
Abstract Rationale: Social isolation of the rat from
weaning influences behaviour following central norad-
renaline (NA) depletion by the selective neurotoxin N-
(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP-4).
Objectives: The study characterised the effects of DSP-4
on the behaviour of isolates in the elevated plus maze
and water maze. Methods: Male Lister hooded rats were
reared singly or in groups after weaning. Two weeks
postweaning, the rats were injected with DSP-4
(25 mg/kg, i.p.) or saline. From week 4, rats were tested
in the plus maze and in the water maze. Results: DSP-4
significantly reduced cortical and hippocampal NA but
had no effect on hypothalamic NA. Isolation rearing
alone had no significant effects on behaviour in the ele-
vated plus maze but enhanced retention of platform
placement in the water maze as measured by increased
entries to the platform annulus during the probe test.
DSP-4 in group-reared rats increased activity in the open
arms and increased general activity in the elevated plus
maze with no effect on water maze performance. DSP-4-
treated isolates spent less time in the open arms and were
hypoactive in the plus maze compared to group-reared
DSP-4-treated rats, and had impaired retention of spatial
memory in the water maze compared to isolate controls.
Conclusions: DSP-4 treatment had an ‘anxiolytic’ effect
in group-reared rats in the elevated plus maze. In the wa-
ter maze, isolation rearing enhanced retention of spatial
information, an effect normalised by NA depletion. The
results demonstrate the importance of noradrenergic

function in the regulation of responsiveness to environ-
mental cues.
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Introduction

Social isolation of rats after weaning produces behav-
ioural and neurochemical changes in the adult. The most
consistent behavioural effect is locomotor hyperactivity
in a novel environment as tested in open field or activity
cages paradigms (for example, Syme 1973; Jones et al.
1989, 1992; Fulford et al. 1994; Hall et al. 1997; Lapiz
et al. 1999b). Other behavioural effects include behav-
ioural rigidity and learning impairments (Juraska et al.
1984; Wade and Maier 1986; Jones et al. 1991) and an-
xiogenic behaviour profile in the elevated plus maze
(Wright et al. 1991; Bickerdicke et al. 1993). Contrary
findings have also been reported, such as enhanced water
maze performance (Wongwitdecha and Marsden 1996)
and non-anxiogenic profile in the elevated plus maze
(Fone et al. 1996). Nevertheless, isolation rearing does
cause behavioural changes in the adult and some have
been attributed to alterations of central dopaminergic and
serotonergic neurotransmitter functioning (see Wright et
al. 1991; Jones et al. 1992; Bickerdicke et al. 1993; Hall
et al. 1999). There is increasing evidence that the central
noradrenergic system is also involved. In vivo and in vit-
ro studies showed that isolation-reared rats have en-
hanced presynaptic terminal α2-autoreceptor function in
the dorsal hippocampus (Fulford et al. 1994; Fulford and
Marsden 1997a, b). More recently, we have reported that
isolation rearing influences the exploratory behaviour of
the rat following central noradrenaline (NA) depletion
by the selective neurotoxin, N-(2-chloroethyl)-N-ethyl-2-
bromobenzylamine (DSP-4; Lapiz et al. 2000a, b).

DSP-4 is an alkylating agent that causes selective de-
struction of noradrenergic projections (distal axons and
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terminals) from the locus coeruleus (Hallman and Jons-
son 1984; Dudley et al. 1990). Systemic administration
of DSP-4 produces a long-term depletion of brain NA in
the mouse and rat without affecting dopamine and adren-
aline neurones although a small loss of serotonin has
been reported (Ross 1976; Jaim-Etcheverry and Zieher
1980; Jonsson et al. 1981). The central effects of DSP-4
are long lasting while the peripheral NA depletion is
transitory with recovery within days (Jaim-Etcheverry
and Zieher 1980). These characteristics make DSP-4 a
valuable tool for investigating the role of the central nor-
adrenergic system in behaviour although recovery of
sympathetic function is recommended prior to behav-
ioural testing (Ross 1985).

