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Abstract The paper describes the quantized Hamilton
dynamics (QHD) approach that extends classical Hamilto-
nian dynamics and captures quantum effects, such as zero
point energy, tunneling, decoherence, branching, and state-
specific dynamics. The approximations are made by closures
of the hierarchy of Heisenberg equations for quantum ob-
servables with the higher order observables decomposed into
products of the lower order ones. The technique is applied to
the vibrational energy exchange in a water molecule, the tun-
neling escape from a metastable state, the double-slit inter-
ference, the population transfer, dephasing and vibrational
coherence transfer in a two-level system coupled to a pho-
non, and the scattering of a light particle off a surface pho-
non, where QHD is coupled to quantum mechanics in the
Schrödinger representation. Generation of thermal ensem-
bles in the extended space of QHD variables is discussed.
QHD reduces to classical mechanics at the first order, closely
resembles classical mechanics at the higher orders, and re-
quires little computational effort, providing an efficient tool
for treatment of the quantum effects in large systems.

Keywords Semiclassical dynamics · Closure · Heisenberg
representation · Extended phase space · Gaussians

1 Introduction

Chemical reaction dynamics [1,2] is concerned with the
intricate details of breaking and forming chemical bonds.
To understand the outcome of a particular reaction the chem-
ist pictures the molecular structures of reactants and prod-
ucts. Next, a hypothesis regarding the reaction mechanism is
developed using the notion of a transition state (TS) as the sin-
gle most important configuration marking the reactant–prod-
uct boundary. The idea of a reaction dynamics bottleneck pro-
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vided by the TS is at the heart of the TS theories [3]. The reac-
tion rates that follow from the TS theories provide a limited
description averaged over various encounters, orientations
and relative velocities of the reactants, all possible pathways
from reactants to products, etc. Multiple TSs are possible and
often cannot be determined a priori without a careful analy-
sis of the potential energy surfaces, particularly in multiple
dimensions [4,5]. Direct simulation of chemical dynamics
provides a conceptually simpler alternative and a more de-
tailed picture of chemical processes.

The chemical applications of lasers [1,6] have generated
additional interest in reaction dynamics. Many of the old reac-
tions have been re-examined by the time-resolved optical and
scattering techniques with unprecedented temporal and struc-
tural detail. Novel phenomena have been discovered and re-
quire theoretical modeling. The available temporal resolution
spans all chemical scales from slow macroscopic transfor-
mations to sub-picosecond electronic rearrangements. Novel
types of chemical reactions are emerging involving mes-
oscopic and nanosize objects that cannot be described by
macroscopic thermodynamics, emphasizing dynamical and
quantum effects. Single molecule experiments [7] avoid
ensemble averaging and allow one to follow individual reac-
tion events in much the same way as one would a trajectory
on a computer.

The many-body dynamics of chemical reactions are
typically too complicated for a fully quantum mechanical
analysis. Although considerable progress has been made in
the development of exact quantum-mechanical methods, [8,
9], they are still only applicable to relatively small molecular
systems. In contrast, classical-dynamics methods are rou-
tinely used to study complex chemical problems involving
many thousands of particles [10,11]. Quantum effects such as
zero point energy, tunneling, dephasing, interference, branch-
ing, etc. are essential in chemistry, and cannot be avoided in
the time-resolved studies involving light-matter interaction.
One is, therefore, necessarily interested in approaches that
capture the quantum phenomena in many degrees of free-
dom. A number of such approaches involving semiclassical
and mixed quantum–classical dynamics have been proposed
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and applied in recent years, and remain under active devel-
opment [12–50].

The great utility of the semiclassical and quantum–
classical dynamics can be illustrated with numerous exam-
ples from most chemistry disciplines. For example, Rossky
and co-workers [12–18] have applied the stationary-phase
surface-hopping approach to investigate the non-radiative
relaxation of solvated electrons. They successfully elucidated
the origin of the electronic spectra and relaxation timescales
observed in various solvents [12,13,17] the types of sol-
vent vibrational modes involved in promoting the relaxa-
tion and accepting the excess electronic energy [14,18] and
the absence of the solvent isotope effect [15,16]. Tully and
co-workers [19–21] have studied the chemical dynamics at
metal surfaces using molecular dynamics with electronic fric-
tion, and established the electron and phonon mechanisms of
vibrational relaxation of molecular adsorbates. Miller and co-
workers have derived a number of semiclassical expressions
for the thermal rate constants [22,23] and applied them to
study proton transfer in a polar solvent [24] atom abstraction
in molecular collisions [25,26] dynamics of alkane hydrox-
ylation in methane monooxygenase [27], and other reactions.
Heller and co-workers [28,29] have described quantum cor-
rals, mirages and two-dimensional electron flows with semi-
classical dynamics. Many quantum control phenomena have
been investigated semiclassically, including the proton trans-
fer in large molecular systems with strong decoherence by
Batista and Brumer [30], the Trojan states in hydrogen by
Shapiro et al. [31], I2 in solid matrices by the groups of Wy-
att [32] and Coker [33], and the wave-packet interferom-
etry by Cina [34]. Voth and co-workers have incorporated
quantum statistics into centroid molecular dynamics [35]
and modeled para-hydrogen and ortho-deuterium [36]. The
proton and hydride transfer reactions in biological systems
have been thoroughly described with the quantum–classical
dynamics by Karplus [37], Truhlar [38], Hammes-Schiffer
[39] and others. Using dissipative multilevel electronic
dynamics Bittner has investigated energy relaxation in or-
ganic light-emitting diodes, elucidating the universal scaling
laws [40] and the spin dependence of the electron–hole cap-
ture kinetics [41]. Our group [42–50] has used mixed quan-
tum–classical density functional theory in order to resolve the
controversy regarding the mechanism of the ultrafast photo-
induced electron injection in the Grätzel solar cell, proposing
a means for increasing the solar cell voltage [46]. Many other
outstanding applications of the semiclassical and quantum–
classical dynamics may be found in the literature.

