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Abstract Formulae for calculating the analytic gradients of
the exchange-repulsion energy in the general effective frag-
ment potential (EFP2) method are derived and implemented
using a direct differentiation approach. The timings for the
exchange repulsion gradient evaluations are approximately
three times longer than the energy evaluations, orders of mag-
nitude faster than a previous implementation. Since the direct
differentiation approach is not approximate, the gradients can
be used with confidence in molecular dynamics and Monte
Carlo simulations with the EFP2 method.
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1 Introduction

The general effective fragment potential (EFP2) is an ab initio
based method in that all the molecular interaction parame-
ters are obtained from preparative ab initio calculations [1,2].
In the EFP2 method, the molecular electrostatic (Coulomb)
interaction is modeled with multipolar expansion points ob-
tained from the Stone distributed multipole analysis. The
induction interaction is modeled with localized orbital dipole
polarizability tensors and the electric fields. The exchange
repulsion is modeled with frozen localized molecular orbi-
tals (LMO) and their intermolecular overlap, kinetic energy,
Coulomb and nuclear potential integrals [2]. The disper-
sion interaction is modeled with LMO dynamic polarizability
points obtained from time-dependent Hartree–Fock calcula-
tions [3]. Recently, an approximate formula for the intermo-
lecular charge transfer interaction for the EFP2 method has
been derived and implemented based on a second-order per-
turbative treatment that enables electrons to be excited from
occupied orbitals of one molecule into virtual orbitals of other
molecules. All of the EFP2 parameters for a molecule can be
obtained from a single ab initio calculation on the molecule
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and can then be used for various EFP–EFP or ab initio-EFP
calculations.

The EFP2 parameters for the exchange repulsion and
charge transfer interaction are actually the molecular orbi-
tals (MO) and the Fock matrix elements [2]. Once obtained,
these orbitals are internally frozen in the EFPs, which can
translate and rotate in the calculations. The MO integrals
involved in the exchange repulsion and charge transfer cal-
culations change when the positions and orientations of the
EFPs change. To evaluate the analytic gradients of these
interaction energies with respect to EFP translational and
rotational displacements, the derivatives of the MO integrals
are required. The gradients of the charge transfer interaction
for EFP2 have been derived and implemented using a direct
differentiation method, which is accurate and efficient. The
time required for the charge transfer gradient evaluation is
two to three times longer than that for the energy.

The exchange repulsion gradients with respect to EFP
displacements have been implemented previously with an
approximate treatment of the torques on the atomic orbitals
(AO) [4]. The direct differentiation method was not used in
that implementation, thus neither the accuracy nor the effi-
ciency was optimized. In EFP2 calculations on small systems,
the approximate exchange repulsion gradients are accurate
and efficient. However, as the EFP2 method is applied to
larger systems, or in molecular dynamics (MD) or Monte
Carlo (MC) calculations, the impact of the approximate gra-
dient method will become more serious, and the need for
accuracy and efficiency in the gradient evaluation increases.

In this work, the direct differentiation method is applied
to the evaluation of the exchange repulsion gradients in the
EFP2 method. In Sect. 2, expressions are derived for the
exchange repulsion gradients and the necessary integral deriv-
atives with respect to EFP translational and rotational
coordinates, as well as expressions for the gradients of pair-
wise-interacting molecules. After a brief description of the
computational methodology in Sect. 3, the gradients cal-
culated with the current and previous implementations and
their CPU timings are compared in Sect. 4. Conclusions are
presented in Sect. 5.
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2 Theory

2.1 General expression for the gradients

The exchange-repulsion energy for EFP A and B can be
approximated as [2]:
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In Eq. (1) i, k and j, l run over the LMOs of molecule A and
B, respectively. I and J run over the nuclei of molecule A
and B, respectively. S and T are overlap and kinetic energy
integrals of the LMOs, F is the Fock matrix in the LMO basis
(thus not diagonal), Z is the nuclear charge, and R are the
distances between LMO centroids or the distances between
LMO centroids and the nuclei.

