
Abstract. Quantum molecular dynamics describes the
time-evolution of a chemical system at the atomic level
by directly solving the Schrödinger equation. Time-de-
pendent methods, exemplified by wavepacket propaga-
tion, are by now developed to a point where they provide
an important insight into the mechanism of many fun-
damental processes. Of these methods, the most versatile
and efficient is probably the multi-configuration time-
dependent Hartree (MCTDH) method. The form of the
wavefunction used leads to a particularly compact de-
scription of the system, and it is possible to run either
qualitative, cheap, or accurate, expensive calculations
within the same framework. MCTDH has now shown
that it is able to treat systems much larger than other
wavepacket propagation methods, and benchmark cal-
culations on systems with up to 24 degrees of freedom
have been made. In contrast, standard methods can
rarely treat more than 4–6 degrees of freedom. In the
following, we review the basic theory of MCTDH. Re-
cent advances are included, such as the development of
the method for treating the time-evolution of density
operators.
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1 Introduction

Quantum molecular dynamics models the time-evolu-
tion of a chemical system by directly solving the
Schrödinger equation, and thus aims to provide com-
plete information at an atomic level. For many processes
computer simulations using these methods are essential
to understand the measurements made. Typical exam-
ples are found in molecular beam and femtochemistry

experiments, where the fundamental steps of chemical
change and reactivity are being probed.

The pictures from classical molecular dynamics sim-
ulations are by now well known to chemists. Particularly
in the fields of bio-chemistry and organic chemistry,
these methods have helped to highlight the dynamical
nature of molecular interactions. In these simulations,
the nuclei are treated as classical particles, and the
molecule has a definite nuclear configuration at each
point in time. In contrast, the nuclei in quantum mo-
lecular dynamics are represented by a wavefunction. The
resulting picture is quite different, and the system flows
across a potential-energy surface, spreading out through
configuration space in a complicated way including in-
terference effects. Regions of high density indicate where
the system is likely to be. In many simple situations the
two pictures lead to a similar result, but in some cases
the classical picture will be qualitatively incorrect.

Experimental information about molecular dynamics
typically comes from spectra and reaction cross-sections.
The former use light to probe what happens after a
process is initiated, while the latter give the probability
of a system moving from one quantum state to another
during a reaction. The early studies typically used a
time-independent picture to characterize the molecular
dynamics in terms of the states of the system occupied.
For example, a spectrum can be analyzed in terms of the
eigenvalues of the Hamiltonian, and the calculation of
Franck–Condon factors. Time-independent scattering
theory is also able to deliver reaction cross-sections.

Time-dependent approaches to quantum molecular
dynamics have in recent times become more popular.
They add to the understanding of the dynamics and are
numerically competitive, if not superior. They are par-
ticularly useful for studying scattering or half-scattering
(e. g. photodissociation) problems as the complicated
scattering boundary conditions do not appear in the
time-dependent picture. Time-dependent approaches are
also very useful for investigating very dense, not fully
resolved spectra, e. g. vibronic spectra of polyatomic
molecules when the Born-Oppenheimer potential-energy
surfaces exhibit a conical intersection. A time-dependent
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approach is usually not the first choice for accurately
computing individual eigenenergies, but with the advent
of the filtering method [1,2,3,4], the time-dependent
approach became competitive even for this problem.
Finally, a time-dependent approach is unavoidable,
when the Hamiltonian itself is time-dependent.

The direct solution of the time-dependent
Schrödinger equation leads to wavepacket propagation
methods [5,6,7,8,9]. The system is represented in its ini-
tial state by a wavepacket, a nonstationary superposition
of eigenstates. The time-evolution of this wavepacket is
then calculated using powerful numerical methods. Not
only can all the required information be extracted from
the evolving wavepacket, but it provides a very pictorial
description of the process of interest. Unfortunately this
standard method suffers from its need of computer
resources, which scales exponentially with the number of
degrees of freedom in the system. This typically
precludes the treatment of systems with more than 4–6
degrees of freedom, and forces us to search for
approximate methods.

Retaining the conceptual simplicity of wavepacket
propagation, but attacking the poor scaling of the
standard method leads us to the multiconfiguration
time-dependent Hartree (MCTDH) method [10,11,12,
13,14,15]. The power of the method lies in its flexibility
and theoretically solid basis. The wavefunction is ex-
panded in a set of time-dependent basis functions. Using
a variational principle, equations of motion are obtained
for these functions, known as Single-particle funtions
(SPFs). The basis thus follows the evolving wavepacket,
which results in a very compact representation. Impor-
tantly, the result converges on the exact result as the
basis is increased in size. In the other limit of a single
configuration of basis functions is the well-known ap-
proximation time-dependent Hartree (TDH), or time-
dependent self-consistent field, method [16,17]. MCTDH
is thus able to span a range of accuracies.

The method also provides a good starting point for
further approximations. For example, in a recent de-
velopment, which will not be treated further in this ar-
ticle, it has been suggested that replacing some of the
fully flexible SPFs of the standard MCTDH method by
either Gaussian functions [18] or localized sinc functions
[19] may provide a more efficient, but more approximate,
way to treat large molecular systems.

The method has been applied successfully to a num-
ber of phenomena, such as direct photodissociation
[11,20,21,22,23], photodissociation off a surface
[24,25,26,27], photoabsorption [13,28,29,30], and pre-
dissociation [26,31,32]. It has been used to calculate
photoelectron [33,34,35] and resonance Raman spectra
[36]. It has also been applied to compute cross-sections
of both reactive scattering [37,38,39,40,41] and inelastic
molecule-surface scattering [42,43,44,45,46,47] events.
Reactions rates have also been calculated directly using a
flux correlation function [48,49,50,51,52,53,54,55,56,
57,58]. Other studies include the electron transfer along a
conjugated chain [59], and resonant excitation by
electron impact [60]. As it is a time-dependent method,
including a time-dependent Hamiltonian is a trivial
matter. An example of the sort of process that can then

be studied is laser-driven proton transfer [61]. Finally,
combined with filter diagonalization, it has been used to
calculate bound-state spectra [62,63].

In a number of cases the method has been applied to
nonadiabatic systems, i.e. those in which radiationless
transitions can occur between electronic states owing to
the breakdown of the Born–Oppenheimer approxima-
tion. These are systems in which many degrees of
freedom are present, and the potential-energy surfaces
are strongly anharmonic. Using the vibronic coupling
model Hamiltonian [64], the MCTDH method has been
able to perform high-quality calculations on systems
with a set of coupled electronic states and up to 24
degrees of freedom explicitely included [13,29,33,34,35].
In this way we have been able to examine the validity of
the reduced dimensionality models used by most
researchers in this field. To further demonstrate the
applicability of the method to large systems, it should be
mentioned that in a recent study MCTDH has been
applied to the spin-boson problem including 80 degrees
of freedom [65], and to the multidimensional Henon–
Heiles model, a standard test problem for semiclassical
and other approximate methods, including up to 32
dimensions [66].

The evolution of a wavefunction describes the evo-
lution of a particular well-defined initial state. A system
at finite temperature, however, is an incoherent mixture
of very many thermally excited states. The density op-
erator formalism allows one to correctly describe such a
statistical mixture. The most important advantage of the
density operator formalism, however, is the possibility to
include the effects of an environment on the system dy-
namics, thus allowing the description of open quantum
systems and their nonequilibrium dynamics [67]. The
wavefunction formalism is not appropriate for such sit-
uations since, even if the system is initially in a pure
state, it soon becomes a statistical mixture owing to the
influence of the environment.

The numerical treatment of density operators is more
difficult than the treatment of wavefunctions since the
dimensionality of the system formally doubles, squaring
the effort for time propagation. The number of systems
that can be investigated by numerically exact methods is
thus rather restricted since it is normally not possible to
treat more than two or three degrees of freedom. The
MCTDH scheme has recently been extended to propa-
gate density operators [68,69,70], and the first applica-
tions indicate that the method will be much more
efficient than standard approaches [71].

In this article we review the theory of the method,
including all the latest developments. Details of the basic
theory have been the subject of a recent review [15], and
only an overview is given in Sect. 2. The application of
the method to density operators is, however, still new.
Named here qMCTDH to distinguish it from the usual
method which applies to wavefunctions, it is described in
some detail in Sect. 3. Other new developments include
ways of generating an initial wavepacket for a range of
physical processes, and for evaluating the results from a
calculation, taking the special form of the MCTDH
wavefunction into account. These are discussed in Sects.
4 and 5. Of particular interest is a method of generating
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excited-state nuclear eigenfunctions using a relaxation
(imaginary time propagation) method in Sect. 4.2.

2 MCTDH for wavefunctions

2.1 The time-dependent picture and the standard method

Our aim is to solve the time-dependent Schrödinger
equation

i _WW ¼ HW ð1Þ
(we use a unit system with �h ¼ 1 throughout) by
representing the wavefunction and Hamiltonian with a
basis set expansion. The most straightforward way to
solve Eq. (1) is to take a one-dimensional time-indepen-
dent basis set, fvðjÞj g, for each degree of freedom, j, and
expand the wavefunction in the direct product basis set,
i. e.

WðQ1; . . . ;Qf ; tÞ ¼
XN1

j1¼1
. . .
XNf
jf¼1

Cj1...jf ðtÞ
Yf
j¼1

vðjÞjj ðQjÞ ;

ð2Þ
where f specifies the number of degrees of freedom,
Q1; . . . ;Qf are the nuclear coordinates, Cj1...jf denote the
time-dependent expansion coefficients, and Nj denote
the number of basis functions used for representing the j
degree of freedom.

