
Abstract Rationale: Prepulse inhibition (PPI) of the
startle reflex occurs when brief, non-startling tactile,
acoustic or visual stimuli are presented 20–500 ms be-
fore the startling stimulus. Objective: To review informa-
tion about PPI-mediating brain stem circuits and trans-
mitters, and their functions. Results: Midbrain systems
are most critical for the fast relay of these PPI stimuli.
Acoustic prepulses for PPI are relayed through the infe-
rior colliculus (IC). The superior colliculus (SC) is im-
portant for acoustic PPI, and may be important for the
mediation of tactile and visual prepulses. This collicular
activation for PPI is quickly relayed through the pedunc-
ulopontine tegmental nucleus (PPTg), with lesser contri-
butions to PPI from the laterodorsal tegmental nucleus
(LDTg) and substantia nigra, pars reticulata (SNR). The
transient activation of midbrain nuclei by PPI stimuli is
converted into long-lasting inhibition of the giant neu-
rons of the caudal pontine reticular nucleus (PnC). We
propose that muscarinic and GABAB inhibitory receptors
(both metabotropic receptors) on PnC giant neurons
combine to produce the long-lasting inhibition of startle.
Activation of mesopontine cholinergic neurons leads to
cortical arousal, turning and exploratory approach re-
sponses. Conclusion: PPI is mediated by a circuit involv-
ing the IC, SC, PPTg, LDTg, SNR and PnC. By reducing
startle, PPI allows the execution of approach responses
and perceptual processing following salient stimuli.
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Introduction

The first descriptions of inhibitory reflex modification
were provided in 1863 by Sechenov (quoted in Hoffman
and Ison 1980). He found that a cutaneous flexor reflex
in the frog was inhibited by presenting midbrain stimula-
tion before the eliciting tactile stimulus. In humans, 
Sechenov found that tactile pre-stimulation (“tickling”)
inhibited a withdrawal response to an acid bath. Inhibito-
ry reflex modulation in the auditory system was first
demonstrated by Peak (1939). She presented two acous-
tic stimuli with an interstimulus interval of 177 ms and
reported an inhibition of the perceived intensity of the
second stimulus by 25%.

Hoffman and Fleshler (1963) reported that the startle
response in rats can be suppressed by pulsed background
noises. They observed that a constant background noise
of 85 dB sound pressure level doubled the startle ampli-
tude, whereas a pulsed background noise (500 ms off,
500 ms on) suppressed the startle amplitude by about
80%. Hoffman and Searle (1965) showed that the startle
response is attenuated by a preceding noise pulse, which
is not able to elicit a startle response itself, when present-
ed 20–500 ms before the startle stimulus onset. They
proposed that this attenuation phenomenon reflects an
important general mechanism which is “more or less
continually active, even though overt startle reactions
may seldom occur”. The hypothesis that this kind of sup-
pression reflects a more general mechanism and is not a
phenomenon within the auditory system (e.g., adaptation
in the cochlea) was supported by evidence that the startle
response is also inhibited by tactile or visual prepulses
(Buckland et al. 1969; Pickney 1976). The term “pre-
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pulse inhibition” (PPI) was proposed by Ison and 
Hammond (1971).

In the following decades, the investigation of PPI has
become increasingly important (summarized in Hoffman
and Ison 1980; Swerdlow et al. 1992 and this issue;
Koch and Schnitzler 1997; Swerdlow and Geyer 1998;
Dawson et al. 1999; Koch 1999). First, PPI provides a
valuable method to investigate the principles of reflex
modulation (e.g., Hoffman and Ison 1980). Second, PPI
provides a low-level mechanism of sensorimotor gating
(see below). Third, several psychiatric disorders, such as
schizophrenia, are associated with deficits in sensorimo-
tor gating, in particular PPI (Geyer and Braff 1987;
Swerdlow et al., this issue).

