
Abstract. The reaction path (RP) is an important con-
cept of theoretical chemistry. We generalize the defini-
tion of the Newton trajectory (NT), as an RP, to
Newton leaves in a higher dimensional subspace of the
configuration space. Our standpoint is that of Bofill and
Anglada [(2001) Theor. Chem. Acc. 105:436], who used a
‘‘reduced potential energy surface’’ for finding an RP.
An NT follows an RP curve where the gradient is always
a pointer to a fixed direction. More generally, a Newton
leaf is a subspace of coordinates where the gradient can
move in a subspace of directions. We report some known
mathematical properties of Newton leaves. We explain
the construction of Newton leaves with the example of a
3D test surface in R4 [W.Quapp et al. (1998) Theor.
Chem. Acc. 100:285], because three coordinate dimen-
sions are the smallest number of dimensions one needs at
least to understand a Newton leaf in contrast to the
known NTs.
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1 Introduction

The concept of the minimum energy path or reaction
path (RP) of an adiabatic potential energy surface (PES)
is the usual approach to the theoretical kinetics of larger
chemical systems [1, 2]. It is roughly defined as a line in
coordinate space which connects two minima by passing
the saddle point (SP), the transition structure of a PES.
The energy of the SP is assumed to be the highest value
tracing along the RP. It is the minimal energy which a
reaction needs to take place.

Reaction theories are based either implicitly (transi-
tion state theory), or explicitly (variational transition

state theory) on the knowledge of the RP [2]. These
theories require local information about the PES along
the RP only. They circumvent the dimension problem
for medium-sized or large molecules: it is impossible to
fully calculate their PES.

The location of an SP is an important question from a
practical point of view, see Ref.[3] and references there
in. The calculation of an RP is a proper tool to do that.
The starting point is a 1D geometrically defined pathway
which may serve as an RP. Geometrically defined means
that only properties of the PES are taken into account,
and that no dynamic behavior of the molecule is taken
into consideration. In the driving-coordinate technique
[4] one assumes that the reaction under consideration
can be characterized by a coordinate, or a 1D direction
being the linear combination of coordinates. The dis-
tinguished or driven coordinate method was developed
to a more modern form as reduced gradient following
(RGF) in Refs. [5,6], also called a Newton trajectory
(NT) [7].

If one replaces the 1D search direction of an NT by a
higher dimensional subspace of possible search direc-
tions, one works with the case of a reduced PES [3]. In
mathematical terms it is the definition of a Newton leaf
[8]. We repeat here the mathematical point of view of the
reduced PES, and extend the 3D example of Ref. [9].

The note is organized as follows. Section 2 repeats
some properties of PESs and special interesting points
on PESs. Section 3 repeats the definition of reaction
pathways, like NTs. In Sect. 4 their generalization to
higher dimensions is given, the Newton leaves, and we
execute a 3D example. In Sect. 5 we combine the New-
ton leaves and the definition of valley–ridge inflection
(VRI) points. Section 6 is the conclusion.

2 Potential energy surface

The adiabatic PES of the molecular system of observa-
tion is the basis of our treatment. Using the Born–
Oppenheimer approximation, we assume that the move-
ments of the electrons and of the atom kernels are
decoupled. The PES is the sum of the Coulomb -
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repulsion of the atom kernels and the Schrödinger
equation of the electrons HW ¼ EW. The explicit
calculation of the energy E is not of interest here. We
assume the PES is given by a scalar function of the
coordinates of the molecule at every point of interest:

Definition 1 Let K be an open subset of Rn. K is the
configuration space. Let x ¼ ðx1; . . . ; xnÞ 2K. The func-
tion EðxÞ : K �! R is an n�dimensional (PES). The
derivative G : K �! Rn with

GðxÞT ¼ @E
@x1
ðxÞ; . . . ;

@E
@xn
ðxÞ

� �

is the gradient, and the Hessian matrix HðxÞ 2 Rn�n is

HðxÞ ¼ @2E
@xi@xj

ðxÞ
� �n

i;j¼1
:

The configuration space of a molecule is restricted.