The equations of motion for Cj1...jf ðtÞ can be derived
from the Dirac–Frenkel variational principle [16,72]

hdW j H � i
@

@t
j Wi ¼ 0 ; ð3Þ

leading to

i _CCJ ¼
X
L

HJLCL ; ð4Þ

where we have established the multiindex J ¼ j1 . . . jf

(and analogously for L). HJL ¼ hvð1Þj1 . . . vðf Þjf j H j vð1Þl1
. . . vðf Þlf

i is the matrix representation of the Hamiltonian

given in the product basis set.
To allow an efficient and accurate evaluation of the

action of the Hamiltonian, H , on the wavefunction, W,
one usually replaces the basis functions by a discrete
variable representation (DVR) [15,73,74,75]. If one uti-
lizes the fact that the potential energy is diagonal on a
DVR grid and that the kinetic energy part of H can be
written in tensor form, the computational effort neces-
sary to evaluate the right-hand side of Eq. (4) becomes
proportional to fNfþ1. Here we have assumed for sim-
plicity that the same number N ¼ N1 ¼ � � � ¼ Nf of basis
functions (or grid points) is employed for each degree of
freedom. Similarly, the memory requirement is 3� Nf �
16 bytes, as a propagation algorithm requires at least
three wavefunctions in central memory random access
memory and a complex word needs 16 bytes. This scaling
behavior, both for effort and memory, generally restricts
the standard method to systems with not more than five
or six degrees of freedom: for example, if N ¼ 32 and
f ¼ 6 this amounts to 48 GB. If large grids are required,

even a four-dimensional calculation can become a diffi-
cult task.

2.2 The MCTDH equations of motion

From what was outlined previously it is clear that the
standard method is not capable of treating large systems.
In the MCTDH scheme [10,11,12,13,14,15], one there-
fore employs an intermediate, smaller, but now time-
dependent, basis of SPFs. The ansatz for the MCTDH
wavefunction reads

WðQ1; . . . ;Qf ; tÞ ¼
Xn1
j1¼1

. . .
Xnf
jf¼1

Aj1...jf ðtÞ
Yf
j¼1

uðjÞ
jj ðQj; tÞ

¼
X
J

AJUJ ; ð5Þ

with nj < Nj. Here the configuration, orHartree product,
UJ is an f -dimensional product of SPFs, implicitly
defined by Eq. (5). The AJ  Aj1...jf denote the MCTDH

expansion coefficients and the uðjÞ
jj are the SPFs, which

in turn are represented as linear combinations of the
primitive basis

uðjÞ
jj ðQj; tÞ ¼

XNj

ij¼1
cðjÞijjjðtÞv

ðjÞ
ij ðQjÞ : ð6Þ

Since both the coefficients and the SPFs are time-de-
pendent, the wavefunction representation Eq. (5) is not
unique. Uniquely defined equations of motion can be
obtained by imposing additional constraints on the SPFs
[11,12,14,15]. Hereby it can be achieved that initially
orthonormal SPFs remain orthonormal for all times.
The constraints read

huðjÞ
j ð0ÞjuðjÞ

l ð0Þi ¼ djl ; ð7Þ

huðjÞ
j ðtÞj _uuðjÞ

l ðtÞi ¼ �ihuðjÞ
j ðtÞjgðjÞjuðjÞ

l ðtÞi ; ð8Þ
were gðjÞ denotes a constraint operator. The constraint
operators are hermitian but otherwise arbitrary and
should be chosen such that the equations of motion are
easy to integrate.

In order to write down the equations of motion for
the SPFs and coefficients in a concise way, it is necessary
to introduce the single-hole functions

WðjÞ
l ¼ huðjÞ

l jWi ¼
X
J

j
AJj

l

Y
j0 6¼j

uðj0Þ
jj0

; ð9Þ

where Jj
l denotes a composite index J with the jth entry

set at l, and
Pj

J is the sum over the indices for all degrees
of freedom excluding the jth. The single-hole functions
allow us to write the total wavefunction as

W ¼
X
l

uðjÞ
l WðjÞ

l ð10Þ

for any degree of freedom, j. This expansion is used
when deriving the equations of motion for the SPFs.

Next we define the mean field

hHiðjÞjl ¼ hWðjÞ
j j H j WðjÞ

l i ð11Þ

and density matrices
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qðjÞ
jl ¼ hWðjÞ

j j WðjÞ
l i ¼

X
J

j
A�
Jj
j
AJj

l
: ð12Þ

Note that the mean-field matrix elements are operators
on the jth degree of freedom. Finally, we define the
MCTDH projector

P ðjÞ ¼
Xnj

j¼1
j uðjÞ

j ihuðjÞ
j j ; ð13Þ

and split the Hamiltonian into correlated and separable
terms

H ¼
Xf
j¼1

hðjÞ þ HR ; ð14Þ

where hðjÞ acts only on the jth degree of freedom and the
residual part, HR, includes all the correlations between
the degrees of freedom.

The MCTDH equations of motion are derived by
applying the Dirac–Frenkel variational principle,
Eq. (3), to the ansatz Eq. (5). After some algebra one
obtains [11,12,15]

i _AAJ ¼
X
L

hUJ jHR jULiALþ
Xf
j¼1

Xnj

l¼1
ðhðjÞjjl �g

ðjÞ
jjl
ÞAJj

l
; ð15Þ

i _uuðjÞ ¼ gðjÞ1nju
ðjÞ þ 1�P ðjÞ

� �

� qðjÞ
� ��1

hHRiðjÞ þ ðhðjÞ �gðjÞÞ1nj

� �
uðjÞ ; ð16Þ

where a vector notation has been adopted for the SPFs
with

uðjÞ ¼ uðjÞ
1 ; . . . ;uðjÞ

nj

� �T
; ð17Þ

and where 1nj denotes the nj � nj unit matrix. hðjÞjl and
gðjÞjl are the matrix elements of hðjÞ and gðjÞ with respect
to the SPFs.

There are two obvious choices for the constraint
operators gðjÞ, namely gðjÞ ¼ 0 and gðjÞ ¼ hðjÞ. The latter
choice yields

i _AAJ ¼
X
L

hUJ jHR jULiAL ; ð18Þ

i _uuðjÞ ¼ hðjÞ1nj þ 1�P ðjÞ
� �

qðjÞ
� ��1

hHRiðjÞ
� �

uðjÞ ; ð19Þ

whereas the first choice yields

i _AAJ ¼
X
L

hUJ jHR jULiALþ
Xf
j¼1

Xnj

l¼1
hðjÞjjlAJj

l
; ð20Þ

i _uuðjÞ ¼ 1�P ðjÞ
� �

hðjÞ1nj þ qðjÞ
� ��1

hHRiðjÞ
� �

uðjÞ : ð21Þ

Finally, dropping the partitioning of the Hamiltonian,
Eq. (14), and setting HR ¼ H , one may write the
equations of motion for the choice gðjÞ ¼ 0 rather
compactly as

i _AAJ ¼
X
L

hUJ j H j ULiAL ; ð22Þ

i _uuðjÞ ¼ 1� P ðjÞ
� �

qðjÞ
� ��1

hHiðjÞuðjÞ : ð23Þ

Comparing Eq. (19) with Eq. (21) one notices that the
two different choices for the constraints let the MCTDH
projector appear at different positions. The MCTDH
projector ensures that the part of the propagation of
the total wavefunction, which is accomplished by the
coefficients, is not redone when propagating the SPFs.

It is important to understand that the choice of the
constraints does not change the quality of the MCTDH
expansion Eq. (5). The different wavefunctions obtained
by propagating with different constraints are connected
by unitary transformations among the SPFs and reverse
transformations on the A coefficients [15]. Other choices
of the constraints, besides the two discussed, may be
used for special purposes [15].

The MCTDH equations conserve the norm and, for
time-independent Hamiltonians, the total energy. This
follows directly from the variational principle [15].
MCTDH contains TDH and the standard method as
limiting cases. MCTDH simplifies to TDH when setting
all nj ¼ 1. Increasing the nj recovers more and more
correlation, until finally, for nj ¼ Nj, the standard
method is used.

2.3 Density matrices, natural orbitals,
and natural populations

Let us define the reduced one-particle density operator in
the usual manner as

q̂qðjÞ ¼ Trfj WihW jgj ; ð24Þ

where Trf�gj denotes the (partial) trace over all but the
jth degree of freedom. The MCTDH density matrix is
related to this operator through

qðjÞ
jl ¼ huðjÞ

l j q̂qðjÞ j uðjÞ
j i : ð25Þ

Note that the indices are interchanged. The MCTDH
density matrix is thus the transpose of the usual reduced
one-particle density matrix.

Diagonalising the operator q̂qðjÞ yields the natural
populations and natural orbitals [10,11,76,77], defined
as the eigenvalues and eigenvectors of q̂qðjÞ. The natural
orbitals are, of course, linear combinations of the
SPFs. The natural populations characterize the contri-
bution of the related natural orbitals to the represen-
tation of the wavefunction. Small natural populations
indicate that the MCTDH expansion converges, and
this provides an important internal check on the
quality of the computed solution. (See Refs. [11,20,22,
27,31,37,42,43,76] for examples). For vanishing eigen-
values, the hermitian and positive semidefinite density
matrix will become singular. How to solve the resulting
numerical problem is discussed, for example, in Refs.
[11,15].

254



2.4 Nonadiabatic systems, electronic states

The motion of the molecular nuclei may not evolve on a
single Born–Oppen-heimer potential-energy surface, and
a multistate formulation may be necessary. In such an
instance one often assumes a diabatic representation, but
this is only for numerical convenience and not necessary
in principle. The MCTDH algorithm can be applied
straightforwardly to systems where more than one
electronic state is included. One simply chooses one
extra degree of freedom, the jeth say, to represent the
electronic manifold [21,78]. The coordinate Qje then
labels the electronic states, taking only discrete values
Qje ¼ 1; 2; . . . ; r, where r is the number of electronic
states under consideration. The number of SPFs for such
an electronic mode is set to the number of states, i.e.
nje ¼ r. The equations of motion (Eqs. 15,16,17,18,19,
20,21,22,23) remain unchanged, treating nuclear and
electronic modes on the same footing. This is called the
single-set formulation, since only one set of SPFs is used
for all the electronic states.