Driven by novel types of problems and mathematical
elegance, several new directions in semiclassical dynamics
have originated recently [51–91]. Under investigation are
methods of mixing different levels of theory – in particu-
lar quantum and classical mechanics – as well as efficient
hierarchies of approximations to bridge the two. The new
ideas are deeply rooted in the earlier work. Semiclassical
theory in the WKB (Wigner–Kramers–Brillouin) sense has
emerged as a powerful computational tool, owing to the ini-
tial value representation (IVR), which casts the numerically

difficult problem of integrating over classical trajectories sub-
ject to both initial and final boundary conditions to the much
simpler problem of generating ensembles of trajectories with
initial positions and momenta [22,51]. The coherent wave-
packet representation has been used to construct a semiclas-
sical propagator [52]. The quantum-dressed dynamics [53],
the multiple-spawning approach [54,55] and the Hamilto-
nian formulation of quantum mechanics [56] converge to the
quantum results. The formal quantum–classical Lie algebraic
connection is being investigated, including the Wigner den-
sity [57] and the partial Wigner transform schemes [58–61].

The revived interest in the interpretation of quantum
mechanics has been taken to a practical level. The de-Brog-
lie–Bohm, or hydrodynamic, formulation of quantum mecha-
nics provides a very intuitive picture, where an ensemble of
particles flowing along classical-like trajectories are entan-
gled through a non-local interaction. The hydrodynamic for-
mulation provides a solution to the quantum backreaction
problem in mixed quantum–classical mechanics [62] and
gives numerical tools for solving the time-dependent
Schrödinger equation [63–68].The decoherent histories inter-
pretation of quantum mechanics explains the transition from
the microscopic quantum laws to the macroscopically ob-
served classical behavior, giving rise to stochastic wave-func-
tion approaches [69–71] that focus on a small subsystem
and approximate the remaining majority as a quantum bath,
thereby dramatically simplifying the problem. Quantum noise
has been added to the explicit classical treatment of the envi-
ronment in the mean-field of the stochastic Schrödinger equa-
tion [72].

Non-adiabatic molecular dynamics (NAMD) constitutes
an important class of semiclassical approximations and is
particularly valuable for modeling laser-induced processes
where heavy, nearly-classical nuclei slowly respond to the
photoinduced ultrafast dynamics of quantum electrons and
induce nonradiative relaxation. Developed originally for gas-
phase atomic and molecular collisions, NAMD has been ex-
panded to treat condensed matter. The recent advances in
NAMD are associated with descriptions of extended NA cou-
pling regions by fewest-switches surface-hopping [73,74]
decoherence in the quantum subsystem [72,75–77], branch-
ing of classical trajectories due to decoherence [72,77] the
combination of discrete and continuous quantum states [78],
the optimal choice of classical trajectories by stationary-
phase surface-hopping [79] and mean-field with surface-hop-
ping [80].

The present article describes the quantized Hamilton
dynamics (QHD) approach that is under development in our
group [81–91]. Its features include direct focus on the ob-
servables, the creation of reduced models for the quantum
effects, flexibility in the approximation levels and dynam-
ical variables, and a simple quantum–classical connection.
The approximations are derived for the evolution of relevant
expectation values in the Heisenberg representation without
an attempt to reconstruct the full quantum wave function
or density matrix. The QHD equations are very similar to
the classical Hamilton equations, to which they compare in



208 O. V. Prezhdo

computational effort. Many of the standard numerical tools of
classical molecular dynamics can be applied to QHD, facili-
tating its implementation and applications.

2 The closure approximation

The QHD approach provides a hierarchy of approximations
to quantum mechanics in the Heisenberg representation.Appli-
cation of the Heisenberg equation of motion (EOM)

ih̄
d

dt

〈
Â

〉
=

〈[
Ĥ , Â

]〉
(1)

to a system observable 〈Â〉 of interest (where the brackets
denote the quantum average over the initial state) results in a
chain of equations, where the original operator becomes cou-
pled to higher order operators.Apart from the rare exceptions,
such as the harmonic oscillator and spin systems in which
quantum dynamics can be described exactly by a finite set of
operators, the Heisenberg EOM form an infinite chain. The
QHD approximations are obtained by terminating the chain
with a closure that expresses the expectation values of the
higher order operators in terms of products of the expectation
values of the lower order operators. Such closures are often
used in many-particle theories of quantum [92–94] and sta-
tistical [95–97] mechanics. The approximation of all expec-
tation values by products of the first order expectations of
position and momentum reduces the quantum Heisenberg
EOM to the Hamilton EOM of classical mechanics. A non-
trivial approximation appears in the second order, where the
cubic and higher order expectation values are decomposed
into the linear and quadratic terms. For instance, the approx-
imation

〈ABC〉≈〈AB〉〈C〉 + 〈AC〉〈B〉 + 〈BC〉〈A〉 − 2〈A〉〈B〉〈C〉
(2)

for the cubic term is obtained by first extracting

〈ABC〉 =
〈(

A−〈A〉+〈A〉
)(

B−〈B〉+〈B〉
)(

C−〈C〉+〈C〉
)〉

(3)

=
〈(

A−〈A〉
)(

B−〈B〉
)(

C−〈C〉
)〉

+〈AB〉〈C〉+〈AC〉〈B〉+〈BC〉〈A〉−2〈A〉〈B〉〈C〉
and then decomposing the irreducible part into all possible
pairings of lower order terms, as in Wick’s theorem [92]

〈(
A−〈A〉

)(
B−〈B〉

)(
C−〈C〉

)〉
≈

〈(
A−〈A〉

)(
B−〈B〉

)〉〈(
C−〈C〉

)〉

+
〈(

A−〈A〉
)(

C−〈C〉
)〉〈(

B−〈B〉
)〉

+
〈(

B−〈B〉
)(

C−〈C〉
)〉〈(

A−〈A〉
)〉

= 0. (4)

Explicit decompositions of the fourth and fifth order terms
can be found in [81] and [84], respectively.