The noradrenergic neurones ascending from the locus
coeruleus innervate forebrain structures such as the cor-
tex, hippocampus and thalamus (Fillenz 1990). The as-
cending noradrenergic system has been implicated in at-
tention and arousal although there are conflicting reports
on the effects of central NA depletion on aversive be-
haviours (Mason and Fibiger 1979; Archer et al. 1983,
1984; Dooley et al. 1983a, b; Delini-Stula et al. 1984;
Harro et al. 1995). This study investigates the effects of
central NA depletion by DSP-4 on the behaviour of
group-reared and isolation-reared rats in the elevated
plus maze and water maze.

The elevated plus maze is widely used to detect anxi-
olytic and anxiogenic efficacy of drugs (Pellow et al.
1985) based on the aversive nature of novelty in the rat.
‘Anxiogenic’ behaviour is considered to result in a re-
duction of entries and time spent in the open arms while
‘anxiolytic’ behaviour increases entries and time in the
open arms. The water maze is used to test for spatial
learning and memory (see Morris 1981, 1984) and can
be used to dissociate learning, memory and performance
deficits of behaviour (McNamara and Skelton 1993).
There is conflicting evidence for the behavioural profile
of the isolated rat in the elevated plus maze and water
maze. Hence, this study aims to provide further evidence
of the profile of these rats in these behavioural para-
digms and the effect of DSP-4 treatment on these be-
haviours.

Materials and methods

The experiments were carried out in accordance with UK Home
Office regulations governing experiments on living animals.

Animals and housing conditions

Male Lister hooded rats (Nottingham University Medical School,
UK) were obtained after weaning (≥21 days postnatal). The rats
(n=24) were randomly divided into two groups and were reared ei-
ther singly (isolation-reared) or in groups of six (group-reared) in
plastic cages. Opaque plastic cages were lined with sawdust and
had metal grid tops. Isolation-reared rats were housed in cages
38×22×20 cm high, whereas group-reared rats were housed in cag-
es 48×30×20 cm high. Food and water were available ad libitum.
All rats were housed in the same room so visual, auditory and ol-
factory cues from other rats are maintained in the isolated rats.

The room had a constant dark-light cycle (on 0800 hours, off
2000 hours, light 100 lux) and the temperature was controlled at
21±1°C.

Rats were reared in the housing conditions outlined for
2 weeks. After the 2nd week, the rats were tested in the activity
photocell cages. The isolates were observed to be hyperactive (see
Lapiz et al. 2000a), confirming that the isolation protocol was
comparable with previous studies. The rats were then injected
with DSP-4 or saline and were returned to their respective cages
as above. Two weeks postinjection, the rats were tested for their
behavioural profile in the elevated plus maze and cognitive perfor-
mance in the water maze. All behavioural tests were conducted
between 0900 and 1700 hours.

Drug treatment and NA depletion in brain regions

Rats were injected intraperitoneally (i.p.) with either 25 mg/kg
DSP-4 (Sigma, UK) or 0.9% saline at 1 ml/kg volume. DSP-4 was
dissolved in saline immediately before injection. All rats were giv-
en wet-mash and 10% glucose supplement to their diet for 5 days
postinjection.