Because the motion on the included electronic po-
tential-energy surfaces can be vastly different, one may
think of more efficient ways to include electronic states.
The so-called multiset formulation employs different sets
of SPFs for each electronic state [24,28]. In this formu-
lation the wavefunction W and the Hamiltonian H are
expanded in the set fj aig of electronic states:

j Wi ¼
Xr

a¼1
WðaÞ j ai ð26Þ

and

H ¼
Xr

a;b¼1
j aiH ðabÞhb j ; ð27Þ

where each state function WðaÞ is expanded in MCTDH
form (Eq. 5). The derivation of the equations of motion
corresponds to the single-set formalism, except that
extra state labels have to be introduced on the various
quantities, such as constraint operators, mean fields, and
density matrices. For details see Refs. [15,24,28]. The
computational effort of the single-set and multiset
approach is analyzed and compared in Ref. [12].

2.5 Mode combination and numerical scaling

As discussed in Sect. 2.1 the standard method requires
the storage of (at least) 3� Nf complex words. The
storage of a single MCTDH wavefunction requires

memory � fnN þ nf ð28Þ
complex words, where – for the sake of simplicity – we
have again assumed that each degree of freedom requires
n SPFs and N grid points to converge the wavefunction.
The first part in the sum, fnN , accounts for the space
needed to store the SPFs and the second part, nf ,
accounts for the storage of the coefficient vector. To
store the wavefunction, its derivative, and all the mean
fields, etc., it was found that MCTDH requires a storage

which approximately equals that of 12 MCTDH wave-
functions. An example will be illustrative. Let us assume
that there are 12 degrees of freedom, and that six SPFs
and 32 grid points are needed for each degree of freedom
to ensure convergence; hence f ¼ 12; n ¼ 6;N ¼ 32. The
standard method would require 5� 1010 GB, demon-
strating that this method is totally inappropriate.
MCTDH, on the other hand, would require 390 GB,
which is 8 orders of magnitude smaller, but still much
too big to fit on today’s workstations. If one analyzes the
wavefunction storage, one finds that the SPFs take only
fnN ¼ 2304 words, whereas storage of the coefficient
vector requires nf ¼ 2:2� 109 words. It is thus the
exponential growth of the A vector, which eventually
lets MCTDH become infeasible for sufficiently large
numbers of degrees of freedom. Fortunately, there is a
(partial) solution to this problem: mode combination.

The memory requirement of the _AA vector can be re-
duced substantially if SPFs are used that describe a set of
degrees of freedom, rather than just 1. The wavefunction
ansatz, Eq. (5), is then rewritten as a multiconfiguration
over p generalized ‘‘particles’’,

Wðq1; . . . ; qp; tÞ ¼
X~nn1
j1¼1

. . .
X~nnp
jp¼1

Aj1...jpðtÞ
Yp
~jj¼1

uð~jjÞ
j~jj ðq~jj; tÞ ;

ð29Þ

where q~jj ¼ ðQj1 ;Qj2 ; . . . ;Qjd Þ is the set of coordinates
combined together in a single particle, described by ~nn~jj
SPFs. Upon combination the primitive grid increases:
~NN~jj ¼ Nj1 � Nj2 � � � � � Njd . The length of the _AA vector,
however, shrinks, because ~nn will be smaller than the
product of the associated n. This is because the
correlation among the combined modes is now already
taken care of on the single-particle level. We have found
that, as a rule of thumb, one usually need to set ~nn to the
sum of the associated n to ensure convergence.

To investigate the memory requirement for combined
modes, we assume that always d degrees of freedom are
combined. There are hence p ¼ f =d particles, the grid
size increases to ~NN ¼ Nd , and the number of combined
SPFs increases to ~nn ¼ dn. The memory requirement
changes to

memory � p~nn ~NN þ ~nnp

� fnNd þ nf=d : ð30Þ
To illustrate this equation, we return to the example
discussed earlier. With d ¼ 2 follows p ¼ 6, ~NN ¼ 1024,
and ~nn ¼ 12. The memory requirement for the SPFs
increases from 2304 to 73728 words, but the space
needed to store one _AA vector decreases from 2:2� 109 to
3� 106 words. The total memory required decreases
dramatically from 390 GB to 560 MB. The first step,
standard method to MCTDH, saved us 8 orders of
magnitude in memory requirement (random access
memory), the second step, MCTDH to MCTDH with
combined modes, brought us another 3 orders. Like the
standard wavepacket method, MCTDH is plagued with
exponential scaling, i.e. its memory requirement grows
as bf with the number of degrees of freedom, f . The base
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b, however, is much smaller in MCTDH, making
MCTDH suitable to attack larger problems
[13,29,33,34,35,65,66]. For the three methods discussed,
the base b equals N , n, and ~nn � ðdnÞð1=dÞ (or 32, 6, and
3.46 in the example), respectively. In one particular case
[13] the base was as small as b ¼ 1:83.

In a practical situation one is confronted with the
question of which modes to combine into a particle. If
there are modes which are more strongly coupled to each
other than to the rest of the modes, one should combine
these strongly coupled modes. As the correlation among
these modes is now treated on the single-particle level,
rather low numbers ~nn~jj of multi–mode SPFs suffice for
convergence and ~nn may become considerably smaller
than dn. Often, however, it is difficult to decide a priori
which modes are strongly coupled to each other. In this
case one may take a pragmatic view, based on memory
considerations, and follow the rules:

1. Combine modes such, that the sizes of the combined
grids are roughly equal to each other.

2. The space taken by the SPFs should be similar to but
not larger than the space consumed by the A vector.

2.6 Product representation of the potential

The solution of the MCTDH equations of motion
requires the evaluation of the Hamiltonian matrix
hUJ j HR j ULi and the mean fields hHRi at each time
step of the integration. These are formally f and f -1
dimensional integrals. Doing the integrals by multi-
dimensional quadrature over the primitive grid would
slow down MCTDH such that it would not be
competitive.

The multidimensional integrations can be circum-
vented if the Hamiltonian is written as a sum of products
of single-particle operators,

H ¼
Xs
r¼1

cr
Yf
j¼1

hðjÞr ; ð31Þ

with expansion coefficients cr. Using Eq. (31) the matrix
elements can be expanded as

hUJ j H j ULi ¼
Xs
r¼1

cr
Yf
j¼1

huðjÞ
jj j hðjÞr j uðjÞ

lj
i ; ð32Þ

and similarly for the mean fields [11,15]. Note that only
one-dimensional integrals are now required. (With mode-
combination, d–dimensional integrals may appear).

The kinetic energy operator normally has the re-
quired form (Eq. 31). Often, however, the potential-
energy operator does not have the necessary structure,
and it must be fitted to the product form. A convenient,
systematic, and efficient approach to obtain an optimal
product representation is described in Refs. [15,79,80].
Note that it is important to keep the number of
expansion terms, s, as small as possible, because the
computation time increases linearly with s.

The expansion of the potential in a product form can
be avoided by adopting the correlated DVR (CDVR) of

Manthe [81]. This uses a time-dependent DVR based on
the SPFs to evaluate the multidimensional integrals
without recourse to the full primitive grid. The method
however suffers in that it has no internal error control
[15]. We hope that CDVR can be developed to overcome
this problem, as it represents a very important step in
increasing the generality of the method.

2.7 The constant mean-field integrator

The MCTDH equations of motion, Eqs. (15, 16), are
strongly coupled and nonlinear. As a result they cannot
be solved using the powerful integration schemes
developed for linear equations, such as those used in
the standard method [82]. A significant step forward in
the application of the MCTDH method was made in the
development of the constant mean-field (CMF) integra-
tor.

The motivation behind the CMF integration scheme
is that the matrix elements hUJ j H j ULi and the product
of the inverse density with the mean-field matrices gen-
erally change much more slowly in time than the
MCTDH coefficients and the SPFs. For that reason it is
possible to use a wider meshed time discretization for the
propagation of the former quantities than for the latter
ones with only a minor loss of accuracy. In other words,
during the integration of the equations of motion,
Eqs. (22) and (23), one may hold the Hamiltonian
matrix elements, the density matrices, and the mean-field
matrices constant for some time s (hence the name).

Doing so, the the large set of coupled equations of
motions (Eqs. 22,23) is split into f þ 1 smaller sets
which are uncoupled from each other over the time step.
The first set of equations is similar to Eq. (22), but, as
the matrix elements are now constant, it turns into a
linear differential equation. The other f sets of equations
are similar to Eq. (23), but, as the inverse density and the
mean-field matrices are now constant, the differential
equations for the different degrees of freedom, j,
decouple from each other (and from the equation for the
coefficients). Because of this decoupling one may use
different step sizes and even different integration rou-
tines for each set of equations. For the – now linear – set
of equations for the coefficients a short iterative Lanczos
(SIL) integrator [83] is usually used. For the – still non
linear – sets of equations for the SPFs we usually adopt a
Bulirsch–Stoer or Runge–Kutta integrator.

In order to be efficient, the CMF-integrator algorithm
has to be more complicated than outlined above. A pre-
dictor–corrector approach is used, which removes errors
linear in s and provides an automatic step–size control for
the CMF step, s. With these modifications [12,15] the
CMF integrator has become an important ingredient to
MCTDH. The use of the CMF integrator speeds up
the calculation by typically 1 order of magnitude.

2.8 Selected configurations (S-MCTDH)

The discussion on scaling in Sect. 2.5 shows that
MCTDH has unfortunately not broken the exponential
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scaling of the standard wavepacket propagation method.
Its success is achieved by using the SPFs to lower the
base of the exponent, and by using multimode functions
to change the effective dimensionality of a problem. In
this and the next section, we look at two possible ways to
fight the exponential scaling and to make MCTDH
applicable to even larger systems.