For instance, the Heisenberg hierarchy generated starting
with Q̂ for the cubic potential

V (Q̂) = Q̂2

2!
+ Q̂3

3!
. (5)

reads

d〈Q̂〉
dt

= 〈P̂ 〉, d〈P̂ 〉
dt

= −〈Q̂〉 − 〈Q̂2〉
2

(6)

d〈Q̂2〉
dt

= 〈P̂ Q̂ + Q̂P̂ 〉 ≡ 2〈P̂ Q̂〉s
d〈P̂ Q̂〉s

dt
= 〈P̂ 2〉 − 〈Q̂2〉 − 〈Q̂3〉

2
d〈P̂ 2〉s

dt
= −2〈P̂ Q̂〉s − 〈P̂ Q̂2〉s .

In order to terminate the hierarchy, the 〈Q̂3〉 and 〈P̂ Q̂2〉s
terms are decomposed using the closure (2). Apart from the
operator ordering these equations are identical with the corre-
sponding classical equations. The first order closure provides
the correct classical limit. Truncation rather than decomposi-
tion of the higher order terms results in simpler, linear differ-
ential equations, but does not give the classical limit. The
second order closure is equivalent to the Gaussian approxi-
mation. The closure is accurate at short times, since the low
order expectation values do not immediately experience the
changes in the higher order terms several equations down the
chain. In addition, the closure reproduces the global quantum
features, for instance, preserves zero point energy (ZPE) at
all times, describes tunneling, dephasing, branching, etc.

It is interesting to note that the initial motivation for the
QHD formalism [81] arose from consideration of the quan-
tum–classical Lie brackets and an attempt to define a bracket

∂〈A(P̂ , Q̂〉)
∂t

= i

h̄

〈 [
A(P̂ , Q̂), H0(P̂ , Q̂)

] 〉

+
{
A(〈P̂ 〉, 〈Q̂〉), H1(〈P̂ 〉, 〈Q̂〉)

}
. (7)

by splitting the total Hamiltonian into a quantum H0 and clas-
sical H1 parts and applying the Heisenberg commutator and
the Poisson bracket respectively. The formal and practical
features of this construction deserve further investigation.

The variables used in the QHD approach depend on the
specific problem under study. The examples considered be-
low apply the closure approximation to the moments of the
classical-like position and momentum operators, the mean-
field coupling of these moments to a quantum system de-
scribed by a wavefunction, and the spin–phonon operators.

3 QHD equations for moments of P and Q

The most common Hamiltonian is a function of the position
Q̂ and momentum P̂ operators

H(P̂ , Q̂) = P̂ 2

2m
+ V (Q̂). (8)

The potential V (Q̂) is Taylor expanded around the average
〈Q̂〉 ≡ q

V (Q̂) ≈ V (q) +
n∑

k=1

1

k!
V (k)(q)(Q̂ − q)k. (9)
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The potential energy operator and its derivatives directly can
also be treated as QHD variables directly. For potentials con-
taining cubic or higher order terms, the Heisenberg EOM (1)
initiates an infinite hierarchy of equations involving increas-
ing orders of P̂ and Q̂. While higher order QHDs have been
derived and converge to the exact results [84], the second
order QHD for P̂ and Q̂ is of particular interest. It is the sim-
plest extension of classical mechanics that captures ZPE and
moderate tunneling. The widely used Gaussian approxima-
tions [98–102] constitute special cases of QHD-2. With the
first-order closure for the coupling between different degrees
of freedom, QHD-2 can be mapped onto classical mechanics.
The mapping facilitates both implementation and interpreta-
tion of the second order dynamics.

3.1 Classical mapping for the second order QHD

In addition to the classical-like 〈Q̂〉, 〈P̂ 〉, the second order
QHD includes 〈Q̂2〉, 〈P̂ 2〉 and the symmetrized cross-term
〈P̂ Q̂〉s . The higher order variables are approximated by the
products of the first and second moments [81,83,84], Eq. (2).
The QHD-2 EOM conserve the total energy as well as the
Heisenberg uncertainty
(
〈P̂ 2〉−〈P̂ 〉2

) (
〈Q̂2〉−〈Q̂〉2

)
−

(
〈 ˆPQ〉s−〈P̂ 〉〈Q̂〉

)2
=C. (10)

The latter can be used [85] to eliminate one of the five vari-
ables and define the four new variables

q = 〈Q̂〉, p = 〈P̂ 〉, (11)

s =
√

〈Q̂2〉 − 〈Q̂〉2

ps = m
ds

dt
= 〈P̂ Q̂〉s − 〈P̂ 〉〈Q̂〉√

〈Q̂2〉 − 〈Q̂〉2

such that the QHD-2 EOM obtained by the closure of the Hei-
senberg hierarchy become equivalent to the classical Hamil-
ton EOM for the following Hamiltonian [85,103]

H(p, q, ps, s) = p2 + p2
s

2m
+ V (q) + 1

2
V (2)(q) s2

+1

8
V (4)(q) s4 + h̄2

8ms2
, (12)

where, to be specific, the minimal uncertainty C = (h̄/4)2

is assumed. With this change of variables, QHD-2 can be
understood as classical dynamics in doubled dimensions.

3.2 Example: escape from a metastable state

The cubic potential (5) represents the simplest case requiring
a closure and describes tunneling escape from a metastable
state. The two-dimensional effective classical potential (12)
of mapped QHD-2 corresponding to the cubic potential (5) is
plotted in Fig. 1a. Two features arising from the extra dimen-
sion facilitate the escape. First, the floor of the potential is

Fig. 1 a Representation of the cubic potential (5) in the double-dimen-
sional space of mapped QHD-2, Eq. (12). b Barrier crossing times
for a particle initially centered at q0. Classical particles starting within
−2 < q0 < 1 remain trapped indefinitely Shown are the exact quantum
results (circles) and the QHD results at the second, third and fourth
order

raised above zero by the combination of the s2 and 1/s2

terms in (12) that represent the potential and kinetic energy
contributions to ZPE. The 1/s2 term is also responsible for
keeping the width s positive at all times. Second, expansion
in the width dimension creates a lower-energy saddle point
relative to the top of the classical barrier. The tunneling time
can be interpreted in QHD as the time the trajectory takes
to locate the saddle point in the extra dimension, with the
original barrier responsible for creating a bottleneck for the
dynamics in the extended phase space.