In the EFP method, the internal geometry of a molecu-
lar fragment is frozen, leaving three degrees of translational
freedom and three degrees of rotational freedom about its
center of mass. Consider the forces and torques due to the
exchange repulsion between molecules A and B. The forces
and torques due to B acting on A are the first derivatives of
X RAB with respect to the translation/rotation coordinate qA
of A:
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Consequently, the following derivatives with respect to
the translational or rotational coordinate qA of A are required
to evaluate Eq. (2):
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The derivatives of the distances can be evaluated easily. The
derivatives of the overlap and kinetic energy integrals can be
obtained from the derivatives of the corresponding AO inte-
grals and the derivatives of the MO coefficients. For example,
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Here and hereafter c refers to the MO coefficients, u and v
refer to the AOs of molecules A and B, respectively.

In the following subsections, the translational and rota-
tional gradients are discussed in detail.

2.2 Translation of A (qA = xA, yA, zA)

The MOs for the EFPs are frozen and the MO coefficients are
constants when A translates. Consequently, the derivatives of
the MO integrals can be obtained from the derivatives of the
AO integrals.

For example, the derivative of the overlap integral Si j
[c.f., Eq. (4)] with respect to the translational motion of mol-
ecule A (molecule B is fixed) in the x direction (xA) is:
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The overall translation of A in the x direction (xA) can be
decomposed into the individual atomic translations in A (xa),
so:
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Here a runs over the atoms of molecule A andψu is a Gauss-
ian basis function (i.e., AO) on A.

Similarly, the derivatives of the kinetic energy integrals
with respect to xA are:
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The derivatives of the basis functions can be evaluated using
standard techniques.

The translational derivatives of the distances are much
easier to calculate. For example (note ∂xA = ∂xi since i
belongs to A):
∂Ri j

∂xA
= (xi − x j )

Ri j
(8)

All the necessary translational derivatives in Eq. (3) can
be obtained using Eqs. (6), (7) and (8). The AO overlap and
kinetic energy integrals are usually calculated and stored as
matrices, as are the derivatives of these integrals.

2.3 Rotation of A (qA = θxA, θyA, θzA)

When a molecule rotates about its center of mass, the AO (or
nuclear) centers translate (unless an AO center is the center of
mass), and the MO coefficients change. The rotational deriv-
atives of the MO integrals can be evaluated with the transla-
tional derivatives of AO integrals and rotational derivatives
of MO coefficients. For example, the derivative of Si j with
respect to the rotational motion in the y–z plane (denoted as
θxA since the angular momentum is in the x direction) about
the center of mass of molecule A is,
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The overall rotation of A in the y–z plane about its center of
mass can be decomposed into individual atomic rotations in
the y–z plane (denoted as θxa) about the atomic centers plus
individual atomic translations in the y–z plane multiplied by
the distances between the atomic centers (xa , ya , za) and the
center of mass (xA

com, yA
com, zA

com):
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So Eq. (9) becomes:
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The rotational derivatives of AOs and translational deriva-
tives of MO coefficients are always zero:
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So Eq. (11) further simplifies to:
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Similarly, the rotational derivatives of the kinetic energy
integrals can be obtained:
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The rotational derivatives of the distances are also similar.
For example:
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2.4 Derivatives of MO coefficients

Since the AOs are grouped as shells (s, p, d, f, g, . . .), the
rotational derivatives of the MO coefficients are simply the
intra-shell linear combination of the MO coefficients. Table 1
presents the rotational derivatives of the MO coefficients for
s, p, d , f and g type Cartesian Gaussian functions. For exam-
ple, the derivative of the MO coefficient for the yyz compo-
nent of an f type AO with respect to the rotation about the
x axes is simply a linear combination of the MO coefficients
for the yyy and zzy components of the same AO:

∂cyyz
f

∂θx
= −3cyyy

f + 2czzy
f (16)

2.5 Pairwise gradients

Since we choose a strictly pairwise-additive form for the
exchange-repulsion energy of a collection of molecular
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Table 1 Derivatives of molecular orbital coefficients with respect to the rotations of atomic orbital center