The exponential scaling is simply due to the use of a
direct product basis – configurations using all possible
combinations of the basis functions are included. In an
analogy to electronic structure calculations MCTDH
can be called a full configuration interaction (CI)
method. For large systems, many millions of configu-
rations may be generated that are negligible in impor-
tance for the description of the wavefunction, covering
regions of space not occupied by the system. The
S-MCTDH method aims to select and propagate only
the important configurations [84].

To select a set of configurations from the full CI set,
the configuration space fJg, represented by the indices
attached to the coefficients, AJ , is divided into two spaces
fDg and fRg, where the former are for the configura-
tions to be included in, and the latter for those to be
excluded from, the calculation. Assuming that AJ ðt0Þ ¼
0 for J 2 fRg, we thus require that

i _AAJ ¼ 0; for J 2 fRg : ð33Þ
To meet these conditions, the operator H �

P
j g

ðjÞ in
Eq. (15) is replaced by its projection onto the space of
the included configurations, fDg. Defining the time-
dependent projector,

D̂D ¼
X
J2fDg

j UJ ihUJ j ; ð34Þ

the time derivative of the expansion coefficients is then

i _AAJ ¼
X
L

hUJ j D̂DðH �
Xp
j¼1

gðjÞÞD̂D j ULiAL : ð35Þ

This equation is obviously zero for J 2 fRg.
The S-MCTDH method is based on this change in the

time derivatives of the wavefunction expansion coeffi-
cients. The time derivatives of the SPFs retain the form
of the full CI solution, Eq. (16), and these functions
evolve in the mean fields and density matrices formed
from the wavefunction constrained to lie in the included
configuration space. It can be shown that the system is
now being propagated by the effective Hamiltonian

Heff ¼ H � G ; ð36Þ
where using the projector onto the excluded space, R̂R,

G ¼ R̂R H �
Xp
j¼1

gðjÞ
 !

: ð37Þ

This equation defines the space of redundant configura-
tions. It is simply the space orthogonal to the result of
the operation of H �

P
j g

ðjÞ on the wavefunction.
How should the constraint operator, gðjÞ, be chosen?

In the usual MCTDH method, it plays only a minor
role: as mentioned in Sect. 2.2 different representations

of the SPFs are connected by unitary transformations
and different choices affect only the numerics. In
S-MCTDH the representation chosen is crucial. Differ-
ent gðjÞ will result both in a different operator and a
different excluded space. This will thus change the con-
vergence, i.e. the number of redundant configurations
that can be excluded from the calculation.

In Ref. [84] a natural orbital representation was used,
in which the SPFs evolve so that the density matrices
remain diagonal (see Sect. 2.3). As a result, importance
can be attached to each function, and products of
unimportant functions can be ignored. In the 24-
dimensional example studied, the largest MCTDH
calculation made used 2,771,440 configurations. The
spectrum obtained from an S-MCTDH calculation
choosing just the 13,023 most important configurations
was virtually indistinguishable. The problems in the
method, however, are the extra book keeping required to
keep track of the indices, and improvements in the
present algorithm are required to enable the full power
of this approach to be used.

2.9 Cascading

The cascading approach is similar in spirit to
S-MCTDH, discussed in the last section. In essence,
cascading selects linear combinations of configurations
rather than configurations itself. As cascading is fully
based on a variational principle, it is expected to be more
efficient than S-MCTDH. However, cascading is a
much more complicated algorithm and has not been
implemented yet.

One important step in going to large systems was the
introduction of mode combination (see Sect. 2.5). This,
however, quickly reaches a limit because multidimen-
sional SPFs have to be propagated. To go further, we thus
need a method able to efficiently propagate multidimen-
sional wavepackets. Of course we have such a method:
MCTDH. The idea is thus to use MCTDH to propagate
highly combined SPFs of the original MCTDH expan-
sion. One may continue and use again MCTDH to
propagate the (second layer) SPFs used to expand the
original (first layer) SPFs, and so on. In this way one
cascades down until one arrives at SPFs the dimension of
which is small enough to be propagated conventionally.
(The notation first layer and second layer was suggested
by H. Wang).

Alternatively one may imagine performing a (stan-
dard) MCTDH calculation on a large system. This leads
to an enormously long A vector, which cannot be
propagated conventionally. However, one may propa-
gate it with MCTDH and, similar to earlier, cascade
down until a a manageable size is reached. Fortunately,
both approaches yield exactly the same set of working
equations.

In the following we discuss one-step cascading, which
is expected to be the most important approximation out
of the cascading family. It is fairly obvious how the
working equations have to be generalized to cover two-
step or three-step cascading.
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We assume that the wavefunction is expanded in
MCTDH form Eq. (5), and – for sake of simplicity – we
assume the constraint gðjÞ ¼ 0 and discard the parti-
tioning of the Hamiltonian, Eq. (14). The equations of
motion hence are given by Eqs. (22 and 23). We split the
composite index J into pieces

J ¼ ðJ1; . . . ; JpÞ ;

Jb ¼ ðjab�1þ1; . . . ; jabÞ ; ð38Þ

where b ¼ 1; . . . ; p and where p denotes the number of
particles, or first-layer degrees of freedom. The numbers
a define which degrees of freedom go into one particle.
Note, a0 ¼ 0 and ap ¼ f by definition. With this
nomenclature we write the A vector as

AJ ¼
Xm1

k1

. . .
Xmp
kp

Bk1...kpC
ð1Þ
k1J1

. . .CðpÞ
kpJp

; ð39Þ

define the partial configurations

UJb ¼
Yab

j¼ab�1þ1
uðjÞ
jj ; ð40Þ

and the first-layer SPFs

hðbÞk ¼
X
Jb

CðbÞ
kJb

UJb : ð41Þ

The total wavefunction expanded in second-layer SPFs
is given by Eqs. (5) and (39), but expanded in first-layer
SPFs it reads

W ¼
Xm1

k1¼1
. . .
Xmp
kf¼1

Bk1...kpðtÞ
Yp
b¼1

hðbÞkb

¼
X
K

BKHK ; ð42Þ

which implicitly defines the composite index K and the
first-layer configuration HK .

We proceed by introducing the first-layer single-hole
functions

~WWðbÞ
k ¼ hhðbÞk j Wi ; ð43Þ

where a more explicit equation can be easily derived
(compare with Eq. 9). The definition of the second-layer
single-hole functions, WðjÞ

j , is still given by Eq. (9). The
first-layer single-hole functions allow us to define first-
layer density matrices and mean fields

~qqðbÞ
kk0 ¼ h ~WWðbÞ

k j ~WWðbÞ
k0 i ¼

X
K

b
B�
Kb
k
BKb

k0
; ð44Þ

and

h ~HHiðbÞkJbk0J 0b ¼ h ~WWðbÞ
k UJb j H j ~WWðbÞ

k0 UJ 0b
i ; ð45Þ

and the first-layer MCTDH projector

~PP ðbÞ
JbJ 0b

¼
Xmb

k¼1
CðbÞ
kJb
CðbÞ�
kJ 0b

: ð46Þ

The second-layer mean field, density matrix, and pro-
jector are the ‘‘original’’ ones, i. e. they are given by
Eqs. (11), (12) and (13). Note that the second-layer
mean–field, Eq. (11), is an operator, whereas the first-
layer mean–field, Eq. (45), is a number.

Using again the Dirac–Frenkel variational principle,
Eq. (3), one arrives after some algebra at the one–step
cascading equations of motion

i _BBK ¼
X
K 0

hHK j H j HK 0 iBK 0 ; ð47Þ

i _CCðbÞ
kJb

¼
X

J 0bJ
00
b k

0k00
dJ 0bJ 00b � ~PP ðbÞ

J 0bJ
00
b

� �
~qqðbÞ�1
� �

kk0
h ~HHiðbÞk0J 0bk00J 00bC

ðbÞ
k00J 00b

;

ð48Þ

i _uuðjÞ
j ¼

X
lm

1� P ðjÞ
� �

qðjÞ�1
� �

jl
hHiðjÞlm uðjÞ

m : ð49Þ

Note that the equation of motion for the second-layer
SPFs, Eq. (49), is precisely the ‘‘old’’ equation of motion
(Eq. 23). The equation of motion for the first-layer SPFs
is implicitly given by Eq. (48), i. e. by the equation of
motion for their expansion coefficients. Note the evident
formal similarity between Eqs. (49) and (48). In fact,
Eq. (49) becomes very similar to Eq. (48) when writing it
for the primitive basis expansion coefficients cðjÞij jjðtÞ (cf.
Eq. 6) rather than for the SPF uðjÞ

j itself. Finally, the
equation of motion for the B coefficients is structurally
very similar to Eq. (22).

Let us discuss an example to demonstrate the po-
tential of one-step cascading. Assume that there are
f ¼ 25 degrees of freedom, and that n ¼ 10 SPFs are
required for each degree of freedom. In a conventional
MCTDH approach there would be 1025 coefficients, re-
quiring 1:5� 1020 GB. Such a calculation is, of course,
impossible. Using one-step cascading and combining 5
degrees of freedom into one particle such that there are
p ¼ 5 particles and assuming that m ¼ 25 first-layer
SPFs per particle are sufficient for convergence, one
finds that the B and C coefficients require 149 and 191
MB, respectively. The space required for the second
layer SPFs is rather small. Even if a huge primitive grid
of 10,000 points is used, only 39 MB are needed. Thus
one total wavefunction takes less than 380 MB and the
whole calculation is expected to consume less than 8 GB,
feasible on a modern work station. The second-layer
SPFs may (and in fact should) already make use of mode
combination. As a huge primitive grid of 10,000 points
was assumed, we may presume that such a grid carries
(on average) four-dimensional SPFs. Hence a calcula-
tion with 100 degrees of freedom seems to be possible
with one-step cascading.