Figure 1b shows the results for the classically forbidden
decay of a particle of unit mass prepared in the ground state of
the harmonic potential Q̂2/2. One can think of a vibrational
wave packet in the harmonic ground electronic state that is
promoted into the metastable excited electronic state. The
ground-state Gaussian wavepacket has been shifted to q0 and
allowed to evolve with zero initial momentum. The wavepac-
ket corresponding to the first vibrational excited state is con-
sidered in [84]. Figure 1b plots the time at which the center
q of the wavepacket crosses the top of the barrier. The exact
quantum results are shown by the circles. The QHD-2, 3 and 4
data are indicated by the arrows. The barrier is located at q =
−2, such that a classical particle starting between −2 < q0 <
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1 with zero kinetic energy remains indefinitely trapped. The
QHD-2 results approximate the quantum-mechanical behav-
ior very well for −2 < q0 < −1.4 and 0.6 < q0 < −1.
QHD-4 converges to the exact data.Although a classical map-
ping is not known for higher order QHDs, the potential energy
can still be investigated. The cubic potential is treated exactly
in QHD-3. Considered as a function of the first three moments
of Q̂, the cubic potential has no barrier that can prevent the
particle escape. Tunneling becomes a purely dynamical effect
of finding the escape route. The deviations between the exact
and QHD-3,4 results are present because the exact quantum
dynamics in a cubic potential involves all orders of P̂ and Q̂.

3.3 Example: vibrational energy flow between the OH
stretches in water

The second moments of P̂ and Q̂ represent the harmonic
energy and make QHD-2 well suited for the treatment of
ZPE and vibrational energy exchange. In contrast to classical
mechanics, which does not preserve ZPE and misrepresents
the energy flow between vibrational modes, QHD-2 globally
preserves ZPE and more closely matches the quantum vibra-
tional energy flow, as illustrated by the energy exchange be-
tween the OH stretching modes of water [83]. The SPC-flex-
ible model of water [104,105], a standard model in classical
molecular dynamics that provides good description of both
molecular and bulk properties, represents the OH stretches
as bilinearly coupled Morse oscillators

V (q1, q2) = D
[(

1−e−αq1
)2+(

1 − e−αq2
)2

]
+Kq1q2. (13)

The parameters are given in Table 1. The OH stretching fre-
quencies are around 3,000 cm−1, such that the quantum ZPE
significantly exceeds room temperature, since 300 K corre-
sponds to 200 cm−1. The relevant part of the Morse potential
is shown in Fig. 2a, together with the two lowest eigenstates
and the Taylor expansion used in the QHD calculations.

Figure 2b describes the vibrational dynamics that fol-
lows the initial displacement of one of the O–H bonds by
0.05 Å. Shown is the harmonic energy stored in the mode
that was not displaced. The quantum and QHD-2 calcula-
tions were started with the ground state of the shown mode
and the shifted ground state of the displaced mode. The classi-
cal data were obtained by position and momentum averaging
over the Wigner distribution corresponding to the quantum
initial conditions. The computational effort of the QHD cal-
culation was only twice that of a single classical trajectory
and orders of magnitude smaller than the efforts of the classi-
cal ensemble and quantum simulations. At minimal expense,

Table 1 Parameters of the coupled Morse oscillators representing the
OH stretches of water, Eq. (13)

m mH

D 0.708 mdyn Å
α 2.567 Å−1

K 0.776 mdyn Å−1

Fig. 2 a The Morse potential representing the OH stretch of water.
Shown are the two lowest energy levels and the Taylor expansion used in
the quantized Hamilton dynamics (QHD) calculations. b Energy stored
in the OH bond coupled to the other bond that has been initially dis-
placed by 0.05 Å. Shown are the exact quantum (solid line), classical
(dashed line) and QHD-2 (dotted line) results

QHD-2 closely follows the exact quantum dynamics for a
long time. Classical mechanics is only able to reproduce the
first few oscillations.

3.4 Example: double-slit interference

QHD-2 in moments of P̂ and Q̂ is ideally suited for ZPE
and can describe moderate tunneling. Surprisingly, it can
also describe quantum interference, although qualitatively.
Consider the double-slit experiment represented by the two-
dimensional surface

V (x, y) =
(

V0 − 1

2
mω2y2 + m2ω4y4

16V0

)
e−(x/α)2

. (14)

The potential is flat for large x and has a double minimum in
the y-direction near the origin, Fig. 3a. The parameters have
the following values:α=50 a.u.,ω=600 cm−1,V0=8,000 cm−1;
the particle has the mass of electron [106]. In the simplest
QHD the x-coordinate is treated classically, while the
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Fig. 3 The effective QHD-2 potential in the double-slit experiment
experienced by a narrow classical-like particle and b particle with the
width of 100 a.u., on the order of the distance between the slits

double-slit coordinate y is augmented with the second mo-
ment of Q̂ creating the effective potential

V (x, y; sy) = V (x, y) + 1

2

∂2V (x, y)

∂y2
s2
y + h̄2

8ms2
y

(15)

that parametrically depends on the particle width sy in the y-
dimension, cf. Eq. (12). The constant width approximation
obtained [85] from the Heisenberg hierarchy (5) by termi-
nating at the third equation with 〈P̂ Q̂〉 ≈ 〈P̂ 〉〈Q̂〉 resem-
bles frozen Gaussians [99]. The essential difference from
frozen Gaussians, which evolve on the original classical po-
tential (14), is in the second term in (15). The effective po-
tential is shown in Fig. 3a,b for sy=1 and 100 a.u. The sy=1
potential is visually indistinguishable from the classical po-
tential. The sy=100 potential is entirely transformed. Narrow
classical-like particles pass through either of the two slits.
With increasing width the second term in (15) grows to dom-
inate over the classical potential. Since the second derivative
of a quartic potential is a quadratic potential, the double-well
in the y direction transforms into a harmonic well. The dou-
ble-slit becomes a single-slit centered at the origin. As the
width continues to increase, the potential remains a single
slit approaching the width of 2

√
4V0/3mω2. QHD particles

that are wide enough to encompass both slits show interfer-
ence patterns with a dominant central maximum [86].

