0

A(r)

)]
· ∇
[

δρ(r)
ρ0

A(r)

]〉

=
〈

δρ(r)
ρ0

A(r)
ln

(
ρA(r)
ρ0

A(r)

)
∇2ρA(r)

〉

+
∫∫
©

R→∞




ρA(r)∇
(

δρ(r)
ρ0

A(r)
ln

(
ρA(r)
ρ0

A(r)

))

− δρ(r)
ρ0

A(r)
ln

(
ρA(r)
ρ0

A(r)

)
∇ρA(r)


 · ndS

−
〈
ρA(r) δρ(r)

ρ0
A(r)

∇2
[

ln

(
ρA(r)
ρ0

A(r)

)]〉

−
〈

δρ(r)
ρ0

A(r)
∇2
[
ρA(r) ln

(
ρA(r)
ρ0

A(r)

)]〉

−
∫∫
©

R→∞




−ρA(r) ln

(
ρA(r)
ρ0

A(r)

)
∇
(

δρ(r)
ρ0

A(r)

)

− δρ(r)
ρ0

A(r)
∇
(

ρA(r) ln

(
ρA(r)
ρ0

A(r)

))


 · ndS

=
〈 ln

(
ρA(r)
ρ0

A(r)

)
∇2ρA(r) − ρA(r)∇2

[
ln

(
ρA(r)
ρ0

A(r)

)]
− ∇2

[
ρA(r) ln

(
ρA(r)
ρ0

A(r)

)]

ρ0
A(r)

δρ(r)

〉

+2
∫∫
©

R→∞

(
δρ(r)ρA(r)

ρ0
A(r)

∇
[

ln

(
ρA(r)
ρ0

A(r)

)])
· ndS, (44)

where it is understood that the surface integral occurs over
a surface located at infinity. For highly local perturbations,2

the surface integral will be zero. Using Eq. (44) in Eq. (42)
allows one to identify the functional derivative, namely,

δ IF

δρA(r)

= ∇
[

ln

(
ρA(r)
ρ0

A(r)

)]
· ∇
[

ln

(
ρA(r)
ρ0

A(r)

)]

+
ln

(
ρA(r)
ρ0

A(r)

)
∇2ρA(r) − ρA(r)∇2

[
ln

(
ρA(r)
ρ0

A(r)

)]
− ∇2

[
ρA(r) ln

(
ρA(r)
ρ0

A(r)

)]

ρ0
A(r)

= ∇
[

ln

(
ρA(r)
ρ0

A(r)

)]
· ∇
[

ln

(
ρA(r)
ρ0

A(r)

)]
− 2

ρA(r)

ρ0
A(r)

∇2
[

ln

(
ρA(r)
ρ0

A(r)

)]

−2
∇ρA(r)

ρ0
A(r)

· ∇ ln

(
ρA(r)
ρ0

A(r)

)
(45)

Minimizing the Fisher relative information functional, Eq.
(41) subject to the molecular density constraint, Eq. (2),
yields the identity

δ IF

δρA(r)
= δ IF

δρB(r)
1 ≤ A, B ≤ M. (46)

Perusal of Eq. (45) reveals that, because of the form of the
last term, we do not obtain Eq. (17), which is the key result
required to derive the Hirshfeld atom. Consequently, the min-
imum Fisher information principle does not lead to the Hirsh-
feld atom. Indeed, it seems impossible to solve Eq. (46) to

2 Mathematically speaking, the perturbations should have compact
support or, failing that, “essentially compact” support

get any elementary formula for the atomic definition cor-
responding to the minimum Fisher information principle. In
addition, it is unclear how one may, through an analysis anal-
ogous to that in Sect. 3, cast the above derivation in a more
conventional form using the shape function and an “entropy
of mixing” term.
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