Most studies examined how PPI is modulated by sen-
sory stimuli and by the neurotransmitters dopamine, se-
rotonin and glutamate (Swerdlow et al. 2000, and this is-
sue). Our approach is focused on the short-latency brain
stem mechanisms of PPI mediation. The aim of the pres-
ent review is to summarize the information about PPI
circuits and transmitters.

Characteristics of prepulse inhibition

The strongest inhibition of startle (up to 80–90%) is ob-
served with a prepulse duration of 10–20 ms (Reijmers and
Peeters 1995) using prepulse startle interstimulus intervals
(ISI) between 40 and 150 ms (Hoffman and Searle 1965;
Li et al. 1998a, 1998b). PPI is enhanced with increasing in-
tensities of the prepulse up to the startle threshold (Hoff-
man and Searle 1968; Hoffman and Wible 1970; Hoffman
1984; Li et al. 1998a), whereas the length and the rise/
decay times of the prepulse are less critical (Ison 1978; 
Reijmers and Peeters 1995). Similar inhibition can be ob-
served by changing the background noise, for example, by
interruption of a continuous background noise (Stitt et al.
1973) or by changing the frequency of the background
noise (Stitt et al. 1974) before the startling stimulus.

Prepulses that precede the startling stimulus at ISIs
less than 8–15 ms (it depends from on the prepulse in-
tensity) can facilitate startle and reduce the latency of the
startle response (Ison et al. 1973b; Reijmers and Peeters
1995). These effects are believed to be mediated by other
neural system than those mediating PPI (Stitt et al.
1976). Summation between acoustic, tactile and vestibu-
lar stimuli occurs with a similarly rapid time course
(0–15 ms) in primary startle reflex circuits of the hind-
brain (Li and Yeomans 1999; Yeomans et al. 1999).

PPI occurs on the first trial (Hoffman and Wible
1970; but see Ison et al. 1973a; Graham 1975; Koch
1999, see Fig. 9) and so does not reflect learning. Fur-
thermore, PPI does not depend on the number or rate of
prestimuli (Wu et al. 1984). PPI is often described as
showing no habituation (e.g., Wu et al. 1984), but habit-
uation of PPI is observed if prepulses with an intensity
close to detection threshold are used (Gewirtz and Davis
1995). In contrast, Reijmers and Peeters (1995, see
Fig. 3) showed increased PPI after repeated testing.

Furthermore, the time between the prepulse and the
startle response is too short (less than 200 ms) to evoke
voluntary behavioral inhibition. Auditory PPI in humans
is larger when the prepulse is delivered monaurally than
binaurally (Marsh et al. 1976; Hoffman and Stitt 1980;
Stitt et al. 1980; Hoffman et al. 1981; Ison and Pinckney
1990).

Taken together, the amount of PPI is strongly depen-
dent on the prepulse intensity and the interval between
prepulse and startle stimulus, weakly dependent on pre-
pulse duration and modality, and mainly independent of
the properties of the startle-eliciting stimulus (Stitt et al.
1976). An important feature of PPI is the prolonged ef-
fect on startle of the prepulse despite its short duration.

Neural basis of prepulse inhibition

In the following sections, we will review work on the
neural basis of PPI mediation. PPI is observed after de-
cerebration by transection at the anterior end of the supe-
rior colliculus (Davis and Gendelman 1977; Fox 1979;
Li and Frost 2000) and after lesions of the cerebellum
(unpublished observation of Leitner et al., cited in 
Leitner et al. 1981). Therefore, PPI must be mediated by
nuclei somewhere in the brainstem, between the mid-
brain and the medulla. Several midbrain nuclei have
been found to be needed for full expression of PPI, so we
will review the importance of each, beginning with sen-
sory inputs and proceeding to descending influences on
startle circuits.