AO Components /∂θx /∂θy /∂θz

s 0 0 0
p ∂Cx 0 −Cz Cy

∂Cy Cz 0 −Cx
∂Cz −Cy Cx 0

d ∂Cxx 0 −Cxz Cxy
∂Cyy Cyz 0 −Cxy
∂Czz −Cyz Cxz 0
∂Cxy Cxz −Cyz 2Cyy − 2Cxx
∂Cxz −Cxy 2Cxx − 2Czz Cyz
∂Cyz 2Czz − 2Cyy Cxy -Cxz

f ∂Cxxx 0 −Cyyz Cxxy
∂Cyyy Cyyz 0 −Cyyx
∂Czzz −Czzy Czzx 0
∂Cxxy Cxxz −Cxyz −3Cxxx + 2Cyyx
∂Cxxz −Cxxy 3Cxxx − 2Czzx Cxyz
∂Cyyx Cxyz −Cyyz 3Cyyy − 2Cxxy
∂Cyyz −3Cyyy + 2Czzy Cyyx −Cxyz
∂Czzx −Cxyz −3Czzz + 2Cxxz Czzy
∂Czzy −3Czzz + 2Cyyz Cxyz −Czzx
∂Cxyz 2Czzx − 2Cyyx 2Cxxy − 2Czzy 2Cyyz − 2Cxxz

g ∂Cxxxx 0 −Cxxxz Cxxxy
∂Cyyyy Cyyyz 0 −Cyyyx
∂Czzzz −Czzzy Czzzx 0
∂Cxxxy Cxxxz −Cxxyz 2Cxxyy − 4Cxxxx
∂Cxxxz −Cxxxy 4Cxxxx − 2Cxxzz Cxxyz
∂Cyyyx Cyyxz −Cyyyz 4Cyyyy − 2Cxxyy
∂Cyyyz 2Cyyzz − 4Cyyyy Cyyyx −Cyyxz
∂Czzzx −Czzxy 2Cxxzz − 4Czzzz Czzzy
∂Czzzy 4Czzzz − 2Cyyzz Czzxy −Czzzx
∂Cxxyy Cxxyz −Cyyxz 3Cyyyx − 3Cxxxy
∂Cxxzz −Cxxyz 3Cxxxz − 3Czzzx Czzxy
∂Cyyzz 3Czzzy − 3Cyyyz Cyyxz −Czzxy
∂Cxxyz 2Cxxzz − 2Cxxyy 3Cxxxy − 2Czzxy 2Cyyxz − 3Cxxxz
∂Cyyxz 2Czzxy − 3Cyyyx 2Cxxyy − 2Cyyzz 3Cyyyz − 2Cxxyz
∂Czzxy 3Czzzx − 2Cyyxz 2Cxxyz − 3Czzzy 2Cyyzz − 2Cxxzz

Water  and  waterWater and methanol

1,2,3-triazolium  and  nitrate Ammonium  and  nitrate

Fig. 1 The four pairs of molecules discussed in the text and in Table 2

fragments, the translational and rotational gradients of the
exchange-repulsion energy are also strictly pairwise additive.

The total forces of B acting on A and A acting on B are
zero in the three Cartesian directions:

FA(B)
x + FB(A)

x = 0

FA(B)
y + FB(A)

y = 0 (17)

FA(B)
z + FB(A)

z = 0
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Table 2 The exchange-repulsion gradients (Å) and the CPU timings (seconds) in two methods (old and new)

Method Time Forces Torques
x y z θx θy θz

1,2,3-triazolium and nitrate, aug-cc-pvDZ
Old 9.17 0.019326118 0.010320514 −0.007950650 0.008605009 −0.000165713 0.005441934
New 0.09 0.019326117 0.010320514 −0.007950650 0.010554305 −0.012462798 0.001843728

1,2,3-triazolium and nitrate, 6-31++G(d f, p)
Old NA NA NA NA NA NA NA
New 0.08 0.019090906 0.009840810 −0.006253899 0.010462815 −0.022509774 −0.004161012

1,2,3-triazolium and nitrate, 6-31++G(d, p)
Old 4.94 0.019611113 0.010440252 −0.006684904 0.011543115 −0.022897405 −0.003169965
New 0.04 0.019611113 0.010440252 −0.006684904 0.011518631 −0.022842482 −0.003190900

1,2,3-triazolium and nitrate, 6-31+G(d, p)
Old 4.66 0.019940843 0.010638010 −0.007000821 0.011378724 −0.023130936 −0.003452317
New 0.04 0.019940842 0.010638010 −0.007000821 0.011354214 −0.023075688 −0.003473010

