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Abstract Biotransformation of phenacetin via O-de-
ethylation to acetaminophen, an index reaction reflect-
ing activity of Cytochrome P450-1A2, was studied in
microsomal preparations from a series of human liv-
ers. Acetaminophen formation was consistent with a
double Michaelis-Menten system, with low-Ky, (mean
Kmi =68 uM) and high-K, (mean Ky, = 7691 uM)
components. The low-K, enzyme accounted for an
average of 96% of estimated intrinsic clearance, and
was predicted to contribute more than 50% of net reac-
tion velocity at phenacetin concentrations less than
2000 M. Among index inhibitor probes, «-naph-
thoflavone was a highly potent inhibitor of the low-K,
enzyme (K;; = 0.013 puM); furafylline also was a mod-
erately active inhibitor (Ki; = 4.4 pM), but its inhibit-
ing potency was increased by preincubation with
microsomes. Ketoconazole was a relatively weak inhi-
bitor (Kj; = 32 uM); quinidine and cimetidine showed
minimal inhibiting activity. Among six selective
serotonin reuptake inhibitor (SSRI) antidepressants,
fluvoxamine was a potent inhibitor of 1A2 (mean
Kij1 = 0.24 uM). The other SSRIs were more than ten-
fold less potent. Mean Kj; values were: fluoxetine,
4.4 uM; norfluoxetine, 15.9 uM; sertraline, 8.8 pM;
desmethylsertraline, 9.5uM; paroxetine, 5.5 uM. The
antidepressant nefazodone and four of its metabolites
(meta-chloro-phenylpiperazine, two hydroxylated deri-
vatives, and a triazoledione) were very weak inhibitors
of P450-1A2. Venlafaxine and its O- and N-desmethyl
metabolites showed minimal inhibitory activity.
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Introduction

The Cytochrome P450-1A (CYP1A) subfamily has two
isoforms, 1Al and 1A2. Although many substrate and
inhibitor probes are nonspecific in their recognition of
the two isoforms (Tassaneeyakul et al. 1993), the relati-
ve tissue distributions of 1Al and 1A2 differ signifi-
cantly, with 1A2 being found in the liver and 1Al
expressed primarily at extrahepatic sites after induction
(Wrighton et al. 1993; Gonzalez and Gelboin 1994).

P450-1A2 is a well-conserved, constitutively expres-
sed protein. Levels of expression in human liver are
highly variable and have been reported to follow a tri-
modal distribution (Sesardic et al. 1988; Schweikl et al.
1993; Kadlubar 1994). P450-1A2 is responsible for
metabolic activation of arylamine carcinogens and het-
erocyclic arylamine mutagens (Gonzalez and Gelboin
1994), and contributes importantly to the metabolism
of caffeine, theophylline, imipramine, tacrine, and clo-
zapine (Lemoine et al. 1993; Ohmori et al. 1993;
Bertilsson et al. 1994; Sarkar and Jackson 1994;
Tassaneeyakul et al. 1994a; Pirmohamed et al. 1995;
Spaldin et al. 1995; Tjia et al. 1996).

Phenacetin O-deethylation (Fig. 1) is a highly specific
index reaction for 1A2 activity in in vitro systems deri-
ved from hepatic tissue (Distlerath et al. 1985; Tassa-
neeyakul et al. 1993). Previous work has documented
its biphasic nature, with low-Ky, and high-K, compo-
nents (often termed high- and low-affinity) (Boobis
et al. 1981). Several potent in vitro inhibitors of the
low-K, component have been described, including o-
naphthoflavone, furafylline and fluvoxamine (Murray
and Reidy 1990; Brgsen et al. 1993b; Chang et al. 1994;



Halpert et al. 1994; Halpert 1995; Newton et al. 1995;
Bourrié et al. 1996). The latter, a selective serotonin
reuptake inhibitor (SSRI) antidepressant, is of clinical
significance considering the widespread use of antide-
pressant medications and the potential for toxicity of
1A2 substrates in vivo (Brgsen 1995; Brgsen et al.
1993b).