Definition 2 A point x 2K is nondegenerate if
detHðxÞ 6¼ 0. In the contrary case it is degenerate. The
index of a nondegenerate point x 2K is the number of
negative eigenvalues of HðxÞ. We write ind(x). A point
x0 2K with Gðx0Þ ¼ 0 is named a stationary point. A
nondegenerate stationary point, x0, is minimum if
ind(x0)=0, or maximum if ind(x0)=n, or saddle point
of index i if ind(x0Þ ¼ i; 0 < i < n.

We assume that no stationary point is degenerate, i.e.,
that for all x 2K the regularity condition holds:

kGðxÞk þ j detHðxÞj > 0 : ð1Þ
Nondegenerate stationary points are isolated [10]. A
special subset of degenerate points can be interpreted to
be the branching points of RPs:

Definition 3 A VRI point is located where the gradient is
orthogonal to a zero eigenvector of the Hessian [11].

VRIs are prerequisites of further treatments. At a
VRI, the gradient does not lie in the kernel of the Hes-
sian, and an augmented Hessian with a gradient does not
lift the defect of the rank:

fSet of all VRI points g
¼ xf2Kjrank½HðxÞ;GðxÞ� < ng : ð2Þ

The bracket means matrix augmentation:
½HðxÞ;GðxÞ� 2 Rn�ðnþ1Þ. Note that VRI points need not
be symmetric [12]. VRI points are independent of any
curve definition.

3 Newton trajectories

It is Sn�1 ¼ fx 2 Rnjkxk ¼ 1g the unit sphere in Rn. We
choose a column vector r 2 Sn�1 for a projection. We
define a matrix Pr 2 Rðn�1Þ�n by ðn� 1Þ row vectors of
Rn being with r an orthonormal basis of Rn. Thus
kerðPrÞ ¼ linfrg and im ðPrÞ ¼ linfrg?. The construc-
tion of Pr can be done by a Gram–Schmidt method [13];
or, if searching out a matrix in Rn�n, it can be done by
the Householder transformation using the dyadic prod-
uct of r and rT [14].

The NT concept [3,5,6,15,16] is that a selected gra-
dient direction is fixed along the curve xðtÞ
GðxðtÞÞ=kGðxðtÞÞk ¼ r; ð3Þ
where r is the unit vector of the search direction. The
property in Eq. (3) is equivalent to a projection of the
gradient. We pose

PrGðxðtÞÞ ¼ 0 : ð4Þ
Pr is a constant ðn� 1Þ � n matrix of rank n�1. It
projects in the direction of linfrg and on linfrg?.

Definition 4 The map R : Rn � Sn�1 �! Rn�1,
Rðx; rÞ ¼ PrGðxÞ will be called the reduced gradient,
and r 2 Sn�1 will be called the search direction. Equation
(4) is for any fixed r 2 Sn�1 the reduced gradient
equation to the search direction r.

The predictor-corrector method of the RGF [6] traces
a curve Eq. (4) along its tangential vector. We use the
derivative to obtain the tangent x0

0¼ d
dt
½PrGðxðtÞÞ� ¼Pr

dGðxðtÞÞ
dt

¼Pr HðxðtÞÞx0ðtÞ: ð5Þ

The RGF is a simple but effective procedure in order
to determine all types of stationary points [5]. In the
general good-natured case, each RGF curve passes each
stationary point. A whole family of RGF curves con-
nects the extrema if we vary the search direction r [17],
see Fig. 1. The test surface which may describe the H
transfer in malonaldehyde [6] is used. It is

Eðx; yÞ ¼ 2y þ y2 þ ðy þ 0:4x2 þ z2Þx2: ð6Þ
There are two minima at around(�1.8, )2.7) and an

SP at (0, )1). It is easy to see that three VRIs are located
on the PES: at (0, 0), and at around (�1.8, )4.7). Their
corresponding special NTs bifurcate [6].