The dose was chosen on the basis of the work of Cheetham et
al. (1996) in which DSP-4 (10, 20, 50 and 100 mg/kg, i.p.) dose-
dependently depleted cortical NA by 51%, 73%, 100% and 100%,
respectively, with no significant effects on dopamine and 5-HT
levels. An initial study using male Lister Hooded rats (n=12
weighing 315–380 g) injected with DSP-4 (25 mg/kg, i.p.) or sa-
line was conducted to confirm that DSP-4 at this dose produces
adequate cortical NA depletion. Four days after injection, the rats
were decapitated and the brain rapidly removed. The cortices were
dissected out on ice (Heffner et al. 1980) and snap frozen. NA was
measured using high-performance liquid chromatography with
electrochemical detection (HPLC-ECD) optimised for the detec-
tion of NA. Briefly, tissues were sonicated in 1 ml 0.1 M perchlo-
ric acid containing 0.02% 0.15 M Na2S2O5 and centrifuged at
14,000 g for 30 min at 4°C. The resulting supernatant was centri-
fuged in a microcentrifuge at 30,000 g for 4 min. Samples (1:5 di-
lution; 100 µl sample plus 400 µl H2O) were injected onto a col-
umn (100×2 mm i.d. Phenomenex) packed with 3 µm ODSc18 ma-
terial (Hypersil) via a Rheodyne 7125 sample injector. The mobile
phase (pH 4.0) consisted of 0.15 M Na2HPO4, 1.0 mM EDTA,
2.8 mM 1-octane sulphonic acid sodium salt and 5% methanol.
NA was measured electrochemically using a dual glassy carbon
working electrode set at +0.75 V maintained by a Ag/AgCl refer-
ence electrode (BAS LC4B cell). Changes in current were detect-
ed by a BAS LC4C amperometric detector linked to an integrator
(Spectra-Physics Chromjet) for the display of chromatograms.

The same method for measuring brain NA was used for the
dissected cortex, hippocampus and hypothalamus of each rat used
in this behavioural study 28 days after DSP-4 treatment.

Elevated plus maze

Behaviour was tested on an elevated plus maze made of matt
black plastic comprising four arms (45×15 cm) extending perpen-
dicularly from a central square (15×15 cm). Two opposite arms
were enclosed (closed arms) at the far end and along the sides
(10 cm high wall) while the other opposing arms are open (open
arms). The maze was raised 65 cm with 200 lux at the central
square. At the start of a trial, the rat was placed in the centre of the
maze facing the closed arm and was allowed to explore the arena
for 5 min. Activity was captured by a video camera and a comput-
erised tracking system (VideoTrack CPL; Beckett and Marsden
1995). Activity measured included number of open and closed arm
entries (all four feet off the central square) and locomotor speed.
Risk assessment activities including stretch attend posture (inves-
tigating the open arm from a protected compartment in a stretched
position) and head dipping (investigating the area beneath the plat-
form) were manually recorded. The apparatus was cleaned after
each animal trial with 70% (v/v) ethanol. An alternating schedule
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of rearing (group-/isolation-reared) and treatment (DSP-4/saline)
testing schedule was observed to maintain consistency of circadi-
an rhythm variation.

Water maze test: place navigation and probe test

The behavioural test used was a modification of the protocol used
by Morris (1984). A circular pool (200 cm in diameter with 60 cm
wall height) with a featureless white inner surface was filled to
depth of 40 cm with 21±1°C water which was opacified with
Opacifier E-308. The pool was divided into four equal quadrants:
namely, Northwest, Northeast, Southeast and Southwest. The hid-
den escape platform, consisting of a clear 10×10 cm Plexiglas
stand, was submerged in the middle of the Northwest quadrant
1.5 cm below the water surface. The location of the platform was
not altered throughout the training sessions. Visual cues consisting
of 78×52 cm unique black and white patterns were attached to the
centre of two opposing walls of the room. Other visual cues con-
sisted of standard room objects and a curtain. The cues were not
changed throughout the experimental period. An alternating test-
ing schedule was observed. All experiments were conducted be-
tween 0900 and 1700 hours.

The acquisition phase consisted of 4 consecutive trial days
(four trials/day). On the first trial of day 1, the rat was allowed to
swim in the water for 90 s. At the end of the first trial, none of the
rats found the escape platform so each rat was guided manually to
the platform and was allowed to stand on it for 20 s. For the suc-
ceeding sessions, the rat was placed in the water facing the pool
wall at one of the three randomly determined starting locations. As
previously, each rat was given 90 s to find the hidden platform. If
the platform was not found within this time period, the rat was
guided manually to it and allowed to stand on it for 20 s. The trial
was stopped when the rat found the platform before the predeter-
mined time. After each trial, all rats were removed and brought
behind the curtain, dried, and given a 30-s rest before the start of
the next trial. Latency to find the platform (escape latency) was re-
corded for each trial.