Inferior colliculus

Large lesions of the inferior colliculus (IC) increase the
baseline startle amplitude and totally disrupt PPI by
acoustic but not by visual prepulses (Leitner and Cohen
1985). Therefore, Saitoh and colleagues (1987) suggest-
ed that “the IC is eventually activated by the [acoustic]
prepulse and generates an inhibitory phenomenon”.
Small, unilateral lesions of the IC decrease acoustic PPI
(Li et al. 1998a). Furthermore, electrical stimulation of
the IC before a 2-ms duration acoustic startle stimulus
mimics an acoustic prepulse, with an optimal inhibition
occurring at an ISI of 20–30 ms, followed by prolonged
inhibition (Li et al. 1998b; Li and Yeomans 2000). This
optimal ISI is, in turn, 20–30 ms shorter than that for
acoustic prepulses. IC neurons have response latencies
between 7 and 40 ms (Li and Kelly 1992a), consistent
with the idea that IC mediates PPI.

The IC also plays a role in binaural inhibition which
is involved in mediation of acoustic PPI. In humans, in-
hibition of the eyeblink reflex by an acoustic prepulse is
greater when the acoustic stimulus is delivered monau-
rally than when delivered binaurally (Marsh et al. 1976;
Hoffman and Stitt 1980; Stitt et al. 1980; Hoffman et al.
1981; Ison and Pinckney 1990). Therefore, the monau-
ral-binaural effect on the eyeblink reflex may be mediat-



ed via the neural pathways that convey excitatory inputs
to the auditory brainstem from one ear and inhibitory in-
puts from the other ear (Hoffman and Stitt 1980) and that
the outputs of these pathways depend on a comparison
between inputs from the two ears (Hoffman and Stitt
1980; Ison and Pinckney 1990).

The majority of acoustic neurons in the IC of rats are
excited by contralateral ear stimulation and inhibited by
ipsilateral stimulation, thus are so-called EI neurons
(Flammino and Clopton 1975; Kelly et al. 1991; Li and
Kelly 1992b). Binaural EI responses appear to be deter-
mined by inhibitory axonal projections from both the
contralateral dorsal nucleus of the lateral lemniscus and
the ipsilateral superior olivary complex (Li and Kelly
1992b; Kelly and Li 1997). It is yet not clear whether
these inhibitory inputs to the IC play a role in producing
binaural inhibition observed in PPI. Nevertheless, the 
azimuthal direction of the prepulse sound does not influ-
ence inhibition of the pinna startle reflex in decerebrate
rats, indicating that binaural disparities produced by a
free-field sound in the frontal azimuthal plane are not ca-
pable of modulating PPI (Li and Frost 2000). This result
is consistent with the observation in humans that binau-
ral disparities sufficient to change inhibition of eyeblink
are much larger than those used for sound localization
(Hoffman and Stitt 1980; Ison and Pinckney 1990). To
explain the omnidirectionality of PPI, the neural path-
ways that link the IC with the primary startle pathway
must be studied further.

In summary, the IC is a critical part of the auditory
pathway mediating acoustic PPI. The central nucleus of
the IC receives auditory input, which is relayed to the
external nucleus of the IC before going to the middle
layers of the superior colliculus. In this way, the IC may
relay information between the auditory system and 
the PPI-mediating circuit (see also Leitner et al. 1981;
Leitner and Cohen 1985).

Superior colliculus

Since PPI can be produced using acoustic, tactile or visu-
al sensory inputs, some structures processing multi-modal
may be involved in mediating PPI. The superior collicu-
lus (SC) receives direct inputs from auditory, somatosen-
sory and visual structures (Meredith et al. 1992), includ-
ing the external nucleus of the IC, the medial lemniscus
and the retina. The SC has several descending projections
to the hindbrain mediating turning responses toward or
away from stimuli (Dean et al. 1989). The SC also pro-
jects to the pedunculopontine tegmental nucleus (PPTg)
(Redgrave et al. 1987; Semba and Fibiger 1992; Steiniger
et al. 1992), an important nucleus of the PPI mediating
circuit (see below). Furthermore, the SC receives massive
GABA-ergic input from the substantia nigra pars reticul-
ata (SNR) (Chevalier et al. 1981) which is also involved
in PPI mediation and/or modulation (see below).