3 qMCTDH for density operators

3.1 Wavefunctions and density operators

The evolution of a wavefunction describes the evolution
of a particular well-defined initial state. A system at
finite temperature, however, is an incoherent mixture of
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very many thermally excited states, j Wni. A correct
description of such a statistical mixture can be made
using the density operator

q ¼
X
n

pn j WnihWn j ; ð50Þ

where 0 � pn � 1 are the occupation probabilities which
add up to 1. (The density operator q should not be
confused with the MCTDH one-particle reduced densi-
ty, for which – in order to be consistent with the
literature – we have used the same symbol). The most
important advantage of the density operator formalism,
however, is the possibility to include the effects of an
environment on the system dynamics, thus allowing the
description of open quantum systems and their nonequi-
librium dynamics [67]. The wavefunction formalism is
not appropriate for such situations since, even if the
system is initially in a pure state (i. e. q ¼j WihW j), it
soon becomes a statistical mixture owing to the influence
of the environment.

The time-evolution of a density operator is given by a
differential equation of first order,

i _qq ¼ LðqÞ ; ð51Þ

where L is a linear superoperator. For closed systems
the latter reads (Liouville–von Neumann equation)

LðqÞ ¼ ½H ; q� ; ð52Þ

where H is the Hamiltonian of the system. This
equation is equivalent to the Schrödinger equation for
wavefunctions, and leads to a unitary evolution of q.
For open systems a number of approaches for defining
L exist, in particular those that account for the
interaction with the environment within the Markov
approximation [85,86]. One of the prominent ap-
proaches in this context refers to the Lindblad form
[87,88,89],

LðqÞ ¼ ½H ; q� þ i
X
j

VjqV
y
j � 1

2
V y
j Vjq � 1

2
qV y

j Vj


 �
;

ð53Þ

which implies that the time-evolution is completely
positive. Other well-known expressions are due to
Redfield [90] and Caldeira and Leggett [91], who
proposed a perturbative treatment of the interaction
and a bath at high temperature.

In this section we develop the qMCTDH method,
which is an extension of the MCTDH method to the
propagation of density operators. A density operator is
not uniquely defined by a qMCTDH ansatz, and two
different approaches have been investigated. In the first,
known as type 1, single-particle density operators
SPDOs are used to replace the SPFs of the wavepacket
version. In the type 2 variant, the single-particle density
operators are themselves represented by a product of
SPFs. The ansatz used is denoted in parentheses, e.g.
qMCTDH(1) for the method using the type 1 basis.

3.2 Type 1 density operators

We generalize the MCTDH ansatz Eq. (5), to density
operators

qðQ1; . . . ;Qf ;Q0
1; . . . ;Q

0
f ; tÞ ¼

Xn1
s1¼1

. . .
Xnf
sf¼1

Bs1...sf ðtÞ

�
Yf
j¼1

rðjÞ
sj
ðQj;Q0

j; tÞ ;

ð54Þ
where the Bs1...sf denote the qMCTDH expansion
coefficients, which are now called B rather than A to
avoid confusion with the wavefunction formalism. The
rðjÞ

sj
are so-called SPDOs, analogous to the SPFs in the

wavefunction scheme (see Sect. 2.2). A density operator
has to be hermitian. To ensure this property we require
that the coefficients are real and the SPDOs are
hermitian

Bs1...sf ¼ B�
s1...sf ; rðjÞ

sj
¼ rðjÞy

sj
: ð55Þ

As shown in Ref. [69], the qMCTDH(1) equations of
motion conserve these properties.

To derive the equations of motion one needs a Hil-
bert space structure and in particular a scalar product.
For this purpose we employ the Hilbert–Schmidt scalar
product [92],

hhAjBii ¼ TrfAyBg : ð56Þ
Using this scalar product, one may transfer all properties
that usually apply for wavefunctions, such as orthonor-
mality, etc., to density operators. In the following
operators and superoperators appear, and it is impor-
tant to distinguish between them. For example, the
operator ½H ; q� is obviously antihermitian, but the
superoperator L ¼ ½H ; �� is hermitian [69,92]!

As in MCTDH for wavefunctions, the representation
of the density operator (Eq. 54) is not unique and con-
straints are needed to ensure unique, singularity–free
equations of motion. The constraints, which imply that
the SPDOs remain orthonormal, read

rðjÞ
l ð0Þ

���rðjÞ
m ð0Þ

D ED E
¼ dlm ð57Þ

rðjÞ
l ðtÞ

��� _rrðjÞ
m ðtÞ

D ED E
¼ �i rðjÞ

l ðtÞ
���GðjÞrðjÞ

m ðtÞ
D ED E

: ð58Þ

Here the constraint superoperator GðjÞ is a self-adjoint,
but otherwise arbitrary, superoperator acting exclusively
on the jth degree of freedom. In particular one may set
GðjÞ ¼ 0. For further reference we introduce the total
constraint superoperator

G ¼
Xf
j¼1

GðjÞ ; ð59Þ

which is just the sum of the individual constraint
superoperators.

The derivation of the equations of motion is very
similar to the wavefunction case. We need to define
single-hole density operators
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PðjÞ
m ¼ hhrðjÞ

m jqii ¼
X
T

j
BTj

m

Y
j0 6¼j

rðj0Þ
Tj0

; ð60Þ

with which we define reduced density matrices (now
called D, as q is already used)

DðjÞ
lm ¼ PðjÞ

l

���PðjÞ
m

D ED E
¼ rm j Trfqyqgj j rl
� �� �

¼
X
T

j
B�
Tj

l
BTj

m
; ð61Þ

and mean-field Liouvillian superoperators

hL� GiðjÞlm ¼
DD

PðjÞ
l

���ðL� GÞPðjÞ
m

EE
: ð62Þ

Finally, we define the qMCTDH(1) projector

PðjÞ ¼
Xnj

m¼1

���rðjÞ
m

EEDD
rðjÞ

m

��� ; ð63Þ

and the Hartree product

XT ¼
Yf
j¼1

rðjÞ
sj

: ð64Þ

(These equations should be compared with
Eqs. (9,10,11,12,13,24 and 25), where the nomenclature
is explained.)

With the previous definitions we can formulate the
equations of motion

i _BBT ¼
X
T0

hhXTjðL� GÞXT0 iiBT0 ; ð65Þ

i _rrðjÞ ¼ GðjÞrðjÞ þ 1�PðjÞ
� �

DðjÞ
� ��1

hL� GiðjÞrðjÞ :

ð66Þ
Note the obvious similarity of these equations of motion
with Eqs. (15) and (16), in particular when HR is set to H
and the hðjÞ vanish. The separation, Eq. (14), is useful
for density propagation as well, but for sake of
simplicity we will not further discuss it here.

3.3 Type 2 density operators

The SPDOs can also be written as ket–bra products of
wavefunctions. Doing so, the algorithm for density
operators becomes even more similar to the one for
wavefunctions. One interprets the index Tj as the
composite index Tj ¼ ðjj; ljÞ, and similarly T ¼ ðJ ; LÞ.
Setting

rðjÞ
sj
ðQj;Q0

j; tÞ ¼ uðjÞ
jj ðQj; tÞ

��� E
uðjÞ
lj
ðQ0

j; tÞ
D ��� ð67Þ

and

Bs1...sf ¼ Bj1...jf ;l1...lf ¼ B�
l1...lf ;j1...jf ; ð68Þ

one arrives at the type 2 density operator expansion

qðQ1; . . . ;Qf ;Q0
1; . . . ;Q

0
f ; tÞ ¼Xn1

j1;l1¼1
. . .

Xnf
jf ;lf¼1

Bj1...jf ;l1...lf ðtÞ
Yf
j¼1

uðjÞ
jj ðQj; tÞ

��� E
uðjÞ
lj
ðQ0

j; tÞ
D ��� :

ð69Þ
The hermiticity of B, Eq. (68), ensures that q is
hermitian. The hermiticity is conserved during the
propagation [70].

The constraints (Eq. 58) must be translated into
constraints for the SPFs, which requires the constraint
superoperator to be given as

GðjÞ ¼ ½gðjÞ; �� ; ð70Þ
where the constraint operators are similar to those of
Eq. (8). In fact, using Eq. (70) one arrives at Eqs. (7)
and (8), i.e. at the constraint equations for SPFs.

The qMCTDH(2) equations of motion for propa-
gating type 2 density operators now read [69,70]

i _BBJ ;L ¼ hUJ jðL� GÞðqÞjULi ; ð71Þ
and

i _uuðjÞ ¼ gðjÞuðjÞ

þ 1� P ðjÞ
� �

TrfðL� GÞðqÞqgj Dð2Þ;ðjÞ
� ��1

uðjÞ ;

ð72Þ
where the reduced single-particle density matrix is given
by

D
ð2Þ;ðjÞ
jl ¼ uðjÞ

l Tr q2
� �

j

�� ��uðjÞ
j

D E
¼
X
L

X
J

j
B�
L;Jj

l
BL;Jj

j
:

ð73Þ
It is illustrative to exemplify these equations for the

simplest case, L ¼ H ; �½ � and G ¼ 0. The equations of
motion can then be written as

i _BBJ ;L ¼
X
K

hUJ j H j UKiBK;L � BJ ;KhUK j H j ULi ;

ð74Þ
and

i _uuðjÞ
m ¼ 1� P ðjÞ

� �X
J ;L;K

Dð2Þ;ðjÞ
� ��1

mk
BJ ;LBL;K

� hUKj j H j UJji j uðjÞ
j i ; ð75Þ

where UJj denotes a Hartree product in which the SPF
of the j’s degree of freedom is missing. The indices j and
k are the jth entry of the composite indices J and K,
respectively. When deriving Eq. (75) we discarded the
contribution of the term TrfqHqgj because it will be
annihilated by the projector ð1� P ðjÞÞ. Only the term
TrfHq2gj is kept.

When the density is a pure state, q ¼j WihW j, the
coefficient matrix factorizes, BJ ;L ¼ AJA�

L, where A
denotes the MCTDH coefficient vector of W. Inserting
this separation into Eq. (73) one recovers the MCTDH
wavefunction equations of motion (22,23) Eqs. Hence,
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the closed system propagation of a pure-state density
operator using qMCTDH(2) is equivalent to an
MCTDH wavefunction propagation (i.e. identical SPFs,
B coefficients of q factorize into A coefficients of W).