Nefazodone is a recently approved antidepressant
which acts by blocking 5-HT, receptors and inhibit-
ing serotonin reuptake (Eison et al. 1990). Its chemi-
cal structure is similar to trazodone and etoperidone,
and one metabolite of nefazodone, meta-chloro-phenyl-
piperazine (MCPP), is also a metabolite of trazodone,
etoperidone, and mepiprazole (Mayol et al. 1994). We
examined the ability of nefazodone and four major
metabolites to inhibit phenacetin O-deethylation in
human liver microsomal preparations. In addition to
MCPP, the metabolites include two hydroxy derivatives
with hydroxylations on aliphatic and ring positions,
and a triazoledione. The recently introduced antide-
pressant venlafaxine acts by inhibition reuptake of nor-
epinephrine and serotonin (Holliday and Benfield
1995). Venlafaxine and its O- and N-desmethyl metabo-
lites were studied in the same system. Results were
compared to the inhibitory capabilities of «-naph-
thoflavone, furafylline, ketoconazole, quinidine, and
cimetidine. Also evaluated was the inhibitory activity
of fluvoxamine compared to that of other SSRIs includ-
ing fluoxetine, sertraline, paroxetine and the major
metabolites of fluoxetine and sertraline (norfluoxetine
and desmethylsertraline).

Materials and methods
In vitro incubation procedures

Liver samples from five human donors with no known liver disease
were provided by the International Institute for the Advancement
of Medicine, Exton, Pa. Microsomes were prepared by ultracen-
trifugation; microsomal pellets were suspended in 0.1 M potassium
phosphate buffer containing 20% glycerol and stored at —80°C
until use. Chemical reagents and drug entities were purchased from
commercial sources or kindly provided by their pharmaceutical
manufacturers.

Incubation mixtures contained 50 mM phosphate buffer, 5 mM
Mg?*, 0.5 mM NADP™, and an isocitrate/isocitric dehydrogenase
regenerating system (von Moltke et al. 1993, 1994a, b, 1995a,
1996a, b; Schmider et al. 1995, 1996a). Varying quantities of
phenacetin in methanol solution, to yield final incubate concentra-
tions ranging from 0 to 10 mM, were added to a series of incuba-
tion tubes. The solvent was evaporated to dryness at 40°C under
conditions of mild vacuum. Solubility of phenacetin in microsome-
free incubation mixtures at 37°C was verified by the linear relation
of added phenacetin concentration and HPLC peak height, using
the analytic procedure described below. In addition, data points
from actual microsomal incubations were used in subsequent kinetic
analyses only if the phenacetin/internal standard peak height ratio
remained linearly related to added phenacetin concentration.

Incubations were also performed with co-addition of two concen-
trations each of a series of potential metabolic inhibitors, each at
three different substrate concentrations. These inhibitors included
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compounds identified as “index” probes, the SSRI antidepressants
and their metabolites, and the serotonin antagonist antidepressant
nefazodone and its metabolites. The antidepressant venlafaxine, and
its O- and N-desmethyl metabolites, were tested using fixed concen-
trations of phenacetin, since their inhibiting potency was very weak.

Reactions were initiated by addition of microsomal protein
(approximately 0.25 mg/ml). After 20 min at 37°C, reactions were
stopped by cooling on ice and addition of 100 pl acetonitrile.
2-Acetamidophenol was added as internal standard, the incubation
mixture was centrifuged, and the supernatant transferred to an
autosampling vial for HPLC analysis. The mobile phase consisted
of 150 ml of acetonitrile and 850 ml of 50 mM phosphate buffer;
the flow rate was 1.5 ml/min. The analytical column was stainless
steel, 30 cm x 3.9 mm, containing reverse-phase C-18 micro
Bondapak (Waters Associates, Milford, Mass.) Column effluent
was monitored by ultraviolet absorbance at 254 nm (Fig. 2).
Concentrations of acetaminophen in reaction mixtures were deter-
mined based on calibration curves constructed from a series of stan-
dards containing varying known amounts of acetaminophen
together with internal standard. The rate of formation of aceta-
minophen was linear with respect to time and protein concentra-
tion. Reaction velocities were calculated in units of nmol product
formed per minute per mg microsomal protein.

The complex concentration-dependence of «-naphthoflavone
inhibition of phenacetin O-deethylation was evaluated using a fixed
concentration of phenacetin, and concentrations of «-naphthofla-
vone ranging from 0 to 50 uM. This relationship was contrasted to
the effects of «-naphthoflavone on alprazolam 4-hydroxylation, a
reaction used as an index for activity of P450-3A isoforms (von
Moltke et al. 1994b, 19953, b; Schmider et al. 1996a).

All of the above studies were done without preincubation of
inhibitors with microsomal protein. The effect of preincubation on
the inhibitory activity of furafylline and «-naphthoflavone was stud-
ied by preincubation of varying concentrations of furafylline (up to
10 pM) or a-naphthoflavone (up to 1.0 pM) for 20 min with micro-
somal protein and cofactors. Reactions were initiated by addition
of phenacetin to a final concentration of 100 uM. Reaction mix-
tures were then analyzed after 20 min of further incubation as
described above. Preincubated samples were compared to an iden-
tical series without preincubation, in which reactions were initiated
by addition of microsomal protein.