Fiber-sparing lesions of the SC attenuate PPI by ap-
proximately 45% (Fendt et al. 1994). Furthermore, phar-

macological stimulation of the SC by a blockade of
GABA receptors within the SC enhanced PPI (Fendt
1999). Electrical stimulation of the SC before startle
stimuli had similar effects to IC stimulation, i.e., an at-
tenuation of the startle response by approximately 80%,
with the most effective inhibition occurring at ISIs be-
tween 20 and 30 ms (Li and Yeomans 2000). We have no
evidence on whether visual and tactile prepulses are 
also processed by the SC. Furthermore, it is unknown
whether SC input from forebrain areas is critical for PPI.
Since the SC may not mediate all of PPI, other structures
in the midbrain or forebrain may be involved in PPI me-
diation.

Stimulation of some regions of the deep mesencephal-
ic nuclei inhibits the startle response (Saitoh et al. 1987).
Since the SC is close to the deep mesencephalic nuclei,
and particularly descending fibers from the SC pass
through the deep mesencephalic nuclei, PPI produced by
stimulation of the deep mesencephalic nuclei may result
from activation of fibers-of-passage from SC.

Taken together, the SC has the physiological and
hodological properties to act as an integrative structure
relaying prepulses of different sensory modalities to the
PPTg.

Pedunculopontine and laterodorsal tegmental nucleus

Both the PPTg and the laterodorsal tegmental nucleus
(LDTg) are parts of the midbrain reticular formation,
which has a variety of functions in behavioral modula-
tion (summarized in Inglis and Winn 1995; Yeomans
1995a; Scarnati and Florio 1997). First hints that the
PPTg may be involved in the mediation and/or modula-
tion of PPI came from a study of Saitoh and colleagues
(1987) showing that electrical stimulation of the lateral
tegmental area (including the cuneiform nucleus, the in-
ferior colliculus and the parabrachial nucleus, but also
the PPTg and the LTDg) decreased the acoustic startle
response. A few years later, Ebert and Ostwald (1991)
demonstrated that acoustically evoked potentials in the
PPTg occur in conjunction with the acoustic startle re-
sponse. This short-lasting activation of PPTg neurons by
acoustic stimuli has a latency of 13 ms. Garcia-Rill and
colleagues concluded that the auditory evoked potential
recorded from the surface or the cortex, called P13, re-
sults from activation of PPTg and LDTg cholinergic neu-
rons, and that sensory gating of two acoustic stimuli de-
pends on the PPTg (Reese et al. 1995; Garcia-Rill et al.
1996). Both P13 and PPI can be blocked by systemic in-
jections of the muscarinic receptor antagonist scopol-
amine, or by direct injections of drugs into the PPTg that
inhibit PPTg neurons (Miyazato et al. 1999a, 1999b,
2000).

Lesion studies supported the hypothesis that the PPTg
and the LDTg are involved in PPI mediation. Lesions of
the lateral tegmental area (including the PPTg and
LDTg) attenuated PPI by approximately 50% (Leitner 
et al. 1981). Lesions restricted to the LDTg decreased
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PPI by about 40% without affecting baseline startle am-
plitude (Jones and Shannon 1998). Lesions of the PPTg 
attenuated PPI but baseline startle amplitude was in-
creased (Swerdlow and Geyer 1993; Kodsi and 
Swerdlow 1997). In these studies, only less than half of
the PPTg was destroyed. Pharmacological blockade of
the PPTg by microinjections of GABAA receptor ago-
nists had similar effects as PPTg lesions (Kodsi and
Swerdlow 1997). Furthermore, electrical stimulation of
the PPTg before a startle stimulus inhibited the startle re-
flex in a similar way to prepulses; the most effective
PPTg stimulation was at ISIs between 12 and 20 ms (Li
and Yeomans 2000). Therefore, the PPTg is important
and sufficient for the mediation of PPI, and appears to be
located a few ms closer to PPI output systems than the
IC or SC.