Ammonium and nitrate, aug-cc-pvDZ
Old 0.77 0.004361718 −0.036719252 −0.006535922 0.001162271 −0.003628646 0.005601252
New 0.02 0.004361718 −0.036719251 −0.006535922 0.000465569 −0.000897899 0.006178098

Ammonium and nitrate, 6-31++G(d f, p)
Old NA NA NA NA NA NA NA
New 0.03 0.004200230 −0.039357771 −0.006828185 0.000730127 −0.000906337 0.006029690

Ammonium and nitrate, 6-31++G(d, p)
Old 0.47 0.004181929 −0.039570113 −0.006845233 0.000674595 −0.000788822 0.006028449
New 0.02 0.004181929 −0.039570112 −0.006845233 0.000722296 −0.000900886 0.006006041

Ammonium and nitrate, 6-31+G(d, p)
Old 0.44 0.004210723 −0.039989101 −0.006911544 0.000703754 −0.000809717 0.006065691
New 0.02 0.004210723 −0.039989100 −0.006911544 0.000751289 −0.000921719 0.006043244

Water and methanol, aug-cc-pvDZ
Old 0.29 −0.000626774 −0.004549582 0.000002098 −0.001014431 0.000082082 −0.000488277
New 0.01 −0.000626774 −0.004549581 0.000002098 −0.000829586 0.000069040 −0.000486933

Water and methanol, 6-31++G(d f, p)
Old NA NA NA NA NA NA NA
New 0.02 −0.000671651 −0.004719800 0.000076034 −0.000577646 0.000036956 −0.000310031

Water and methanol, 6-31++G(d, p)
Old 0.15 −0.000698177 −0.004736755 0.000118318 −0.000721309 0.000054001 −0.000385052
New 0.02 −0.000698177 −0.004736755 0.000118318 −0.000716606 0.000054190 −0.000389025

Water and methanol, 6-31+G(d, p)
Old 0.13 −0.000699169 −0.004662003 0.000137090 −0.000766210 0.000060396 −0.000412210
New 0.01 −0.000699169 −0.004662003 0.000137090 −0.000760624 0.000060594 −0.000416319

Water dimer, aug-cc-pvDZ
Old 0.04 0.004376427 −0.000256661 −0.000145454 0.000008550 0.001021215 −0.000846931
New 0.02 0.004376427 −0.000256661 −0.000145454 0.000008608 0.001051125 −0.000907030

Water dimer, 6-31++G(d f, p)
Old NA NA NA NA NA NA NA
New 0.01 0.004443870 −0.000103624 0.000006216 −0.000035652 −0.000028142 0.000164113

Water dimer, 6-31++G(d, p)
Old 0.03 0.004549380 −0.000076082 0.000039854 −0.000038549 −0.000095996 0.000226995
New 0.00 0.004549380 −0.000076082 0.000039854 −0.000038538 −0.000098983 0.000230006

Water dimer, 6-31+G(d, p)
Old 0.02 0.004539804 −0.000050902 0.000065390 −0.000042464 −0.000204941 0.000332071
New 0.00 0.004539804 −0.000050902 0.000065390 −0.000042455 −0.000207897 0.000335063

The total torques about any center point for A and B must
also be zero. The total torques for the system are the sum of
the torques on A about the center of mass of A, the torques
on B about the center of mass of B, as well as the torques
formed by the forces mutually acting on the centers of mass
of A and B:

τ
A(B)
θx +τB(A)

θx +
[

FA(B)
y · (zA

com −zB
com)−FA(B)

z · (yA
com −yB

com)
]

= 0

τ
A(B)
θy +τB(A)

θy +
[

FA(B)
z · (xA

com −xB
com)−FA(B)

x · (zA
com −zB

com)
]

= 0

τ
A(B)
θ z +τB(A)

θ z +
[

FA(B)
x · (yA

com −yB
com)−FA(B)

y · (xA
com −xB

com)
]

= 0

(18)

Therefore, if the forces and torques for B acting on A are
obtained, the reactionary forces and torques for A acting on
B can be obtained by simply using Eqs. (17) and (18) without
actually calculating the derivatives.