–2 –1 0 1 2
–5

–4

–3

–2

–1

0

y

x

Fig. 1 A family of Newton trajectories(NTs) on a test Potential
energy surface(PES) [6], Eq.(6)
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Definition 5 Let r 2 Sn�1. We will name the NT in K to
the direction r as the set

Tr :¼ fx 2KjGðxÞ ¼ rjGðxÞjg: ð7Þ
It is clear that Tr is the set of solutions of Eq.(4). Or, in
other words, it fulfills Eq.(3): the gradient points in the
same direction [18]. For every nonstationary point the
NT is given by the direction of the gradient [19].

4 Newton leaves and reduced PES

NTs can be generalized, if more than one search
direction is possible. Diener [8, 20] has studied global
aspects of the corresponding Newton leaves. Using again
the gradient vector we define k-Newton leaves:

FV :¼ fx 2KjGðxÞ 2 V ?g; ð8Þ
where V ? is a linear subspace of dimension k and the
complement V is a linear subspace of dimension n� k.
Of course, it is V ? [ V ¼ Rn. An NT is a 1-Newton leaf
in this definition, with dim V ¼ n� 1, and V ? ¼ linfrg is
the 1D subspace of the search direction. The n-leaf is K
itself. We will name V ? the generalized search direction
of the k�Newton leaf FV . On a Newton leaf the
gradient lies in the generalized search direction. A 0-
Newton leaf (V ? ¼ f0g) is the set of all stationary points
on K. The rows of the projectors PV ? : Rn ! Rn�k for
the reduced gradient equation (in analogy to an equation
like Eq. (4)) are formed by an orthonormal basis of V :
ðn� kÞ vectors and are available by Gram–Schmidt
orthogonalization [13]. The equation is again

PV ?GðxÞ ¼ 0: ð9Þ
The zero vector at the right hand side is ðn� kÞ
dimensional.

Bofill, Anglada and coworkers generalized the RGF
method to a reduced PES. They operated on Newton
leaves without naming their objects in this way. The idea
is that under a reaction only a part of the coordinates
changes truly, and the remaining coordinates change
only a little bit. The reduced PES is defined [3,15] by

V ðxrÞ ¼ min
xp

Eðxp; xrÞ; ð10Þ

were xr are coordinates of the reduced PES and xp are
coordinates of directions with small changes. They will
be adapted to an equilibrium [3]. The condition of the
equilibrium is

ðGpÞi ¼
@Eðxp; xrÞ
@xpi

¼ 0; i ¼ 1; . . . ; n� k; ð11Þ

where ðn� kÞ is the length of vector xp. In the frame of
Newton leaves the reduced PES is a k-Newton leaf of the
kind FV with V ¼ linfxpg. We will speak of a PES
reduced by V . The generalized search direction of the
PES reduced by V is the linear envelope of coordinates
xr, i.e., V ?. With dimension of the reduced PES we mean
the dimension of the generalized search direction V ?.
Thus, Bofill, Anglada and coworkers applied Newton
leaves [3,15]. It is important for this reason to cite some

properties of Newton leaves, i.e. of the reduced PESs, to
aid our imagination. They are from the mathematical
work of Diener [8, 20].

– If the dimension of the general search subspace
becomes smaller, thus, if one cancels coordinates from
the search, then the new reduced subspace is included
in the former subspace. The new Newton leaf is in the
former Newton leaf.

If V � W then W ? � V ?; and then FW �FV : ð12Þ
– Every reduced PES contains all stationary points of the
PES. (Of course, it is this property which is employed
by Bofill, Anglada and coworkers [3, 15].)

– In general, the reduced PES need not be connected. It
can be composed of more components. (This is a
possible drawback of the reduced PES. A clever choice
of the search directions often circumvents the prob-
lem.)

– There is no component of a reduced PES (without the
0-leaf) which is only a stationary point.