3.4 Properties of qMCTDH density operator propagation

MCTDH for wavefunctions conserves the total proba-
bility hW j Wi and the total energy hW j H j Wi. This
follows directly from the Dirac–Frenkel variational
principle. Similarly, the variational principle ensures
that Trfq2g and Trfq2Hg are conserved when density
operators are propagated using qMCTDH for a closed
system. Unfortunately, these are not the total probabil-
ity, Trfqg, and total energy, TrfqHg, but when the
calculation converges, the latter quantities are rather
well conserved. The lack of (exact) energy conservation
made us think about using another variational principle
[69,70], which does ensure exact energy conservation.
However this so called linear mean-field approach was
found to be less efficient and we do not discuss it here.

For closed systems and type 2 density operators one
additionally may prove some interesting results [70].

1. Trfqng, n ¼ 1; 2; 3; . . . ; is conserved.
2. A pure state remains pure.
3. Diagonalising the density and writing q ¼

P
M pM j

WM ihWM j one finds that the Dirac–Frenkel varia-
tional principle applied to type 2 density operators is
equivalent toX
M

p2MhdWM j i _WWM � HWM i ¼ 0 : ð76Þ

and _ppM ¼ 0

4. If q is pure, qMCTDH(2) propagation is equivalent to
the MCTDH propagation of wavefunctions.

Point 1 tells us that probability conservation is no
problem (for type 2 densities and closed systems). Point
2 follows from point 1, but is worth mentioning
explicitly. Point 3 builds the bridge between type 2
density and wavepacket propagation. The variational
principle applied to type 2 density operators is equiva-
lent to a weighted sum over the variational principles
applied to the eigenfunctions of q, where the weights are
the squares of the eigenvalues of q. Point 4 follows from
point 3 and was already mentioned in the previous
section.

It is more difficult to make formally exact statements
on the density operator propagation of open systems.
The only result we have is the explanation of the loss of
total probability. Defining the projector

~PP ¼
X
J

j UJ ihUJ j ; ð77Þ

which is the tensor product of all MCTDH projectors
P ðjÞ, and assuming a Lindblad–type dissipation, Eq.
(53), one obtains

Trf _qqg ¼ Trf _BBg ¼
X
J

hUJ jLðqÞjUJ i ¼ Trf ~PPLðqÞg

¼
X
j

Tr ~PPVjqV
y
j � 1

2
~PPV y

j Vjq � 1

2
~PPqV y

j Vj

� �

¼
X
j

Tr V y
j
~PPVjq

n o
� Tr V y

j Vjq
n o

¼ �
X
j

Tr ð1� ~PPÞVjqV y
j ð1� ~PPÞ

n o
� 0 ; ð78Þ

since ~PPq ¼ q ~PP ¼ q by construction. The very first of the
equations follows because of the constraints Eqs. (7,8),
where gðjÞ ¼ 0 was assumed for sake of simplicity. Note
that the possible decrease of Trfqg is due to representing
q in the finite, incomplete basis set fUJg. This analysis
offers a cure for the problem. One simply replaces Vj by
~PPVj ~PP when propagating the coefficients. (This is equiv-
alent to replacing only the products V y

j Vj by V
y
j
~PPVj). This

simple modification has shown to significantly improve
the stability of type 2 density operator propagation for
open systems.

We have introduced two types of qMCTDH density
operator expansions, but have not yet discussed which
expansion is superior under given conditions. Consider
an uncorrelated system at high temperature. The type 1
density operator propagation then becomes numerically
exact with one single configuration. A type 2 propaga-
tion, on the other hand, would require many SPFs to
correctly represent the thermal excitations. Going to the
other extreme, a pure state and a strongly correlated
system, one notices that type 2 now becomes much more
efficient than type 1. One needs more SPDOs for type 1
than SPFs for type 2 to account for the correlation, and
it is more elaborate to propagate SPDOs than to prop-
agate SPFs. To make the comparison more vivid, let us
distinguish between correlation and mixing. In a coor-
dinate representation the density operator is a 2f -di-
mensional function qðQ;Q0Þ whereQ are the coordinates
of the f degrees of freedom of the system. If this function
is nonseparable with respect to the coordinates Qj and
Qj0 of different degrees of freedom, j 6¼ j0, we speak of
correlation between these degrees of freedom. On the
other hand, if qðQ;Q0Þ is non-separable with respect to
the coordinates Qj and Q0

j of a single degree of freedom j
we speak of mixing in this degree of freedom. In partic-
ular, a pure state is unmixed in all degrees of freedom.
Using this terminology one can express the different
performance of type 1 and type 2 expansions as follows.
The type 1 expansion is more efficient if there is more
mixing than correlation, whereas the type 2 expansion is
to be preferred if correlation is stronger than mixing.

4 Initial state

4.1 Hartree products

The time–dependent Schrödinger equation (Eq. 1) is an
initial value problem. The initial state, Wð0Þ, thus has to
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be supplied. Depending on the process to be described,
the initial state may be fully determined, for example, as
an eigenstate of another Hamiltonian. In other situa-
tions there is some freedom of choice. As the wavepacket
is to be propagated by MCTDH, the initial wavepacket
must be supplied in MCTDH form. Fortunately, the
initial wavepacket can often be given as a simple Hartree
product, which trivially is in MCTDH form. To give an
example: for an AB+C scattering event described in
Jacobian coordinates R; r, and h, one may chose as initial
wavefunction a product of a Legendre polynomial in
cos h, to specify a particular initial rotational state j, a
vibrational eigenfunction in r, to specify a particular
initial vibrational state v, and a Gaussian function in R.
The width and the momentum of the Gaussian deter-
mine the energy range to be covered.

In other cases, where a Hartree product may not be
appropriate, one may start with an initial guess such as a
Hartree product, and alter this to the desired function in
MCTDH form. The problem is the incomplete nature of
the basis provided by an initial guess set of SPFs. For the
representation of a general function both the expansion
coefficients and SPFs must be changed.

When a ground–state wavefunction is required, for
example, when photodissociation is studied, one may
start with a Hartree product which is close to the ground
state and propagate it in negative imaginary time. It re-
laxes [93] to the ground state and, as this relaxation is
performed by MCTDH, the wavefunction is automati-
cally in MCTDH form. A recent modification of this
approach, which also allows the generation of excited
states, is described in the following section. Finally, the
initial wavefunction may be modified by applying an
operator to it. This is described in Sect. 4.3.

4.2 Relaxation and improved relaxation

The generation of a ground–state wavefunction is
conveniently done by energy relaxation [94]. An initial
wavepacket, usually a Hartree product, is propagated in
negative imaginary time by H � EðtÞ , where EðtÞ
denotes the expectation value of H . The formal solution
of this propagation reads

WðtÞ ¼ exp

Z t
0

EðtÞ � E0 dt

0
@

1
A e�ðH�E0Þt Wð0Þ ; ð79Þ

where E0 denotes the ground-state energy. The second
exponential damps all eigenstate contributions, except
for the ground-state one, and the first exponential
ensures that WðtÞ stays normalized. Thus with increasing
time, WðtÞ converges towards the ground-state.

Energy relaxation is not the most efficient way to
produce a ground-state wavefunction, but here it is a
very convenient way. As the relaxation is performed by
MCTDH, the computed ground-state wavefunction is
automatically in MCTDH form and may serve as an
initial state of a subsequent propagation. For this pur-
pose, the initial ground-state wavefunction is usually

either placed on an excited electronic state, or is modi-
fied by applying an operator to it (see next section).

Energy relaxation can in principle also be used to
produce excited states, by keeping WðtÞ orthogonal to
already computed lower lying states. But this is rather
cumbersome to do and there is a more efficient way. As
we are now dealing with a time-independent problem, we
will now employ the usual time-independent variational
principle

d fhW j H j Wi � EðhW j Wi � 1Þg ¼ 0 ; ð80Þ
where the eigenenergy E serves as Lagrange parameter.
Employing the MCTDH form (5), keeping the SPFs
fixed and varying the coefficients yieldsX
L

HJLAL ¼ EAJ ; ð81Þ

where HJL denotes the matrix elements of H with respect
to the configurations UJ . This is of course the standard
way to find the energy and eigenfunction of a state, only
here the basis is formed by the SPFs. As initially
selected, however, these may not provide a good
description of the desired eigenfunction.

To optimize the basis, a variation must be performed
with respect to the SPFs. Writing the wavefunction as in
Eq. (10), and introducing the Lagrange parameters �

ðjÞ
ij

to keep the SPFs orthonormal, the variational principle
reads

d
X
jl

fhuðjÞ
j WðjÞ

j j H j uðjÞ
l WðjÞ

l i

� �
ðjÞ
jl ðhu

ðjÞ
j j uðjÞ

l i � djlÞg ¼ 0 : ð82Þ

Performing the variation yieldsX
l

hHiðjÞjl uðjÞ
l ¼

X
l

�
ðjÞ
jl uðjÞ

l : ð83Þ

The �
ðjÞ
jk may be determined by multiplication of Eq. (83)

with huðjÞ
k j

�
ðjÞ
jk ¼

X
l

huðjÞ
k j hHiðjÞjl j uðjÞ

l i : ð84Þ

Equation (83) and (84) can be transformed into

1� P ðjÞ
� �

hHiðjÞuðjÞ ¼ 0 ; ð85Þ

or equivalently

1� P ðjÞ
� �

qðjÞ
� ��1

hHiðjÞuðjÞ ¼ 0 : ð86Þ

Comparing this equation with Eq. (23) one notices that
the left-hand side of Eq. (86) is equal to � _uuðjÞ when
propagating in negative imaginary time; hence a relax-
ation converges towards the variational solutions (Eqs.
83,84) of the SPFs.