Data analysis

Reciprocal plots (Eadie-Hofstee) of reaction velocities in the
absence of inhibitor were biphasic, consistent with a two-enzyme
system. Accordingly, the following equation was fitted to the data
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PHENACETIN ACETAMINOPHEN

Fig. 1 Structural formula of phenacetin and its principal metabo-
lite, acetaminophen, formed by O-deethylation mediated by
cytochrome P450-1A2
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regression using the following equation:

Vmaxl 'S Vmaxz 'S .
V= + (Equation 2)

|
s+Km1-(1+—> s+|<m2-<1+—>
Ki1 Kiz

| is the concentration of inhibitor, and VV and S have the same mean-
ing as in Equation 1. The Michaelis-Menten constants were previ-
ously determined from Equation 1 using data without inhibitor.
Iterated variables were Kj; and Kjz, the inhibition constants based
on the assumption of competitive inhibition.

Results

For all human liver samples Eadie-Hofstee plots were
biphasic, and untransformed data were consistent with
Equation 2 (Fig. 3). The mean K., value for the low-
Km enzyme (K1) was 68 pM, while that for the high-
K enzyme (Kmp) was 7691 uM (Table 1). The low-K,
enzyme accounted for an average of 96% of estimated
intrinsic clearance, and would be predicted to con-
tribute more than 50% of the net velocity of aceta-
minophen formation at phenacetin concentrations less
than 2000 uM (Fig. 4).

REACTION VELOCITY/SUBSTRATE CONCENTRATION
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Fig. 3 Above: Eadie-Hofstee plot of reaction velocity (y-axis) vs.
reaction velocity/substrate concentration ratio (x-axis) for a human
liver sample. Below: reaction velocity (y-axis) versus substrate con-
centration (x-axis) for the same human liver sample. Solid line was
determined by nonlinear least squares regression analysis based on
Equation 2. Insert, lower right: substrate concentration range of
0-1000 uM shown on an expanded scale



Table 1 Characteristics of acetaminophen formation from
phenacetin by human liver microsomes in vitro (n = 5)

Mean +SE Range
Low-K, enzyme
Vmax1® 1.62 +0.32 0.76-2.60
K" 68.4 +223  35-152
Vmaxi/Kma ratio, x 1000 34.5 +9.7 5.0-60.6
Percent of total 96% +1.2%  92-99%

estimated intrinsic clearance

High-Kn, enzyme
Vinaxa® 6.35 +1.60 2.38-9.92
Kimn2” 7691 +1993 2254-13738
Vmaxa! Km2 ratio, x 1000 0.89 +0.15 0.45-1.33
Percent of total 3.8% +1.2% 1.4-8.3%

estimated intrinsic clearance

&Units of nanoMoles/min per mg protein

bUnits of uM

“Total estimated intrinsic clearance calculated as Vmaxi/Kmi +
VmaXZ/KmZ
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Fig. 4 Predicted contribution of high- and low-affinity enzymes to
net velocity of acetaminophen formation, in relation to concentra-
tion of the substrate, phenacetin. Predictions are passed on mean
values of kinetic parameters shown in Table 1. Above: relative con-
tributions of the two sites. Note that the high-affinity site pre-
dominates at phenacetin concentrations under 2000 uM. Below:
absolute contributions of the two sites at substrate concentrations
less than 1000 uM
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Those compounds that inhibited acetaminophen for-
mation in general were more potent inhibitors of the
low-K, component (Kj; < Kjz). Since the low-Kp
enzyme is of greatest quantitative importance, com-
parisons of inhibiting potency focused on Kj; (Table
2). o-Naphthoflavone was the most potent of all
inhibitors tested. At low concentrations (< 1 pM), inhi-
bition was consistent with a competitive mechanism
(Figs. 5 and 6); however quantitative inhibition of
acetaminophen formation was diminished at higher

Table 2 Competitive inhibition of low-K, (apparent high-affinity)
enzyme (K;j;) for phenacetin O-deethylation in human liver micro-
somes by a series of compounds

Mean (+ SE)
competitive inhibition constant
(HM)

Compound

Index inhibitors

a-Naphthoflavone 0.013 (+ 0.001)

Furafylline 4.7 (£ 1.6)
Ketoconazole 32 (x17)
Quinidine > 80
Cimetidine > 60

SSRI antidepressants

Fluoxetine 4.4 (£0.7)
Norfluoxetine 15.9 (£ 3.9)
Sertraline 8.8 (£ 22)
Desmethylsertraline 95 (x1.1)
Paroxetine 5.5 (+ 1.6)
Fluvoxamine 0.24 (£ 0.18)
Nefazodone and metabolites