3 Computational methodology

The efficiency of the gradient expressions outlined above
is demonstrated below for several systems. All calculations
have been performed with the quantum chemistry program
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GAMESS [5,6], in which the codes for the calculation of the
exchange-repulsion energy and derivatives are implemented.

Various basis sets have been used to perform the closed-
shell SCF and corresponding EFP calculations. The molec-
ular geometries are first optimized at the RHF/6-31+G(d, p)
level of theory, in molecular pairs, and then the individual
molecules (ions) are used for EFP preparative calculations
with various basis sets. In the EFP calculations the internal
geometries of the molecules are frozen. In general, the rela-
tive positions of the molecules are allowed to change in geom-
etry optimization runs. However, in this work, single-point
energy and gradients are evaluated using the EFP2 param-
eters at the geometries optimized at the RHF/6-31+G(d, p)
level of theory in molecular pairs.

4 Results and discussion

Four pairs of molecules are studied: 1,2,3-triazolium–nitrate,
ammonium–nitrate, water–methanol and water–water (Fig.
1). The forces and torques exerted on the molecules are calcu-
lated with the EFP2 parameters, using both the previous and
the current implementations. Only electrostatic, induction
and exchange repulsion are considered because the recently
implemented dispersion and charge transfer terms were not
available for the previous version of the method. In Table 2
the forces and torques on one molecule in each pair (i.e.,
1,2,3-triazolium, ammonium, water and water, respectively)
are listed. In the previous implementation, f and g type AOs
were not considered. They were included in this implemen-
tation.

Identical translational gradients are produced by the two
implementations. However, the rotational gradients from the
two implementations are different. The differences in rota-
tional gradients are basis set and molecular size dependent.
In general, for neutral molecules with the 6-31+G(d, p) and
6-31++G(d, p) basis sets, the differences between these two
methods are less than 10−5 Å. For larger molecules with
larger basis sets the differences are more significant. The larg-
est difference (−0.000165713 vs. −0.012462798) is found
for the rotational gradient about the y direction for 1,2,3-
triazolium interacting with nitrate (using the aug-cc-pvDZ
basis set). Since the current implementation is based on di-
rect differentiation, it is rigorous and the results are of double
precision accuracy.

The dominant step in the exchange-repulsion energy cal-
culation is the evaluation of the overlap and kinetic energy
integrals. In the gradient calculation, the evaluation of the
derivatives of these integrals is the dominant step. The CPU
timings for the evaluations of single-point energy and gradi-
ents are also listed in Table 2. The new method is much more
efficient than the previous method. For small molecules, the
efficiency is increased by approximately ten times. For large
molecules, the efficiency is increased by more than 100 times.

The CPU timing for the exchange-repulsion gradients is
only two to three times longer than the CPU timing for the
exchange-repulsion energy itself. For 480 water molecules
described with the EFP2 parameters (only the electrostatic
multipole points, polarizability tensors and exchange-repul-
sion parameters are included), a single-point energy evalua-
tion requires 24.9 s on a PowerG5 processor, while a
single-point energy and gradient evaluation requires 58.7 s.
This efficiency is equivalent to that expected for ab initio
gradient evaluations.

5 Conclusion

A direct differentiation approach is applied to calculate the
gradients of the exchange repulsion with respect to molecu-
lar translations and rotations in the EFP2 method. The deriv-
atives of the MO coefficients with respect to rotations are
obtained by mixing the MO coefficients of the AOs in the
same shell, and are used to evaluate the rotational derivatives
of MO integrals required in the gradient calculation. In gen-
eral, the rotational gradients of the exchange repulsion in the
EFP2 method can be evaluated in a manner that is similar to
the approach for translational gradients. The new implemen-
tation involves no approximation and is considerably faster
than a previous implementation. Using the direct differenti-
ation approach, the timings for the gradient evaluation are
approximately three times longer than the energies, similar
to that expected for ab initio gradient calculations. This new
implementation makes the application of the EFP2 method
more robust for demanding applications like MD and MC
simulations, in which accurate and fast gradients are essen-
tial. The techniques used to calculate the gradients of the
EFP exchange repulsion and charge transfer interaction can
be used for other approximate ab initio methods in which
MOs are internally frozen.
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