Our strategy to generate excited-state eigenfunctions
is thus as follows. Starting with some initial guess for the
wavefunction, one first builds and diagonalizes H to
obtain the expansion coefficients for the desired eigen-
function expressed in the initial SPF basis. The mean
fields are then built, and the SPFs optimized by
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relaxation over some short time interval. After that, the
cycle is redone till convergence is obtained. Always taking
the nth eigenvector of the matrix H will lead to conver-
gence towards the nth eigenstate of the Hamiltonian. The
relaxation of the SPFs is a rather efficient method, and it
may be more efficient than the iterative diagonalization
[94,95] conventionally used to solve Eqs. (83) and (84).

The dimension of the matrix H may become so large
that a full diagonalization is not appropriate. Presently
this method – called improved relaxation – is imple-
mented with a Lanczos routine as diagonalizer. (The SIL
integrator could easily be generalized to serve as a di-
agonalizer as well.) This works very well as long as the
ground state or some low–lying excited state is the tar-
get. Unfortunately, for higher-lying states Lanczos per-
forms very poorly and should be replaced by a Davidson
routine. This is planned. However, even with the present
implementation it was possible to compute the first 50
vibrational states of the CO2 molecule, using the Ham-
iltonian of Ref. [62]. Additionally, we have computed
the first few low–lying states of HONO (F. Richter,
P. Rosmus 2002, Private communication)

4.3 Modifying the initial state by applying operators

When the initial excitation is an electronic excitation and
the Condon approximation is assumed, the ground-state
wavefunction is placed onto an excited electronic state
without changing its form. This is easy to do. In other
situations, e. g. when exciting by IR light, the initial
wavefunction is given as a product of a (dipole) operator
and a wavefunction. Let us thus write the initial state as
D ~WW, where D denotes some operator and ~WW some
wavefunction, usually a ground-state. The application of
D on ~WW is not straightforward, again because D ~WW has to
be represented in MCTDH form (Eq. 5). The operation
of D will change both the coefficients and the SPFs. To
arrive at an optimal representation we employ again a
variational principle and require

hdW j W � D ~WWi ¼ d
X

j

X
jl

�
ðjÞ
jl huðjÞ

j j uðjÞ
l i � djl

� �
;

ð87Þ

where W and ~WW are assumed to be in MCTDH form
(Eq. 5) and D in product form (Eq. 31). The right-hand
side of Eq. (87) is included to ensure the orthonormality
of the SPFs of W. The �

ðjÞ
jl are Lagrange parameters.

Variation with respect to the coefficients yields

AJ ¼
X
L

hUJ j D j ~UULi ~AAL ; ð88Þ

where it is assumed that both sets of SPFs are
orthonormal. Variation with respect to the SPFs yieldsX
l

qðjÞ
jl � �

ðjÞ
jl

� �
uðjÞ
l ¼

X
l

hWðjÞ
j j D j ~WWðjÞ

l i~uuðjÞ
l : ð89Þ

Rather than determine the values of the Lagrange

parameters �
ðjÞ
jl , we drop the matrix ðqðjÞ

jl � �
ðjÞ
jl Þ and

Gram-Schmidt orthogonalize the thus obtained func-
tions. This is legitimate as only the space spanned by the
SPFs matters. Orthogonal transformations among the
SPFs are accounted for by the coefficients.

Eq. (89) is not an explicit equation, because the SPFs
to be determined are already needed when evaluating the

mean–fields hWðjÞ
j j D j ~WWðjÞ

l i. The equations are thus to
be solved iteratively. The iteration is started by setting

uðjÞð0Þ
j ¼ ~uuðjÞ

j ð90Þ

Að0Þ
J ¼

X
L

hUð0Þ
J j D j ~UULi ~AAL ; ð91Þ

and then evaluating for i ¼ 0; 1; 2; . . .

1: uðjÞðiþ1Þ
j ¼

X
l

hWðjÞðiÞ
j j D j ~WWðjÞ

l i~uuðjÞ
l ; ð92Þ

2. Gram–Schmidt orthogonalize the SPFs

3: Aðiþ1Þ
J ¼

X
L

hUðiþ1Þ
J j D j ~UULi ~AAL : ð93Þ

We still need a criterion to detect convergence and to
stop the iteration. The coefficients and the SPFs do not
necessarily converge, because, as already emphasized,
only the space spanned by the SPFs is of relevance. A
convenient criterion is given by employing the MCTDH
projector

TrfP ðjÞðiÞP ðjÞðiþ1Þq̂qðjÞðiþ1Þg ; ð94Þ
as this provides a measure of the similarity of the ith and
the ðiþ 1Þth space. The MCTDH density operator is
included to weight the weakly occupied orbitals accord-
ingly. Introducing the overlap matrix

Mjl ¼ huðjÞðiþ1Þ
j j uðjÞðiÞ

l i ; ð95Þ
we hence stop the iteration if, for each j,

d ¼ 1� TrfMyqTMg=Trfqg ð96Þ
is smaller than some threshold. d vanishes when P ðjÞðiÞ

becomes equal to P ðjÞðiþ1Þ, or, equivalently, when M
becomes a unitary matrix. The transposed of the density
matrix appears in Eq. (96) because of Eq. (25).

Turning from wavefunctions to density operators, we
first note that one is usually interested in forming an
initial density operator by the operation

q ¼ �i½D; ~qq� ð97Þ
as this is – similar to D ~WW for wavefunctions – the first-
order contribution of an impulsive excitation DðtÞ ¼
DdðtÞ. The variational principle now readsDD

dq
���q þ i½D; ~qq�

EE
¼ 0 ; ð98Þ

where we have dropped the Lagrange parameters,
because we will ensure the orthonormality by explicit
Gram–Schmidt orthogonalization. The derivations for
type 1 and type 2 density operators (C. Cattarius 2002,
private communication) are considerably lengthier than
in the wavefunction case and will not be sketched here.
The final results read for type 1:
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Start the iteration with the initial values

rðjÞð0Þ
j ¼ ~rrðjÞ

j ; ð99Þ

Bð0Þ
J ¼ �i

X
L

Tr Xð0Þ
J ½D; ~XXL�

n o
~BBL : ð100Þ

and evaluate for l ¼ 0; 1; 2; . . .

1: rðjÞðlþ1Þ
j ¼ �iTr

n
PðjÞðlÞ
j

�
D;
X
m

~PPðjÞ
m ~rrðjÞ

m

�o
j
: ð101Þ

2. Gram–Schmidt orthogonalize the SPDOs.

3: Bðlþ1Þ
J ¼ �i

X
L

Tr Xðlþ1Þ
J ½D; ~XXL�

n o
~BBL : ð102Þ

Similarly we start the iteration for type 2 with the initial
values

uðjÞð0Þ
j ¼ ~uuðjÞ

j ; ð103Þ

Bð0Þ
J ;L ¼ �i

�
Uð0Þ
J

���D; ~qq���Uð0Þ
L

�
ð104Þ

and evaluate for l ¼ 0; 1; 2; . . .

1: uðjÞðlþ1Þ
j ¼ �i

X
L

X
J

j�
UðlÞ
Jj

���D; ~qq���UðlÞ
L

�
: ð105Þ

2. Gram–Schmidt orthogonalize the SPFs.

3: Bðlþ1Þ
J ;L ¼ �i

�
Uðlþ1Þ
J

���D; ~qq���Uðlþ1Þ
L

�
: ð106Þ

The actual working equations are obtained by expand-
ing ~qq in MCTDH form.

5 Analysis

5.1 From time-evolved wavefunctions to observables

MCTDH is an algorithm to solve the time–dependent
Schrödinger equation. It thus provides us with the time-
evolved wavepacket WðtÞ. This, however, is usually not
what is finally desired. The quantities of interest are
observables such as spectra, transition probabilities,
cross-sections, etc. In any time–dependent approach an
analysis step has to follow the propagation. Owing to the
special form of the MCTDH wavefunction, Eq. (5), one
may have to redesign the analysis algorithm. For
example, this special form does not allow the summation
of different MCTDH wavefunctions, including wave-
functions at different times or from different calculations
on the same system, because the SPFs will be different.
On the other hand, the very compact representation
of the MCTDH wavefunction may help to speed up
the analysis. For instance, let W ¼

P
J AJUJ and

~WW ¼
P

L
~AAL ~UUL be two MCTDH wavefunctions, and let

X ¼
PM

r crx
ð1Þ
r . . .xðf Þ

r be an operator given in product
form. Then the evaluation of the matrix element

hW j X j ~WWi ¼
XM
r¼1

cr
X
j1

. . .
X
jf

A�
j1...jf

�
X
l1

huð1Þ
j1 j xð1Þ

r j ~uuð1Þ
l1
i . . .

X
lf

huðf Þ
jf j xðf Þ

r j ~uuðf Þ
lf
i ~AAl1...lf ð107Þ

becomes very fast, as only one–dimensional integrals are
required.

As sums of wavefunctions are not allowed, it is not
possible to ðE $ tÞ Fourier transform the MCTDH
wavefunction. In practice this is no restriction, because
the analysis algorithm can be formulated such that only
Fourier transforms of matrix elements appear. In fact, it
is almost always possible to reformulate an analysis al-
gorithm such that sums of wavefunctions do not appear.
A very simple example may be illustrative. The norm of
the difference between two wavefunctions, k W � ~WW k,
can be evaluated using

k W � ~WW k2¼k W k2 þ k ~WWk2 �2RehW j ~WWi : ð108Þ
The three terms on the right-hand side are all of type
Eq. (107), with X ¼ 1.

Using the Heidelberg MCTDH package [96] the
autocorrelation, hWð0Þ j WðtÞi, the cross-correlation,
h ~WW j WðtÞi, and time–dependent expectation values,
h ~WWðtÞ j X j WðtÞi, may be calculated on the fly, i. e. one
does not need to store the wavefunction. The correlation
functions are then Fourier transformed or filter-analyzed
[1,2,3,4,62] to obtain spectra. For more details the reader
is referred to the review [15] and the MCTDH user’s
guide [97].