4 Coupling of Schrödinger quantum mechanics to QHD

Consider a system composed of light (q) and heavy (Q) parti-
cles, such as electrons and nuclei in a molecule. Treating the
light subsystem quantum mechanically and the heavy sub-
system classically is standard practice. The quantum effects,
which are not included in a classical description of the nu-
clei, can be easily incorporated with QHD. For instance, a
quantized mean-field (MF) extension of the quantum–clas-
sical Ehrenfest MF has been obtained [82] using the mixed
Schrödinger–Heisenberg representation. The interaction part
V of the full Hamiltonian

Ĥ = H(q̂, Q̂) = H1(q̂) + H2(Q̂) + V (q̂, Q̂), (16)

is Taylor expanded in the Q coordinate leading to the follow-
ing Schrödinger equation for the wave function

ih̄
∂�(q)

∂t
=

〈
χ(Q)

∣∣∣H(q̂, Q̂)

∣∣∣χ(Q)
〉
�(q)

=
[
H1(q̂) + V (q̂, 〈Q̂〉) + 1

2
V ′′(q̂, 〈Q̂〉)

×
(
〈Q̂2〉 − 〈Q̂〉2

)
+ · · ·

]
�(q). (17)

The light particle is coupled to the MF of the heavy particle
represented in the Heisenberg picture by the averages 〈Q̂〉,
〈Q̂2〉, etc. over the initial wave function χ(Q). The evolution
of the heavy particle is represented by the moments of Q̂ and
P̂ coupled to the MF of the light particle

ih̄
d
(
Q̂nP̂ m

)

dt
=

〈
�(q)

∣∣∣
[
Q̂nP̂ m, H(q̂, Q̂)

]∣∣∣�(q)
〉

=
[
Q̂nP̂ m, H2(Q̂)

]

+
〈
�(q)

∣∣∣
[
Q̂nP̂ m, V (q̂, Q̂)

]∣∣∣�(q)
〉
. (18)

The quantized MF approach reduces to the Ehrenfest method
when all moments of P̂ and Q̂ are decomposed to first order.
Analogous quasi-classical schemes can be constructed using
a multi-configuration MF ansatz, where the coupling between
the two subsystems is represented by a linear combination of
the MF products.

4.1 Example: a light particle scattering off a surface phonon

The advantages of quantized MF method over Ehrenfest
dynamics are illustrated with a model designed as a sim-
plified representation of gaseous oxygen interacting with a
platinum surface [107,78]. The system consists of a light
particle of mass m colliding with a heavier particle of mass
M , which is bound to an immobile surface. The interaction
potentials are

V1(q) = a[e−2b(q−c) − 2e−b(q−c)],

V2(Q) = 1

2
M�2Q2, (19)

V (q, Q) = Ae−B(q−Q)
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Table 2 Parameters of the light particle scattering off the surface
phonon, Eq. (19)

m 1 amu a 700 kJ/mol
M 10 amu b 5.0 Å−1

� 4 × 1014 s−1 c 0.7
A 104 kJ/mol q0 6.0 Å
B 4.25 Å−1 γ 0.5 Å

with the parameters provided in Table 2. Initially, the light
particle is moving towards the heavy particle and is described
by a Gaussian of width γ located 6 Å away from the surface.
The initial momentum k0 = −√

2mE0 is determined by the
incident energy E0. At time zero, the heavy particle is in the
harmonic oscillator ground state. The following EOM are
employed

ih̄
∂�(q)

∂t
=

[
T1(q̂) + V1(q̂) + V (q̂, 〈Q̂〉)

]
�(q)

d〈Q̂〉
dt

= 〈P̂ 〉
M

d〈P̂ 〉
dt

= −M�2〈Q̂〉 −
〈
�(q)

∣∣∣V ′(q̂, 〈Q̂〉)
∣∣∣�(q)

〉

(20)
d〈Q̂2〉

dt
= 2〈P̂ Q̂〉s

M

d〈P̂ Q̂〉s
dt

=〈P̂ 2〉
M

−M�2〈Q̂2〉−〈Q̂〉
〈
�(q)

∣∣∣V ′(q̂, 〈Q̂〉)
∣∣∣�(q)

〉

d〈P̂ 2〉
dt

= −2M�2〈P̂ Q̂〉s − 2〈P̂ 〉
〈
�(q)

∣∣∣V ′(q̂, 〈Q̂〉)
∣∣∣�(q)

〉
.

The Taylor expansion of the interaction potential is intention-
ally truncated at the first order, such that the equations may be
easily implemented with ab initio electronic structure codes
that often stop at the first derivative. The light-heavy cou-
pling is described by maximally decomposing the terms of

the type
〈
χ(Q)�(q)

∣∣∣P̂ V ′(q̂, Q̂)

∣∣∣�(q)χ(Q)
〉
. The first three

equations in (20) are equivalent to the Ehrenfest approach
and are independent of the last three equations, because the
quasi-classical subsystem is harmonic. The difference from
the Ehrenfest approach enters in the initial conditions for
the heavy particle. The QHD initial conditions are computed
as the expectation values of the relevant operators over the
heavy particle’s wavefunction. Classically, the initial condi-
tions for P and Q are sampled from the Wigner transform of
the wavefunction, generating an ensemble of Ehrenfest tra-
jectories. The classical sampling is needed to represent ZPE
of the heavy particle [108]. In QHD, ZPE in stored in the
second order variables.

The results of the simulation are characterized by the
scattering probability of the light particle

Ps(t) =
∫ ∞

qs

|�(q, t)|2dq (21)

with qs ≈ 5.8 Å. All approaches agree at high incident ener-
gies. Disagreement occurs at lower energies, as illustrated

in Fig. 4. The Ehrenfest data differ from the exact quantum
results at both short and long times. At short times, the Eh-
renfest scattering probability grows too rapidly relative to the
quantum scattering probability. The energy of the heavy par-
ticle is fully available for exchange with the light particle,
since ZPE is not preserved. As a result of the excess energy
transfer from the heavy to the light particle during the early
evolution, the heavy particle is left with insufficient energy
to continue promoting the scattering of the light particle at
longer times. These problems are resolved by the quantized
MF approach [82].