The transfer or probe test was conducted on the 5th day using
the same set-up but with the escape platform removed. Each rat
was placed in the pool and was allowed to swim freely for 60 s.
The activity of each rat was recorded by a video camera and
tracked by a computerised system as above. Activity measured in-
cluded swimming distance and speed, zone transitions, entries to
and time spent in quadrants. To measure memory of exact location
of platform, entries made to the platform annulus were also mea-
sured.

Statistical analyses

All data are presented as mean (± SEM). Behavioural data from
the elevated plus maze were analysed using two-way analysis of
variance (ANOVA) with two between-subject factors: rearing con-
dition and drug treatment. To further compare differences between
groups, one-way ANOVA was performed with Bonferroni’s test
for selected pairs as post hoc. Escape latency in the water maze
during the 4-day acquisition phase was analysed using two-way
ANOVA with two between factors: rearing condition and drug
treatment, and one within factor: time. Comparisons of escape la-
tency for each trial day and data from the probe test were analysed
using ANOVA with Bonferroni’s test as post hoc.

HPLC-ECD data from the initial group of DSP-4 and saline-
treated group-reared rats were analysed using unpaired t-test. Data
from the rats used in this behavioural study was analysed using
ANOVA with Bonferroni’s test as post hoc. In all statistical tests, a
value of P<0.05 was considered significant.

Results

Activity in the elevated plus maze 2 weeks 
after DSP-4

All groups significantly (P<0.001) preferred the closed
compared to the open arms. Times spent in the closed
arms were comparable for all groups but this is not so in
the open arms. DSP-4 treatment of grouped rats signifi-
cantly increased time spent in the open arms compared
to group controls (P<0.05) and DSP-4 treated isolates
(P<0.01). This was reflected in the significantly higher
percentage time spent in the open arms of DSP-4-treated
grouped rats compared to group controls (P<0.05) and
DSP-4-treated isolates (P<0.01; Fig. 1A). Percentage
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Fig. 1 Mean (± SEM) percentage time (A) and entries (B) in the
open arms of the elevated plus maze of DSP-4 (25 mg/kg, i.p.)- or
saline-treated group (G)- and isolation (I)-reared rats. A DSP-4
treatment of grouped rats significantly increased percentage time
spent in the open arms compared to group controls [F(3,20)=9.08;
P<0.05] and DSP-4-treated isolates [F(3,20)=9.08; P<0.01].
B Percentage entries into the open arms were comparable for all
groups. *P<0.05 vs saline controls; ++ P<0.01 vs group-reared
DSP-4 using ANOVA with Bonferroni's test as post hoc



entries to open and closed arms (Fig. 1B) were compa-
rable for all groups although group-reared DSP-4 rats
made more (P<0.05) entries into the open and closed
arms compared to saline controls (Fig. 2A). Grouped

DSP-4 rats and saline-treated isolates significantly pre-
ferred (P<0.01) to enter into the closed arms than into
the open arms (Fig. 2A). DSP-4-treated grouped rats
had faster (P<0.05) speed compared to group controls
(Fig. 2B). Isolation rearing had no significant effects on
these measures. DSP-4-treated isolated rats had reduced
activity in the elevated plus maze. They have less closed
arms entries (P<0.05) compared to both isolate controls
and grouped DSP-4-treated rats (Fig. 2A). DSP-4-treat-
ed isolation-reared rats also had less entries (P<0.001)
into the open arms and less distance travelled (P<0.05;
Fig. 2C) and speed (P<0.001; Fig. 2B) compared to
DSP-4-treated grouped rats. The stretch attend posture
and head dipping activities were comparable for all
groups. 

Behaviour in the water maze

All treatment groups learned the placement of the plat-
form after 4 days as shown by the significant reduction
(P<0.001) in latency to find the escape platform (Fig. 3).
There was no significant difference in the performance
of treatment groups for all days except for day 2 where
DSP-4-treated group-reared rats had significantly
(P<0.01) shorter latency in finding the escape platform
compared to group controls (Fig. 3).