5.2 Flux analysis

To determine transition or reaction probabilities of a
scattering event one may project the evolved wavepacket
onto outgoing asymptotic states. A more efficient way
is to determine the quantum flux (or the projected
quantum flux) going through a surface which divides
interior from asymptotic regions. The flux operator,
which measures this quantum flux, is defined as the
commutator of the Hamiltonian with a characteristic
function of an asymptotic region

F̂F ¼ i½H ;H� : ð109Þ
In an reactive scattering event there is more than one
asymptotic region because there is more than one
arrangement channel, but we will not indicate the
dependence on the arrangement channel here. For the
sake of simplicity we assume that the dividing surface is
perpendicular to r, the coordinate of dissociation. Hence

H ¼ hðr � rcÞ ; ð110Þ
where h denotes the Heaviside-step-function and rc is the
point where the dividing surface cuts the r coordinate.
The energy-resolved quantum flux is defined as

F ðE;WÞ ¼ 2phWjdðH � EÞF̂F dðH � EÞjWi ; ð111Þ
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where W is the (initial) state under consideration. For
further reference we define the energy distribution of the
state W

j DðEÞ j2¼ hWjdðH � EÞjWi : ð112Þ
This energy distribution may, for example, be evaluated
by Fourier transform of the autocorrelation function. It
can be shown [15, 98] that the flux and the energy
distribution are connected trough the reaction probabil-
ity RðEÞ:

F ðE;WÞ ¼j DðEÞ j2 RðEÞ : ð113Þ
This equation was used to determine total, but initial
state selected, reaction probabilities and cross–sections
[38,39,40,41]. However, if there is only one arrangement
channel, one finds RðEÞ ¼ 1 and hence F ðE;WÞ ¼
j DðEÞ j2. Thus, the evaluation of the (total) flux is in
this case just an alternative way to compute the
spectrum. However, the flux analysis allows the compu-
tation of a partial flux by introducing projectors onto
internal fragment states. One merely replaces F̂F in Eq.

(111) by P F̂F P , where P denotes such a projector. Note
that P commutes with F̂F , as it does not operate on the
dissociative coordinate r. Using this formalism, one may
determine the excitation cross-sections of an inelastic
scattering event. See Ref. [47] for an example.

To derive working equations for evaluating the flux,
we augment the Hamiltonian with a complex absorbing
potential (CAP) [99,100,101,102],

H ! H � iW ; ð114Þ
where W is a smooth positive function of r that vanishes
for r < rc. We replace the d functions in Eq. (111) by
their Fourier representations and find after some
arithmetic [15,41,98]

F ðE;WÞ ¼ 2

p
Re
ZT
0

gWðsÞ þ gHðsÞ½ �eiEs ds : ð115Þ

The correlation functions gW and gH are defined as

gWðsÞ ¼
ZT�s

0

hWðtÞ j PWP j Wðt þ sÞidt ð116Þ

and

gHðsÞ ¼
1

2
hWðT � sÞ j PHP j WðT Þi : ð117Þ

T denotes the final propagation time. Integrating the flux
over all energies one obtains

Z
F ðE;WÞdE ¼ 2

ZT
0

hWðtÞ j PWP j WðtÞidt

þ hWðT Þ j PHP j WðT Þi ; ð118Þ
which is the sum of the probability annihilated by the
CAP and the one still present at time T in the asymptotic
region.

Note that gH vanishes for T ! 1 since WðT Þ van-
ishes because of the CAP. Thus gH may be dropped
(and, in fact, has been ignored in earlier calculations),
but its inclusion [41] makes the flux converge faster with
increasing T . The formula for gH allows a vivid inter-
pretation. Assume that one is not using CAPs but is
working with very long, almost infinite grids. Then Eqs.
(115) and (117) tell us that the flux is proportional to the
Fourier transform of the autocorrelation function of the
wavepacket projected onto the asymptotic region under
consideration.

The time–consuming step of the flux analysis is the
evaluation of the matrix elements (Eq. 116). These are
fortunately of form (Eq. 107) and can thus be done
efficiently. The flux analysis requires that the wave-
function is stored for several intermediate times. As the
MCTDH wavefunction is very compact, it is usually no
problem to store hundreds of wavefunctions. For more
details on the flux analysis see Refs. [15,41,98].

Flux analysis of MCTDH wavefunctions has been
used to evaluate initial state selected total reaction cross-
sections [38,39,40,41], and to determine diffraction and
rotational state-resolved transition probabilities of in-
elastic molecule–surface scattering [47]. The flux analysis
as presented here has also been used by other groups on
non–MCTDH wavefunctions, for example, to study
charge–exchange in ion–atom collisions [103]. The pre-
sent form of flux analysis should not be confused with
the flux analysis based on flux–flux correlation functions
[104,105] and flux eigenstates (although there are some
connections). The latter method has been used exten-
sively in the group of Manthe to determine reaction rates
[48,49,50,51,52,53,54,55,56,57,58].

6 Concluding remarks and outlook

Over the last decade, the MCTDH method has estab-
lished itself as a very efficient and general algorithm for
wavepacket propagation studies. Its basic feature is the
use of a variational time-dependent basis set that results
in an extremely compact wavefunction, with efficient
convergence on the exact solution. While it may be
applied to study small systems accurately, the full power
of the method is uncovered when turning to large
systems. In particular, it is able to provide quantitative
results when the primitive basis set cannot fit into
memory, and as a result has set a few benchmarks that
are outside the capabilities of other methods (e.g. Refs.
[13,29,33,34,35,65,66]).

Although MCTDH suffers from the exponential
scaling typical of wavepacket propagation methods, the
base to which it scales is considerably lower than the
base to which the standard method scales. The resources
required can be further minimized by the use of com-
bined modes, rather than the one-dimensional SPFs used
in the early calculations. The effort for the propagation
can in this way be balanced between that required for the
wavefunction expansion coefficients and that required
for the multidimensional SPFs. Even so, in typical ap-
plications MCTDH will be limited to 15–30 degrees of
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freedom, although 80 degrees of freedom have been
treated for the spin-boson case [65].

There are several strategies to enable MCTDH to go
to even larger systems. MCTDH as defined previously
performs a (time-dependent) full CI in the active space,
i.e. the space spanned by the SPFs. Selecting the most
important configurations is a way to make MCTDH
smaller and faster, thus enabling the treatment of larger
systems. This version of MCTDH, called S-MCTDH,
has been successfully tested [84]. Another approach
tackles the bottleneck provided by the propagation of
many dimensional SPFs. This, the cascading method,
recognizes that there is a method capable of propagating
wavepackets of several dimensions: MCTDH. Thus, the
idea is to use MCTDH to propagate the SPFs of an
underlying MCTDH propagation. If cascading works as
expected, it is likely that one can treat systems with more
than 100 degrees of freedom.

With the extension of the method to density opera-
tors in the qMCTDH algorithm, the advantages of the
compact functional form can be brought to use in
another field of theoretical chemistry, that dealing with
open and mixed systems. This is an area of great
importance, dealing with realistic problems past the
idealized form of a single pure state represented by a
wavefunction. The study of density operators is, how-
ever, hampered by the dimensionality of the problem,
which at the moment restricts studies to small models far
away from systems of chemical interest. It is to be hoped
that the application of qMCTDH here will help to ad-
vance this field of research significantly.

Finally, one of the key ingredients for a successful
computational method is an efficient and easy-to-use
program. This is particularly true of a difficult-to-
implement algorithm, such as MCTDH. The program
we are developing, the Heidelberg MCTDH package, is
now used by a number of groups. Details of the pro-
gram, and how to obtain it, are given in the Appendix.
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Appendix: The Heidelberg MCTDH package

TheHeidelbergMCTDHpackage is a set of programs for
multidimensional quantum dynamics and can do much
more than wavefunction (or density operator) propaga-
tion using the MCTDH algorithm. For example, numer-
ically exact propagations are also possible using a SIL
integrator. As a by-product of the improved relaxation
method, it is also possible to generate a desired eigen-

function of an operator, and for smaller systems the
spectrum of a Hamiltonian may be obtained by Lanczos
diagonalization of a Hamiltonian in a DVR basis.

The package consists of more than 40 programs, the
largest and most important of which is called simply
mctdh. Using keyword input read-from text files, it is
able to set up a system using a range of DVRs or FFT
for the primitive basis, form an initial wavefunction
(density operator), and propagate this wavefunction
(density operator) in time. Perhaps one of the most
powerful features of the program is that it uses a text
input to generate the operator. In fact, if the operator
has a simple analytic form, it is often possible to im-
plement it without having to touch the code. Routines
coding for more complicated functions can also be
linked to the program. If potential functions are not in
MCTDH form, there is the potfit program to make the
transformation. It is also possible to use the CDVR
method, or even to use the potential as it is, of course
with resulting inefficient propagation. Time-dependent
Hamiltonians can also be used.

Other important programs of the package are a set of
analysis tools. These include filter, which performs a
filter analysis of the autocorrelation function, and flux,
which does the flux analysis. Various programs plot one-
and two-dimensional graphs of the wavefunction and
the potential-energy surface, and simple movies can be
made. Other programs can be used to check the con-
vergence of a calculation, generate a spectrum from the
autocorrelation function, etc. All plotting uses the freely
available Gnuplot program, often driven using interac-
tive menus.

The package consists of more than 200,000 lines of
(mainly FORTRAN 77) code. The documentation con-
sists of both on-line documentation (in HTML) and the
MCTDH user’s guide (in LaTeX). The installation is
performed by convenient installation scripts. We have
run MCTDH on DEC alpha, IBM RS6000, Cray, Sun,
Silicon Graphics and HP computers, and in particular
on Linux PC’s. The Heidelberg MCTDH package is
available to interested researchers. For more details see
http://www.pci.uni-heidelberg.de/tc/usr/mctdh/.
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56. Huarte-Larrañaga F, Manthe U (2000) J Chem Phys 113: 5115
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