5 QHD equations for a spin–phonon system

The QHD formalism developed above with the hierarchy of
moments of P̂ and Q̂ can be applied to any relevant opera-
tors, providing a reduced description of the problem in hand.
Quantum phenomena such as coherent excitation transfer,
dephasing, branching, and state-specific dynamics can be
more effectively described with a Marcus-type model, where
donor and acceptor quantum states are coupled to a contin-
uum of bath states. Deeper tunneling in a double-well, for in-
stance, can be captured by extending QHD to higher orders in
P̂ and Q̂ or, more efficiently, by mapping the problem onto
a two-level donor–acceptor system coupled to a harmonic
oscillator.

The Jaynes–Cummings Hamiltonian [109]

HJC = ω
(
a+a + 1/2

) + �S+S− + g
(
a+S− + aS+

)
(22)

constitutes a well-known spin-phonon model that captures
many key features of molecular systems and is a special case
of the Marcus model [88]. The first term in (22) describes a
phonon of frequency ω. The second term represents a spin-
1/2 particle with energy gap �. S+, S− and a+, a are the
raising and lowering operators of the spin and phonon sub-
systems, respectively. The last term gives the spin–phonon
coupling in the rotating wave, or resonance approximation,
where loss of a phonon quantum is accompanied by a gain of
a spin quantum and vice versa. The model can be interpreted
as that of a molecular dimer undergoing energy transfer med-
iated by an intermolecular mode [88]. The exact solution to
the problem can be obtained in the form of an infinite series
[109]. The dynamics driven by the Jaynes–Cummings Ham-
iltonian is analyzed below with the QHD formalism which
provides a very simple and accurate approximate solution
and is applicable to a multi-state/multi-mode case.

5.1 Example: population transfer and dephasing

Consider the evolution of the spin variable Sz that describes
the difference in the populations of the two states and repre-
sents the reaction coordinate for exciton, electron, and proton
transfer as well as other chemical processes. The coupling to
the phonon induces dephasing in the population transfer. The
time-derivative (1) of Sz = (S+S− − S−S+) /2 initiates an



Quantized hamilton dynamics 213

Fig. 4 The time dependent scattering probability of the light particle colliding with the surface phonon computed exactly (solid line), by the
Ehrenfest (circles) and quantized (diamonds) mean-field methods

infinite hierarchy of EOM that can be written in a compact
form using the non-interacting Hamiltonian γ , the interaction
α, and the auxiliary operator β

α = a+S− + aS+,

β = a+S− − aS+, (23)

γ = a+a + S+S− + 1

2
.

The Heisenberg hierarchy

i
d

dt

〈
Szγ

n
〉 = g

〈
βγ n

〉
,

i
d

dt

〈
αγ n

〉 = −δ
〈
βγ n

〉
, (24)

i
d

dt

〈
βγ n

〉 = −δ
〈
αγ n

〉 + g
〈
Szγ

n+1
〉

︸ ︷︷ ︸
needs closure

,

with n = 0, 1, 2, . . . and detuning δ = �−ω, is arranged in
blocks of three equations and a coupling term between the n
and n + 1 order blocks. Approximations to the hierarchy are
obtained in the QHD formalism by closure. To second order,
cf. Eq. (2),〈
Szγ

2
〉 � 2 〈Szγ 〉 〈γ 〉 + 〈Sz〉

〈
γ 2

〉 − 2 〈Sz〉 〈γ 〉2 . (25)

While closures typically give non-linear equations, such as
the classical Hamilton EOM, the second order QHD approx-
imation to (24) with n = 0, 1 yields a system of six cou-
pled linear differential equations, since the γ and γ 2 terms
appearing in the closure (25) are integrals of motion of the
Hamiltonian (22). The equations can be solved for 〈Sz〉

〈Sz〉 (t) = 〈Sz〉(0) + ω2
+ − δ2

4ω2+
(1 − cos ω+t)

+ω2
− − δ2

4ω2−
(1 − cos ω−t) , (26)

where γ0 = 〈γ 〉t=0 and ω2
± = δ2 + 2g2

(
γ0 ± √

γ0
)
. 〈Sz〉

evolves by a superposition of the two oscillations, whose fre-
quencies differ in proportion to the square of the spin–phonon
coupling constant g and the square root of the number of
vibrational a+a quanta in γ , Eq. (23). Fig. 5a compares
the approximate 〈Sz〉 with the exact quantum result for the
following parameters g = 0.25, δ = 0 and initial condi-
tions 〈Sz〉t=0 = −1/2, 〈γ 〉t=0 = 〈a+a〉t=0 = 49, 〈α〉t=0 =
〈β〉t=0 = 0. The sum of the cosine functions in (26) produces
beats. The faster oscillation gives the population transfer,
while the slower frequency reflects the vibrationally-induced
dephasing. The approximate QHD solution correctly repro-
duces both the population transfer and dephasing over several
forward and backward reaction steps.

5.2 Example: Coherence transfer and state-specific
dynamics

The evolution of the phonon coordinate q = √
2Re[a] does

not explicitly enter the hierarchy (24) and initiates a separate
hierachy

i
d〈a〉
dt

= −ω〈a〉 − g〈S−〉,

i
d〈S−〉

dt
= −�〈S−〉 + 2g〈aSz〉, . . . .

(27)

Transformed to the interaction representation ã = ae−iωt ,
S̃− = S−e−i�t , these equations simplify to

i
d〈ã〉
dt

= −g〈S̃−〉, i
d〈S̃−〉

dt
= 2g〈ãSz〉, . . . . (28)

The two first-order differential equations are equivalent to a
single second-order differential equation

d2

dt2
〈ã〉 − 2g2〈ãSz〉 = 0. (29)
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Fig. 5 a The population transfer and its dephasing induced by coupling to a phonon in the Jaynes-Cummings model, computed exactly (solid
line) and with QHD-2 (dashed line). b, c The state-specific vibrational coordinates showing repeated vibrational coherence transfer between the
states

The spin–phonon correlation is approximated by the first or-
der closure

〈ãSz〉 � 〈ã〉 〈Sz〉, (30)

relating to the earlier result (26) for 〈Sz〉. Equation (29) can
be solved numerically. Physically important conclusions can
be derived from the approximate perturbative solutions con-
trolled by the spin–phonon coupling constant g.