Data from the probe test show that all rats signifi-
cantly preferred to swim into the Northwest quadrant,
where the platform was previously located, compared
to all other quadrants (Fig. 4A). Neither DSP-4 treat-
ment nor isolation rearing had any significant effects on
the number of entries made to the Northwest quadrant.
Figure 4B shows the number of entries to the platform
annulus (see Fig. 4B diagram), a more precise measure
of the memory of the platform location. Isolation-
reared rats made significantly (P<0.05) more entries to
the platform annulus compared to group controls and
DSP-4-treated isolates (Fig. 4B), indicating that the iso-
late controls had a more precise memory of the plat-
form location.
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Fig. 2 Mean (± SEM) number of entries into the open and closed
arms (A), speed (B) and distance travelled (C) in the elevated plus
maze of DSP-4 (25 mg/kg, i.p.)- or saline-treated group (G)- and
isolation (I)-reared rats. A Grouped DSP-4 [F(7,40)=9.91;
P<0.01] and isolation-reared control rats [F(7,40)=9.91; P<0.01]
made significantly more entries to the closed arms than the open
arms. DSP-4 treatment of grouped rats significantly increased en-
tries to the open [F(7,40)=9.91; P<0.05] and closed [F(7,40)=
9.91; P<0.05] arms compared to group controls while DSP-4 treat-
ment of isolates significantly decreased these activities compared
to grouped rats given DSP-4 [F(7,40)=9.91; P<0.05]. B DSP-4
treatment in grouped rats significantly increased speed compared
to group controls [F(3,20)=7.02; P<0.05] and DSP-4-treated isola-
tion-reared rats [F(3,20)=7.02; P<0.001]. C DSP-4-treated isolates
travelled shorter distances compared to group-reared DSP-4-treat-
ed rats [F(3,20)=3.76; P<0.05]. *P<0.05 vs saline controls; +
P<0.05, +++ P<0.001 vs group-reared DSP-4; ## P<0.01 open vs
closed arms using ANOVA with Bonferroni's test as post hoc



Fig. 3 Mean (± SEM) activity during the acquisition phase in the
water maze of DSP-4 (25 mg/kg, i.p.)- or saline-treated group (G)-
and isolation (I)-reared rats. The downward trend of the escape la-
tencies indicates that the learning of the location of the platform
improved as a function of time [F(3,12)=14.14; P<0.001]. Escape
latencies at day 4 were significantly lower than in day 1
[F(3,12)=110.00; P<0.001]. DSP-4 treatment in grouped rats de-
creased latency at day 2 compared to saline controls
[F(3,12)=32.32; P<0.01] but this effect was abolished on days 3
and 4. **P<0.01 vs saline controls; ### P<0.001 vs day 1 using
ANOVA with Bonferroni's test as post hoc

Fig. 4A, B Mean (± SEM) activity during the probe test in the
water maze of DSP-4 (25 mg/kg, i.p.)- or saline-treated group (G)-
and isolation (I)-reared rats. A All rats significantly preferred the
Northwest (NW) quadrant where the platform had been placed
compared to the Northeast [NE; F(3,12)=7.47; P<0.05], Southwest
(SW; F(3,12)=7.47; P<0.01] and Southeast (SE; F(3,12)=7.47;
P<0.001] quadrants. B Inset diagram shows the location of the
platform annulus (the exact previous location of the platform) in
the Northwest quadrant (hatched area). The number of entries or
crossings to the platform location was significantly higher in iso-
late controls compared to group-reared counterparts [F(3,20)=
4.04; P<0.05] and isolation-reared DSP-4-treated rats [F(3,20)=
4.04; P<0.05]. * P<0.05 vs I-saline; + P<0.05 vs G-saline;
#P<0.05, ## P<0.01, ### P<0.001 vs NW quadrant using ANOVA
with Bonferroni's test as post hoc
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Isolation-reared controls had fewer zone transitions
[F(3,20)=3.45; P<0.05] and had reduced swimming dis-
tance [F(3,20)=7.63; P<0.05] at a lower speed [F(3,20)=
5.50; P<0.01] than group controls during the probe test.
DSP-4-treated isolates swam a significantly longer dis-
tance [F(3,20)=7.63; P<0.05] at a faster speed [F(3,20)=
5.50; P<0.05] compared to isolate controls (data not
shown).