– If FV is a k-leaf and y 2j FV then there is an l-leaf FW
with lþ k � n such that y 2FW and
FV \FW ¼ fset of all stationary points g.

– For the sum of two subspaces ðV þ W Þ? ¼ V ? \ W ?

holds, and thus for two reduced PESs FV and FW

FVþW ¼FV \FW : ð13Þ
Since FV is a k-leaf, and FW is an l-leaf then
FU ¼FV \FW is an m-leaf with k; l � m and
k þ l� m � n. In the example given later we will see
that every NT in R3 is the intersection of two 2-Newton
leaves in R3.

– If the intersection of two reduced PESs with the
generalized search directions V ? and W ? of dimension k
and l contains further points besides the stationary
points, then

n� k � lþ 1 � dimðW \ V Þ � minðn� k; n� lÞ: ð14Þ
Especially, if an NT has a common nonstationary
intersection point with a reduced PES, then the NT
fully lies in the reduced PES.

– More generally, Newton leaves provide a ‘‘folia-
tion’’ of K. For all l with 1 � l � k

FV ¼
[

W�V

FW ð15Þ

Thus, FV is the union of all l-leaves contained in there.
Example for reduced PES: We used the 3D model

PES in Ref. [6]

Eðx; y; zÞ ¼ 2y þ y2 þ ðy þ 0:4x2 þ z2Þx2 þ 0:01z2 ð16Þ

to study the event of RP branching. The NTs were the
tool for this study. The surface (Eq.16) can be seen for a
model of proton transfer in malonaldehyde. It represents
the H vibration in the O–H–O fragment. If d1 is the O1–
H distance, and d2 is the O2–H distance, the coordinates
used are x ¼ d1 � d2 and y is motion along the O1–O2

stretch. The z–axis may indicate an out-of-plane vibra-
tion. The minima are at ð�

ffiffiffiffiffiffiffiffiffiffi
10=3

p
;�8=3; 0Þ and the SP

of index 1 is at ð0;�1; 0Þ.
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Figure 2 shows the three 2D PESs reduced by one
coordinate direction, respectively, of the 3D PES
(Eq.16). The surfaces are calculated by solution of the
equation

GðxÞ 	 v ¼ 0; ð17Þ
where v is the coordinate, by which the full 3D PES is
reduced. The gradient is

Gðx; y; zÞ ¼ 2
xð0:8x2 þ y þ z2Þ
1þ 0:5x2 þ y
ð0:01þ x2Þz

0
@

1
A ð18Þ

The reduced PES on the left in Fig. 2 is reduced by the
y�axis, i.e. by v2 ¼ ð0; 1; 0ÞT ; Eq. (17) for the surface is
1þ 0:5x2 þ y ¼ 0. It is a 2-Newton leaf FV with
V ¼ linfv2g; the subspace of the generalized search
directions is linfð1; 0; 0ÞT ; ð0; 0; 1ÞT g. The reduced PES
on the right is FW , where W ¼ linfð0; 0; 1ÞT g. The
generalized search directions for FW are
linfð1; 0; 0ÞT ; ð0; 1; 0ÞT g. The intersection of FV and
FW is the set of those points where the gradient stands
orthogonally on V and on W , thus the 1-Newton leaf
FVþW , with V þ W ¼ linfð0; 1; 0ÞT ; ð0; 0; 1ÞT g. The
search direction of FVþW becomes linfð1; 0; 0ÞT g.
FVþW is the NT to the x–axis as the search direction,
depicted on the right of Fig. 3 by a capital X.

The intersection of all three reduced PESs are the
stationary points of the PES.

Figure 4 shows two 2-leaves with nonsymmetric
search subspace.

5 Newton leaves and VRI points

The map PrHðxÞ ! t is smooth for the set of all
ðn� 1Þ � n- matrices with maximal rank [21]. But there
are singularities of definition 3 in points x 2K where
the rank of PrHðxÞ is smaller than n� 1.