Spectroscopic experiments usually deal with state-spe-
cific rather than average properties, since the donor and accep-
tor states usually obey different selection rules and are probed
independently.The state-specific vibrational dynamics shows
non-trivial quantum signatures and vibrational coherence
transfer in the recent pump-probe experiments [110–113].
The vibrational coordinate associated with state |i〉 is defined
using the projection on this state |i〉〈i|
〈q|0〉 〈0|〉 =

〈
q1̂/2 + qSz

〉
� 〈q〉 (1/2 + 〈Sz〉)

〈q|1〉 〈1|〉 =
〈
q1̂/2 − qSz

〉
� 〈q〉 (1/2 − 〈Sz〉) ,

(31)

with 1̂ = |1〉〈1| + |0〉〈0| and Sz = (|1〉〈1| − |0〉〈0|)/2.
The approximate results constructed using Eqs. (26), (29),
and (30) show excellent agreement with the exact quantum
calculations (Fig. 5b,c).

The coupled electron–phonon dynamics forms a hierar-
chy of time scales associated with distinct physical processes.
The quickest time tI ∼ ω is due to the oscillation of the vibra-
tional coordinate 〈q〉 and electronic coherence 〈Sx〉, 〈Sy〉. The
second time scale tII ∼ g

√
2 〈γ0〉 characterizes the inver-

sion of the state population 〈Sz〉. Dephasing of the popula-
tion inversion occurs on a slower time scale tIII ∼ g/

√
2.

The slowest component tIV ∼ g/
√〈γ0〉 is associated the

revival of the oscillation of 〈Sz〉. The simple QHD treat-
ment of the problem accurately reproduces the three fast-
est time scales. The revival is generated by a superposition
of multiple frequencies available in the exact quantum solu-
tion, but not accessible in the reduced description. The QHD
treatment, however, can be easily applied to a multi-state,
multi-phonon generalization of the problem, where revivals
are not expected even at the classical level. The approxima-
tion described above is significantly superior to the Ehrenfest
method, which fails to describe the population dephasing and
excludes any state-specific information.

6 Thermal averaging in QHD

It is desirable for many reasons to be able to address both
dynamical and statistical mechanical aspects of a problem
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at the same time. Most experimental signals are Boltzmann
averaged. Dynamical trajectories in classical mechanics are
often used to obtain statistical averages. Dynamical fluctua-
tions in equilibrium are related to linear response coefficients.
It is not trivial to establish a proper statistical averaging over
the extended space of QHD variables, or to relate the dynam-
ics to the statistics. All states sampled by an ergodic trajec-
tory contribute to the statistical sum in classical mechanics.
In contrast, a quantum statistical sum involves linearily inde-
pendent basis states, while quantum dynamics covers arbi-
trary superpositions of states. The discrepancy between the
statistical and dynamical sets of states in quantum mechanics
manifests itself in QHD, as discussed below for the mapped
second order QHD, Eq. (12).

6.1 Boltzmann integration in the second order QHD

Consider a harmonic oscillator at temperature T which has a
classical thermal energy of kBT . The QHD-2 harmonic oscil-
lator mapped onto classical mechanics with doubled dimen-
sionality, Eq. (12), is described by the Hamiltonian

HHO = p2

2m
+ ps

2

2m
+ kq2

2
+ ks2

2
+ h̄2

8ms2
. (32)

The classical Boltzmann averaging in the extended phase
space gives the average energy of 2kT + h̄ω/2, preserving
ZPE, but adding an extra kT from the quantum dimension.
Omitting the quantum dimension from the averages [114,
115] leads to h̄ω/2+kT , which is not exact, but gives ZPE and
the correct temperature dependence. For a general potential
however, the quantum s and classical q are coupled, and the
s dimension cannot be separated and dropped.

A solution suggested in [89] reconsiders the thermo-
dynamic connection for the statistical mechanical Lagrange
multiplier β = 1/kBT [116]. In mapped QHD-2, the canon-
ical partition function Q for an ensemble of N indistinguish-
able free particles in a three dimensional box with sides L
is

Q = 1

N !

[∫ ∞

−∞
dp

∫ L

0
dq

∫ ∞

−∞
dps

∫ L

0
ds

× exp

[
− β ′

2m

(
p2 + ps

2 + h̄2

4s2

)]]3N

, (33)

where β ′ is the Lagrange multiplier to be determined from
thermodynamics. The partition function can be found analyt-
ically and, in the classical limit of small h̄, large m, or small
β ′, is given by

Q = 1

N !

8m3Nπ3NV 2N

β ′3N
, (34)

where V = L3. The relationship between the thermodynamic
pressure and the partition function can now be used, P =
(1/β ′)(∂ln Q/∂V ) = (1/β ′)(2N/V ). The connection to the
ideal gas law PV = NkBT gives

β ′ = 2

kBT
. (35)

The factor of 2 difference from the usual relationship appears
due to the doubled dimensionality of the mapped QHD-2.

The Boltzmann integration for the QHD-2 harmonic oscil-
lator (32) gives the average energy

〈EHO〉 = h̄ω

2
+ h̄ω

eh̄ω/kBT − 1
. (36)

Connection to the exact quantum result yield

β ′ = 2

h̄ω

(
eh̄ω/kBT − 1

)
, (37)

which coincides with (35) in the high temperature limit. The
frequency ω is not uniquely defined for more general poten-
tials. At low energies most potentials that are used to de-
scribe atomic motions may be approximated by a harmonic
potential. Since other frequencies become significant only at
higher temperatures, when regions of the potential outside
the harmonic minimum become energetically accessible, it
is reasonable to assign a thermally-averaged frequency for
use in Eq. (37):

ω2 =
∫ ∞
−∞(1/m)(d2V (q)/dq2) exp[−βV (q)]dq∫ ∞

−∞ exp[−βV (q)]dq
. (38)

This average is computed in the usual classical way. Equa-
tions (37) and (38) were tested with a series of quartic poten-
tials and gave good agreement with the quantum results, pro-
viding a substantial improvement over classical mechanics at
low and intermediate temperatures [89]. Figure 6 illustrates
this prescription for the Morse potential (13) describing the
OH stretch of water [104]. The above procedure is particu-
larly useful in practice, since it can be easily implemented in
a general multi-dimensional case with the standard classical
molecular dynamics or Monte Carlo techniques.