Regional NA levels

Systemic administration of DSP-4 (25 mg/kg, i.p.)
achieved a significant 75% reduction (mean ± SEM
ng/g net weight of tissue; control: 248.9±31 and DSP-
4: 62.4±33, P<0.01) in cortical NA 4 days after injec-
tion. Twenty-eight days after DSP-4 administration,
cortical and hippocampal levels of NA were signifi-
cantly decreased (P<0.05) in group-reared and isola-
tion-reared rats compared to their saline controls (Ta-
ble 1). There was no significant difference between the
two rearing groups. Hypothalamic NA levels were un-
affected.

Table 1 Noradrenaline levels (ng/g wet weight of tissue, mean ± SEM) in brain regions of group-reared (G) and isolation-reared (I) rats
28 days after DSP-4 (25 mg/kg) treatment

Brain regions G-saline G-DSP-4 Percentage I-saline I-DSP-4 Percentage
decrease decrease
from control from control

Cortex 219.3±26.46 101.1±23.28 53.90* 205.6±33.14 102.9±19.06 49.95*
Hippocampus 319.7±47.82 154.9±41.83 51.44* 327.4±27.09 153.5±35.75 53.06*
Hypothalamus 1,838±191.6 1,641±139.5 10.72 1,994±245.5 1,765±295.6 11.38

*P<0.05 vs saline control using ANOVA with Bonferroni's test as post hoc



Discussion

DSP-4 (25 mg/kg, i.p.) treatment of the rats caused a
substantial depletion of cortical NA levels 4 days post-
treatment and a persistent decrease in cortical and hippo-
campal NA 28 days after DSP-4 administration while
hypothalamic NA was unaffected. These results support
findings that DSP-4 selectively destroys noradrenergic
projections from the locus coeruleus, results confirmed
by immunocytochemical studies (Fritschy and Grzanna
1989, 1992; Schuerger and Balaban 1999). The HPLC-
ECD method used in the present study was optimised to
measure NA so data on dopamine and serotonin are not
available. However, several previous studies have shown
that DSP-4 spares dopamine, adrenaline and serotonin
neurotransmission even at higher doses (50 mg/kg or
higher) than that used in the present study (Jonsson et al.
1981; Dooley et al. 1983a, b; Ho et al. 1995; Cheetham
et al. 1996; Al-Zahrani et al. 1997). Higher doses of
DSP-4 are associated with gross toxicity (Ross 1985),
and can result in mortality (Schuerger and Balaban 1999)
probably as a consequence of acute cerebellar and cere-
bral cortical oedema (Tengvar et al. 1989). With the
25 mg/kg dose used in this study, we achieved a decrease
in NA levels comparable to that reported by Cheetham et
al. (1996). The use of the lower dose of DSP-4 has been
shown to minimise effects on the serotonergic system so
avoiding the need to pretreat with a serotonin uptake in-
hibitor (Ross 1985). Hence, this study achieved compa-
rable NA depletion with less deleterious effects on the
rats.

The present behavioural results may be a consequence
of partial rather than total NA depletion or perhaps re-
flect compensatory changes in the noradrenergic system.
Evidence shows that monoamine neurones respond to le-
sions with a wide range of compensatory adaptations
aimed at preserving their functional integrity. These may
include increased synthesis and release of neurotransmit-
ter from residual monoamine fibres as shown for seroto-
nergic neurones (Hall et al. 1999), axonal sprouting
(Fritschy and Grzanna 1992), and changes in receptor
functions (Dooley et al. 1983a, b; Heal et al. 1993). Al-
though DSP-4 decreases α2-adrenoceptors and functional
presynaptic terminals, its overall effect on the noradren-
ergic system maybe masked by a proliferation of post-
synaptic receptors in response to noradrenergic denerva-
tion (Heal et al. 1993). Other compensatory changes may
include delayed appearance of hyperresponsivity within
systems regulating stimulus-directed behaviour involv-
ing NA release and/or receptor function or increased ac-
tivity in other systems influenced by NA (Berridge and
Dunn 1990). However, despite evidence of plasticity and
recuperative responses of noradrenergic neurones to 
6-hydroxydopamine (6-OHDA)-induced lesions, 90% or
greater depletion of telencephalic NA produced robust
and long-lasting behavioural deficits (Abercombie et al.
1988; also see Everitt et al. 1990). It can not be deter-
mined whether the behavioural changes reported in the
present study reflect an overall reduction or increase in