Anatomical experiments demonstrated a descending
cholinergic projection from the PPTg and the LDTg to
the primary startle pathway (Semba et al. 1990; Koch 
et al. 1993). Specific lesions of the cholinergic neurons
within the PPTg blocked PPI by approximately 65%
without effects on baseline startle (Koch et al. 1993).
Therefore, the hypothesis was proposed that this cholin-
ergic projection of the PPTg to the startle pathway is re-
sponsible for the mediation of PPI (Koch et al. 1993).
The LDTg is made up of an even higher concentration of
cholinergic neurons (70% cholinergic), and lesions of
LDTg reduced PPI by about 40%, without affecting
baseline startle (Jones and Shannon 1998). Therefore,
both mesopontine cholinergic cell groups are important
for PPI.

None of these treatments alone totally blocked PPI,
however. Since the midbrain nuclei (SC, IC, PPTg) in-
volved in PPI mediation have short-latency auditory in-
puts (under 20 ms) and PPI is long-lasting, the output to
the primary startle pathway must be a slow inhibitory
system. Several studies showed that the PPI-modulating
forebrain circuitry projects via the PPTg to the primary
acoustic startle pathway (summarized in Swerdlow et 
al. 1992 and this issue; Koch and Schnitzler 1997;
Swerdlow and Geyer 1998; Koch 1999).

Ascending mesopontine cholinergic neurons: 
arousal and reward

PPTg and LDTg cholinergic neurons have mainly as-
cending projections, especially to the thalamus. These
neurons have excitatory connections with virtually all
thalamic nuclei, thereby facilitating inputs to each of
these nuclei, and leading to strong cortical activation
(Steriade et al. 1990). This cortical arousal function 
of mesopontine cholinergic neurons occurs at the onset
of REM sleep, and when novel or important stimuli 
occur.

In addition, many of these LDTg and PPTg choliner-
gic neurons provide the strongest excitatory brainstem
inputs to dopamine neurons of the ventral tegmental area
and substantia nigra, pars compacta (Yeomans 1995a;

Blaha et al. 1996). This cholinergic excitation of dopa-
mine neurons occurs especially when rewarding stimuli
(food, water, lateral hypothalamic stimulation) are pre-
sented (Pan et al. 2000; Rada et al. 2000). Blockade of
cholinergic receptors near dopamine neurons blocks
these rewarding effects, and the locomotor and reward-
ing effects of nicotine (Corrigall et al. 1994; Yeomans
and Baptista 1997). The startle-inhibiting role of PPTg
and LDTg neurons, therefore, may be a secondary effect
of their important role in alerting cortex and initiating
approach behaviors important for survival.

Similarly, rewarding stimuli have been found to in-
hibit startle. In humans, pleasant pictures (e.g., appetiz-
ing foods, attractive nudes) reduce startle sensitivity
(Lang et al. 1990). In rats, neutral stimuli (e.g., lights)
that have been repeatedly paired with food or with re-
warding lateral hypothalamic stimulation reduce startle
sensitivity (Schmid et al. 1995; Steidl et al. 2001). Fur-
thermore, electrical stimulation of the ventral pallidum
in rats, which can be rewarding, reduces acoustic startle
(Li et al. 1999). Whether the PPTg and LDTg are impor-
tant for these startle-inhibiting effects of rewarding stim-
uli is not yet determined.