6.2 QHD coupled to classical bath

An alternative approach has been taken in [90] by closure of
the quantum Langevin equation [117]

dY

dt
= i

h̄

[
Hsys, Y

] − i

2h̄

[
F(t) − γ

dQ

dt
, [Q, Y ]

]

+
(39)

Application to the first and second moments of P̂ and Q̂ with
Hsys = P 2/2m + Vsys(Q) gives

dQ

dt
= P

m
,

dP

dt
= i

h̄
[Vsys, P ] + F − γP

dQ2

dt
= 2(PQ)s

m
,

(40)
dP 2

dt
= i

h̄
[Vsys, P

2] + 2(PF)s − 2γP 2

d(PQ)s

dt
= i

h̄
[Vsys, (PQ)s] + P 2

m
+ (QF)s − γ (PQ)s.

Here, F is noise and γ is friction. The difficulty lies in the
interpretation of the noise operator and its products with
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Fig. 6 Thermal averages of (a) total energy, (b) heat capacity and (c)
kinetic energy of the OH stretch of water represented by the Morse
potential, Fig. 2a, obtained by the modified Boltzmann averaging (37)
over the mapped QHD-2 Hamiltonian (12)

P and Q. Avoiding quantum noise [117], the bath can be
interpreted classically by decomposing the noise and friction
terms to the first order 〈QF 〉s � 〈Q〉〈F 〉, etc., and using the
classical fluctuation–dissipation theorem: 〈F(t)〉〈F(t ′)〉 =
2mkBT γ δ(t − t ′) in one dimension, where the overbar de-
notes averaging over the noise. Application of the second
order closure to the system operators and the first order clo-
sure to the noise and friction terms allows one to perform the
classical mapping (11) resulting in

dq

dt
= p

m
,

dp

dt
=−

[
V ′(q)+ 1

2
V (3)(q)s2+ 1

8
V (5)(q)s4

]
+F −γp (41)

ds

dt
= ps

m
,

dps

dt
= −

[
V (2)(q)s + 1

2
V (4)(q)s3

]
+ h̄2

4ms3
,

which describe dynamics of the classical two-dimensional
system (12) with the (q, p) degree of freedom coupled to the
classical heat bath. The average thermal energies predicted
by Eq. (41) for the free particle and harmonic oscillator equal

kBT and kBT + h̄ω/2, respectively. [89] A general potential
creates energy flow from bath to (p, q) to (ps, s), raising the
issues discussed in the previous section. Equations. (37), (38)
provide a practical prescription for thermal sampling within
mapped QHD-2. It is expected that a more rigorous procedure
will require the use of quantum noise.

7 Conclusions

This paper has described our recent efforts in extending clas-
sical mechanics to capture ZPE, tunneling, dephasing, branch-
ing and other essential quantum effects with a computational
effort suitable for multi-dimensional applications. The ap-
proach considers the relevant observables directly, without
an attempt to reconstruct the full wave function, and uses a
closure approximation to terminate infinite Heisenberg hier-
archies and arrive at reduced descriptions, augmenting the
classical Hamiltonian dynamics with higher order quantum
variables. This quantized Hamilton dynamics approach has
been applied to study the tunneling escape from a metastable
state, the preservation of ZPE during the energy exchange
between the OH stretches of water, the interference in the
double-slit experiment, the interaction between the light and
heavy particles modeled after an O2 scattering off a Pt surface,
the population transfer, dephasing and state-specific vibra-
tional dynamics in a Marcus-type model. The QHD formal-
ism has been developed for the moments of the classical-like
P̂ and Q̂, the coupling of these moments to a quantum sub-
system described in the Schrödinger picture, the spin–phonon
operators and the quantum Langevin equation. The dynam-
ics for the second order QHD for P̂ and Q̂ has been mapped
onto classical dynamics. A Boltzmann statistical averaging
in the mapped QHD-2 has been introduced.

The main advantages of the approach include a general
and flexible prescription for building simple models of quan-
tum phenomena. The closure approximation can be applied
to obtain a reduced description of dynamics for any quantum
system represented by an arbitrary Hamiltonian and a set of
relevant observables. By performing the closure at a desired
level, one can derive schemes of varying accuracy and de-
tail. The approach converges to the exact answer, gives error
estimates, and provides a systematic way to improve lower
order approximations. The simplest extensions of classical
mechanics achieved within the QHD framework are particu-
larly valuable. The new quantum variables introduced in such
cases can be given transparent physical meaning, the EOMs
can be straightforwardly implemented and the dynamics can
be easily analyzed. The limitations of the approach involve
the short-time nature of the approximations, the growing
complexity of closures with increasing order, and the non-
linear classical-like equations. It should be noted however
that while the QHD extensions of classical mechanics are
exact only at short times, the introduction of new variables
captures the essential physics – such as ZPE, dephasing and
state-specific dynamics – globally for all times. High order
closures can be simplified, for instance, by representing the
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high order products purely in terms of the first-order classi-
cal terms as proposed originally [81], or even by dropping
the high orders altogether. The latter will make the classical-
like nonlinear QHD equations linear as they are in quantum
mechanics.

The formalism and examples considered here can be eas-
ily generalized. Numerical stability of the non-linear equa-
tions may become an issue, as noted, for instance, in the
multi-dimensional Gaussians, whose width may diverge in
condensed phase [102]. Large scale applications of the QHD
formalism require development of well-characterized mod-
els similar to those of classical molecular dynamics and elec-
tronic structure theory that, respectively, rely on well-designed
interaction potentials and atomic basis sets. The classical
mapping of QHD-2 facilitates this task. While the current
efforts focus primarily on the low order extensions of clas-
sical mechanics, it is straightforward to derive higher order
QHDs that converge to the exact quantum answer [84]. Quan-
tum observables can be systematically expanded, for instance,
in Fourier operators or Chebyschev polynomials. The choice
of the operator bases and the truncation levels for different
dimensions grant the method great flexibility.
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