noradrenergic function despite a loss of central NA of
more than 50%.

Effects of postweaning social isolation

Isolation rearing had no significant effects on the behav-
iour in the elevated plus maze, supporting previous stud-
ies (Fone et al. 1996) and contradicting reports of isola-
tion-induced ‘anxiogenic’ profile in the elevated plus
maze (Wright et al. 1991; Maisonnette et al. 1993). Sev-
eral factors could account for the discrepancy. Fone et al.
(1996) suggested that the difference in behavioural pro-
file could be due to the higher light intensity used com-
pared to the previous study in the same laboratory
(Wright et al. 1991). Light intensity, strain and housing
conditions have been shown to affect the behaviour of
isolation- and group-reared rats in the elevated plus
maze and other behavioural paradigms (Hall et al. 1997,
1998). Pellow et al. (1985) failed to observe effects of
varying lighting conditions on the behaviour of rats on
the elevated plus maze. This could be due to factors such
as differences in strain, sex and housing conditions of
rats as Hall et al. (1998) observed behavioural differ-
ences in Fawn Hooded but not Wistar rats tested on the
elevated plus maze under low and bright light condi-
tions.

In the water maze, isolation rearing had no significant
effect during the acquisition phase. However, during the
probe test, isolation-reared rats made more entries to the
platform annulus, indicating that these rats retained a
more accurate memory of the platform location. Isola-
tion-induced enhancement of place and reversal learning
in the water maze has been reported (Wongwitdecha and
Marsden 1996). These findings are in contrast with re-
ports of isolation-induced impairment in the water maze
(Wade and Maier 1986). The differing results may again
reflect the differences in housing conditions and rat
strain. Alternatively, it could be due to other factors as-
sociated with the test environment. Wade and Maier
(1986) reported a very rapid restoration or normalisation
of function of individually housed rats in the water maze
following exposure to loud noise for half an hour before
testing. The isolated rats may have a lowered stress re-
sponse, causing an abnormal activation of processes that
support learning. Noise exposure before maze testing
may have returned this threshold to normal sensitivity
thus restoring learning performance (Wade and Maier
1986).

Isolation rearing significantly decreased speed, dis-
tance swam and zone transitions of rats in the water
maze during the probe test. Considering that isolates are
hyperactive in the open field and activity cages (Lapiz et
al. 1999b, 2000a), these behavioural changes do not re-
present a generalised reduction in motor activity. Swim-
ming speed in the water maze can be used to assess mo-
tor and motivational deficits (McNamara and Skelton
1993) so the behaviours observed may indicate changes
in the motivational status of the isolates.
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Effects of DSP-4 treatment

On the elevated plus maze, DSP-4-treated group-reared
rats were more active and spent more time in the open
arms compared to controls, suggestive of an ‘anxiolytic’
effect of DSP-4. In contrast, DSP-4-treated isolated rats
spent less time in the open arms and were hypoactive
compared to group-reared DSP-4-treated rats. Since
there was no significant difference between saline and
DSP-4 isolates, the difference between the behaviour of
group and isolated DSP-4-treated rats in the elevated
plus maze may indicate changes in the isolated rat result-
ing in a differential effect of NA depletion.