Caudal pontine reticular nucleus

The caudal pontine reticular nucleus (PnC) is a critical
part of the primary acoustic startle pathway (for reviews,
see Davis et al. 1982; Lee et al. 1996; Yeomans and
Frankland 1996; Koch and Schnitzler 1997; Koch 1999).
PnC neurons also receive direct anatomical connections
from second-order vestibular neurons in the vestibular
nucleus, and second-order trigeminal neurons in the tri-
geminal nucleus (Frankland, P.W., Raboisson, P., Dallel,
R., Li, L., Yeomans, J.S. and Kawaja, M.D., unpublished
experiments). PnC neurons can be activated by acoustic,
vestibular, and tactile stimuli (Peterson and Felpel 1971;
Siegel et al. 1983; Wu et al. 1988), suggesting that in ad-
dition to acoustic startle, the PnC could mediate both
vestibular and tactile startle. Therefore, the PnC may be
a site for inter-modal summation of startling stimuli (Li
and Yeomans 1999; Scott et al. 1999). Nevertheless, the
vestibular nucleus also has direct projections to the spi-
nal cord via the vestibulospinal tracts (Wilson 1972;
Shamboul 1980; Huisman et al. 1984; Bankoul and 
Neuhuber 1992). A recent electrical stimulation study
has indicated that there is a faster route for mediating
vestibular startle without a synaptic relay in the PnC (Li
et al. 2000). The heaviest projections of the lateral 
vestibulospinal tract from the vestibular nucleus are to
layers 7 and 8 of the ventral spinal cord (Shamboul
1980). Reticulospinal projections of the PnC are to these
same layers of the spinal cord. This suggests that inter-
modal summation of startling stimuli is also based on in-
tegration of reticulospinal and vestibulospinal signals in
layers 7 and 8 of the spinal cord. It is of interest to know
whether this spinal site is involved in the integration of
prepulse and startling signals.

219



Koch and co-workers (2000) found a PPI reduction of
approximately 60% after lesions of the SNR. Since
SNR-lesioned rats showed no further PPI reduction after
amphetamine or dizocilpine (both drugs act in the PPI
modulating circuit) (Swerdlow et al. 1990; Bakshi and
Geyer 1998), the authors concluded that the SNR, like
the PPTg, is a part of the PPI mediating pathway but also
a target structure of the PPI modulatory input. Further-
more, SNR lesions blocked the facilitation of the startle
response seen after systemic injections of dopamine D1
receptor agonists (Meloni and Davis 1997).

SNR neurons use GABA as a transmitter and project
to the PnC (Yasui et al. 1992). Furthermore, GABA
within the PnC is involved in PPI mediation. Therefore,
Koch and colleagues (2000) proposed that a GABA-
ergic projection from the SNR to the PnC is a part of the
PPI mediating pathway.

Proposed PPI circuits

Hoffmann and Ison (1980) proposed that PPI is mediated
by a slow inhibitory pathway that runs parallel to the fast
excitatory pathway of the acoustic startle system. Swerd-
low and colleagues (1992) summarized the neural basis
of PPI modulation and suggested a PPI mediating “loop”
near the primary startle circuitry.

Carlson and Willot (1996) proposed a neural model of
PPI in which acoustic prepulses were mediated by “the
IC and other auditory nuclei”, and these signals were re-
layed to the PnC where the PPI pathway and the “sub-
collicular startle pathway” converge.

Fendt, Koch and colleagues (Fendt et al. 1994; Koch
and Schnitzler 1997; Fendt 1999; Koch 1999) proposed
that acoustic prepulses are processed via the ascending
auditory pathway including the IC (Fig. 1). The IC acti-
vates the SC, which also receives input from other senso-
ry modalities (auditory, tactile and visual). The anatomi-
cal connection between the SC and the PPTg activates a
cholinergic projection to the PnC to mediate PPI. This
hypothetical pathway was supported by stimulation 
studies by Li and colleagues (Li et al. 1998b; Li and
Yeomans 2000) showing that a brief stimulation of the
IC, SC or PPTg elicits a prolonged inhibition of the star-
tle response. They conclude that PPI must be mediated
by long-lasting inhibitory systems responding to short-
lasting outputs from these midbrain nuclei.