The Newton trajectory branches there. Thus, the VRI
points are the branching points of 1-leaves.

We extend the VRI definition to Newton leaves. Let
v1; :::; vk be a basis of V ?, and let V ? include the gradi-
ent. Then a point x 2FV is a generalized VRI (gVRI)
point iff

rank ½H ; v1; :::vk� < n: ð19Þ

Like in definition 3 the direction vectors v1; :::vk cannot
raise the singularity of H in an augmented matrix if they
are orthogonal to the zero eigenvector. One has [8,18,20]

– Let x be a gVRI of a k-leaf FV . If a Newton leaf
FW �FV and x 2FW then x is gVRI of FW .

– Let k < rankH with k from the k-leaf FV . Then
there is an l-leafFW withFW �FV such that the gVRI
x of FV is not a gVRI of FW . W can be chosen such
that

l ¼ k þ dimð ðker HÞ \ V Þ: ð20Þ
The gVRIs are special points for branchings as well as
intersections. We will name two leaves FV and FW as
oblique if neither FV �FW nor FW �FV . If so, then
the tangent spaces of FV and FW are oblique to each
other in any point x 2FV \FW which is not a gVRI.
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Fig 2 Three 2-leaves that are 2D
PESs which are reduced by the
coordinate axes V of the model
surface (Eq.16) of ref[6]. From
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linfð0; 1; 0ÞT g; linfð1; 0; 0ÞT g and
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Fig 3 Common picture of all three 2D reduced PESs of Fig.2. The
intersection of two 2-Newton leaves, respectively, is a NT, a 1-
Newton leaf, see text and Fig. 6 in Ref. [6]. The intersection of all
three 2D reduced PESs are the stationary points of the PES, the
Saddle point and the two minima.
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The VRIs of the surface represented by Eq.(16) are on
the parabola y ¼ �z2 in the ðy; zÞ plane with x ¼ 0, see
Fig. 3, right. The gradient and Hessian are

Gð0;�z2; zÞ ¼ 2
0

1� z2

0:01z

0
@

1
A and H ¼ 2

0 0 0
0 1 0
0 0 0:01

0
@

1
A

ð21Þ

The 2-leaf FV to V ¼ v2 ¼ ð0; 1; 0ÞT crosses the VRI
parabola at points z ¼ �1, y ¼ �1, x ¼ 0. The gradient,
G, is in the linear combination of the basis vectors
v1 ¼ ð1; 0; 0ÞT and v3 ¼ ð0; 0; 1ÞT of V ?. However, the
augmented matrix ½H ; v1; v3� has rank 3, thus, the points
ð0;�1;�1Þ are not gVRIs of the 2-leaf, but they are
VRIs belonging to a 1-leaf, the NT Z in Fig. 3, right.

The central part of Fig. 2 is the 2-leaf to
V ¼ v1 ¼ ð1; 0; 0ÞT. There are two solutions of Eq.(17):
the plane x ¼ 0, and the paraboloid y ¼ �0:8x2 � z2. The
VRI manifold x ¼ 0; y ¼ �z2 lies totally inside this 2-
leaf. The basis of V ? is ðv2; v3Þ, and on the VRI parabola
rank½H ; v2; v3� ¼ 2 < 3 holds throughout. Thus for this
2-leaf the VRI points of the NTs are also gVRIs of the 2-
leaf.

6. Conclusion

The RP is a tool of theoretical chemistry without direct
physical meaning [2]. The task of a geometrical treat-
ment of the PES is to search pathways with a given
property: to connect the minimum and the SP by a
curve. The search of such pathways can also be done in
higher dimensional subspaces; it need not be restricted to
a 1D RP.

1D RPs can be defined by NTs, but higher dimen-
sional searches can be defined by Newton leaves. We
took up a proposal of Bofill and Anglada [3] in this note
and reported the known mathematical properties of the
Newton leaves [8]. In an example with the possibly
lowest dimension of 3 we illustrated the interesting
structure of Newton leaves.
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