An anti-exploratory effect of DSP-4 in group-reared
rats on the elevated plus maze and other behavioural par-
adigms has been reported (Delini-Stula et al. 1984; 
Harro et al. 1995; Skrebuhhova et al. 1999). DSP-4 treat-
ment prevented virtually all activities of rats in the open
field arena during the initial sessions indicating an in-
crease in neophobia (Harro et al. 1995). Perhaps these
results were analogous to the behaviour seen in the DSP-
4-treated isolation-reared rats in this study with isolation
rearing making these rats more vulnerable to the effects
of central NA depletion. Pisa and Fibiger (1983) report-
ed that 6-OHDA lesions to the dorsal noradrenergic bun-
dle impaired learning in a Y-maze. The lesioned rats per-
sistently avoided the illuminated goal arm. Interestingly,
all the subjects (male Wistar rats) used in their experi-
ments were individually housed although housing condi-
tion was not a factor taken into consideration.

Selden et al. (1990a, b) reported that lesions to the lo-
cus coeruleus alter perception of danger through altera-
tion of attention focus, resulting in loss of ability to ig-
nore irrelevant stimuli (Mason and Iversen 1978) thus in-
creasing susceptibility to danger (Mason and Iversen
1975; Everitt et al. 1990). The hyperactivity and ‘anxio-
lytic’ profile of DSP-4-treated group-reared rats in this
study may indicate failure to attend to the aversiveness
of the test condition causing them to be more active and
less fearful of the open arms. In contrast, the hypoactivi-
ty and ‘anxiogenic’ profile of DSP-4-treated isolates
probably indicates increased neophobia. Harro et al.
(1995) suggested that denervation of the locus coeruleus
increased neophobia, lengthening the avoidance phase of
exploration. However, this would not explain the differ-
ence in response to DSP-4 treatment between group- and
isolation-reared rats.

DSP-4 treatment of group- and isolation-reared rats
had no significant effects on the performance in the wa-
ter maze during acquisition (Lapiz et al. 1999a). Previ-
ous studies have also shown that DSP-4 lesioning does
not affect acquisition and retention of platform location
in the water maze (Björklund et al. 1999). 6-OHDA le-
sions to the dorsal noradrenergic bundle from the locus
coeruleus may or may not affect place learning depend-
ing on the water temperature of the maze. No effect was
seen when water temperature was between 22–26°C
(Valjakka et al. 1990) while with colder water (11–12°C),
improvement (Selden et al. 1990a) or lack of effect have

been reported (Valjakka et al. 1990). Pharmacological
manipulations (Decker et al. 1990; Sirviö et al. 1991,
1992) tend to support the lesion data to suggest that the
noradrenergic systems may not have a major role in
place learning.

DSP-4-treated isolation-reared rats learned equally
well the placement of the escape platform. However,
during the probe test, they made fewer entries to the plat-
form annulus compared to the isolate controls, indicating
impairment of spatial memory. Depletion of forebrain
NA induces persistent attention to motivationally irrele-
vant stimuli (Mason and Iversen 1978). The DSP-4-treat-
ed isolated rats may have been attending to other irrele-
vant stimuli as indicated by the greater swimming dis-
tance and speed of these rats. These findings support our
previous findings that DSP-4-treated isolated rats attend
more to the general environment rather than to specific
items within the environment, indicating changes in at-
tention (Lapiz et al. 2000a).

Overall, the results indicate that the behavioural re-
sponse of grouped and isolation-reared rats with depleted
brain NA depends on the nature of the test environment.
In the water maze and open field where a sizeable part of
the arena is equally exposed and aversive, DSP-4 treat-
ment of isolates increased attention to irrelevant stimuli,
i.e. attention to the general environment rather than spe-
cific items (Lapiz et al. 2000a). In the elevated plus
maze where the rat has a choice between the aversive
open arms and the secure enclosed arms, the DSP-4-
treated isolated rat spent less time in the open arms com-
pared to DSP-4-treated group-reared rats.

In summary, DSP-4 treatment of group-reared rats
produced an ‘anxiolytic’ response on the elevated plus
maze while in isolates, it normalised memory in the wa-
ter maze. The results demonstrate the importance of nor-
adrenergic function in attention and the regulation of re-
sponsiveness to environmental cues. Modification of this
system by isolation rearing results in differential effects
in response to disruption of brain noradrenergic function.
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