How does the transient excitation of PPTg, LDTg and
SNR by stimuli that produce PPI get converted into
long-lasting inhibition of the startle reflex? Evidence that
both muscarinic and GABAB receptors are important for
PPI near PnC suggests that long-lasting metabotropic in-
hibition of PnC neurons is the key mechanism. Of the
five muscarinic receptors, M2 and M4 subtypes inhibit
adenylyl cyclase, and are the only muscarinic receptors
that have been found to inhibit neuronal activity in sev-
eral sites (Gomeza et al. 2001). Over 70% of brain stem
muscarinic receptors are of the M2 type (Levey et al.
1993). Both M2 and GABAB receptors react to ligand/re-
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Several studies show that PnC giant neurons are in-
hibited strongly by acoustic prepulses (Wu et al. 1988;
Lingenhöhl and Friauf 1994; Willot et al. 1994; Carlson
and Willot 1998). The strength and timing of inhibition
of PnC neurons suggests that PPI can occur within the
PnC. There are, however, no recordings of prepulse inhi-
bition effects in other nuclei of the primary acoustic star-
tle circuit. Because most of these are auditory relay nu-
clei, it is hard to argue that multisensory inputs to the
startle circuit impinge on the startle reflex before the
PnC or the ventrolateral tegmental nucleus (VLTg). The
VLTg is located in the ventrolateral pons and receives
multimodal input from the auditory, tactile and vestibular
system. The strong projections of the VLTg to facial nu-
clei support an important role of the VLTg for the head
startle response (Yeomans and Frankland 1996).

Several studies investigated the effects of transmitters
in the PnC on PPI. Acetylcholine receptor agonists (car-
bachol, acetyl-β-methylcholine) reduced the tone-evoked
activity of the PnC giant neurons (Koch et al. 1993). Mi-
croinjections of the muscarinic receptor antagonist sco-
polamine into the PnC of awake rats decreased PPI,
whereas injections of the muscarinic/nicotinic receptor
agonist carbachol slightly enhanced PPI (Fendt and Koch
1999). Further work demonstrated that the PPTg and the
LDTg are the source of the cholinergic input into the PnC
(Semba et al. 1990; Koch et al. 1993). Systemic injec-
tions of the muscarinic receptor antagonist scopolamine
inhibited PPI most strongly at ISIs of 100 and 300 ms,
unlike apomorphine that inhibited PPI at all ISI, suggest-
ing that muscarinic receptors are especially important for
PPI at long ISIs (Jones and Shannon 2000a, 2000b).

GABA transmission within the PnC is also involved
in PPI mediation. PPI is attenuated after injections of the
GABAB receptor antagonist phaclofen but not after in-
jections of the GABAA receptor antagonist picrotoxin in-
to the PnC (Koch et al. 2000). It is presently unknown
which projections to the PnC use GABA as a transmitter,
but a possible source of GABAergic projections to the
PnC is the SNR (see below). Lesions of the SNR signifi-
cantly reduced PPI (Koch et al. 2000).

Although glycine receptors are widely distributed with-
in the PnC (Koch and Friauf 1995), glycine seems to play
no role in PPI. Injections of the glycine receptor agonist β-
alanine, as well as injections of the glycine receptor antag-
onist strychnine did not affect PPI (Koch and Friauf 1995).

No studies have found a complete blockade of PPI after
injections of transmitter antagonists into the PnC. The mus-
carinic receptor antagonist scopolamine led to a PPI reduc-
tion by approximately 50% of baseline PPI (Fendt and
Koch 1999). The GABAB receptor antagonist phaclofen at-
tenuated PPI by approximately 35% (Koch et al. 2000). As
yet, there are no studies with combined injections.

Substantia nigra

The SNR plays an important role in the inhibitory con-
trol of motor behavior (Chevalier and Deniau 1990).
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ceptor combination within 30–100 ms (Bear et al. 2001).
This is fast enough to account for the time course of PPI,
but is quicker than the effects of most G-protein-mediat-
ed responses. More work will be needed to characterize
the genetically defined receptors mediating PPI more
precisely.

Biological significance of prepulse inhibition

What functional advantage results from PPI of startle? A
common interpretation is that PPI is simply a distraction
that disrupts attention to the startling stimulus (Filion 
et al. 1998; Schell et al. 2000). This interpretation does
not suggest, however, what the functional importance of
the startling stimulus or the prepulse stimulus might be.

Several studies indicate that the prepulse must be
clearly detectable, and so the prepulse is less effective if
habituated (Gewirtz and Davis 1995; but see also Schell
et al. 2000), or disrupted by pharmacological treatments
(Varty et al. 1997), or not attended to by humans (Filion
et al. 1993; Schell et al. 2000). PPI is not affected during
sleep, however (Silverstein et al. 1980; Wu et al. 1990),
but attenuated after awakening from non-REM sleep
(Horner et al. 1997).

Graham (1979) pointed out that the inhibiting effect
of a prepulse is contemporaneous with the period during
which a stimulus is recognized. During this period of
“pre-attentive processing”, stimulus recognition is vul-
nerable to disruption, especially by the widespread
changes during a startle response. Therefore, Graham ar-
gued that PPI of startle is needed to protect stimulus pro-
cessing at this critical time interval. In this way, Graham
proposed that perception of prepulse stimuli themselves
may be very important in some way, and that startle
might have less survival value in some situations than in
others. Graham, however, had no idea what the function

of startle might be: “It is difficult to see in what way the
wide-spread flexor contractions [in startle] offer protec-
tion” (Graham 1979).

PPI occurs across mammalian species studied at a 
variety of postnatal ages, thus it must have a lasting sur-
vival value. According to Graham’s protection-of-pro-
cessing theory for explaining PPI (Graham 1975), the
onset of low-intensity changes in sensory stimulation
produces a “transient detection reaction” that automati-
cally triggers a gating mechanism attenuating extraneous
reactions temporarily until the perceptual processing of
the lead stimulus is completed. The extraneous reactions,
such as the startle reflex, would have a disruptive effect
on the perceptual processing. This theory is supported by
evidence that perception of the prepulse is closely 
associated with its ability to inhibit startle (Perlstein 
et al. 1989, 1993; Filion and Ciranni 1994; Norris and
Blumenthal 1995, 1996; Mussat-Whitlow and Blumen-
thal 1997).

As an extension of Graham’s “protection of process-
ing” behavioral theory (Graham 1975), the model pre-
sented here specifies the anatomical systems involved in
PPI (especially SC and PPTg/LDTg), and further speci-
fies how their activation during PPI leads to improved
perceptual processing and active exploration of novel
stimuli, such as prepulses:

1. SC activation improves perceptual processing by in-
ducing orienting toward, and foveation of, the novel
stimulus, via the tectoreticulospinal pathway (Dean 
et al. 1989).

2. PPTg/LDTg activation improves perceptual process-
ing by diffuse cholinergic facilitation of thalamo-cor-
tical systems, via direct PPT/LDT projections to thal-
amus (Steriade et al. 1990).

3. PPTg/LDTg activation further induces active explora-
tion (approaching, sniffing, etc.) of novel and reward-

Fig. 1 A hypothetical circuit
mediating PPI of the startle re-
sponse
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ing stimuli via direct PPTg/LDTg activation of meso-
limbic dopamine neurons (Yeomans 1995b).

During the initiation of these important perceptual/motor
approach responses, startle responses (closing the eyes,
bilaterally symmetric contracting of muscles throughout
the body) would prevent visual input, turning responses
and exploration. Although startle responses are still
needed to defend against catastrophic blows that strongly
activate tactile, auditory and vestibular systems, PPI sys-
tems reduce the sensitivity of the startle systems in the
few hundred milliseconds where approach responses are
most beneficial to processing.

These anatomical systems are hierarchically orga-
nized (see Fig. 1), so that, first, the simpler startle reflex
is organized in the hindbrain to maximize speed; second,
the more complex responses of orienting, approach and
avoidance are organized in the midbrain, and third, the
fuller processing of stimuli occurs at forebrain levels
(Koch and Schnitzler 1997).
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