Nefazodone 65 (+ 17)
OH-nefazodone(aliphatic) 66 (+ 45)
p-OH-nefazodone (aromatic) > 70
meta-Chlorophenylpiperazine 70 (£ 26)
Triazoledione > 70
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Fig. 5 Effect of varying concentrations of a-naphthoflavone (x-axis)
on rate of formation of acetaminophen from phenacetin (200 pM),
mediated by P450-1A2, and on formation of 4-hydroxy-alprazo-
lam from alprazolam (100 uM), mediated by P450-3A isoforms.
Each point (mean + SE, n = 3) represents the ratio, expressed in
percent, of reaction velocity at the indicated concentration of o-
naphthoflavone divided by the reaction velocity with no inhibitor
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Fig. 7 Rate of formation of acetaminophen in relation to concen-
tration of the substrate, phenacetin, in a representative human liver.
Reaction velocities are shown in the control condition, with no
inhibitor present, and with coaddition of 5uM or 10 uM
fluvoxamine (FX). Solid line (control, without inhibitor) represents
fitted function based on Equation 1. Dashed lines, and K; values
for fluvoxamine, were based on Equation 2

concentrations, and reaction velocities were indistin-
guishable from control at 50 uM (Fig. 5). At concen-
trations of 0.5-10 uM, o-naphthoflavone enhanced
activity of P450-3A, based on formation of 4-OH alpra-
zolam from alprazolam (Fig. 5).

Although considerably less potent than o«-naph-
thoflavone, furafylline was a moderately potent inhi-
bitor of acetaminophen formation (Table 2). Its
inhibiting potency was increased by preincubation,
while that of o-naphthoflavone was diminished by
preincubation (Fig. 6). Ketoconazole also was an inhi-
bitor of acetaminophen formation, although relatively
weak. Quinidine and cimetidine showed minimal
inhibiting activity.

All SSRIs were inhibitors of acetaminophen forma-
tion (Fig.7). The potency of fluvoxamine (mean
Kiy = 0.24 uM) was more than 10-fold greater than any
of the other SSRIs (Kj; range: 4.4-15.9 uM).

L . oL L L L .
05 1 2 5 10 0 005 0.1 0.2 0.5 1

FURAFYLLINE (uM) «-NAPHTHOFLAVONE (M)

n
o
1

-

™ o

S o
T

4
h
al
i

&——8 VENLAFAXINE
O- - -0 O-DESMETHYL-VENLAFAXINE
O— -0 N-DESMETHYL-VENLAFAXINE

(percent of control velocity)
] 3

n
o
T

FLUVOXAMINE

ACETAMINOPHEN FORMATION RATE

L 1 |

0 TR A 1

0 5 10 50 100 200 500
INHIBITOR CONCENTRATION (uM)

Fig. 8 Effect of varying concentrations of venlafaxine or its two
metabolites (O- or N-desmethyl-venlafaxine) on formation of aceta-
minophen from phenacetin (100 pM) in a representative liver sam-
ple. Each point is the ratio, expressed in percent, of the reaction
velocity at the indicated inhibitor concentration divided by the
velocity with no inhibitor present. Shown for comparison purposes
is the effect of fluvoxamine as an inhibitor

Nefazodone and its principal metabolites all were
weaker inhibitors of acetaminophen formation than
any of the SSRIs. Venlafaxine and its O- and N-des-
methyl metabolites showed no detectable inhibition
even at concentrations as high as 400-500 uM (Fig. 8).

Discussion

The kinetics of phenacetin O-deethylation to form
acetaminophen, a reaction mediated by Cytochrome
P450-1A2, was studied in microsomal preparations
from a series of human liver samples. This biotrans-
formation is one of several index reactions commonly
used as probes to study characteristics of Cytochrome
P450-1A2 activity in humans. Other index reactions
include: caffeine N-3 demethylation, ethoxyresorufin



O-deethylation, tacrine hydroxylation, and theophyl-
line oxidation. As described previously (Boobis et al.
1981; Distlerath et al. 1985; Sesardic et al. 1990;
Tassaneeyakul et al. 1993; Schmider et al. 1996a), the
profile of phenacetin O-deethylation was consistent
with a two-enzyme Michaelis-Menten system, with
low-Kn, (apparent high-affinity) and high-K, (appar-
ent low-affinity) sites. Although the high-affinity
enzyme had somewhat lower capacity (Vmaxit < Vmax2),
its estimated intrinsic clearance accounted for more
than 90% of total intrinsic clearance, based on
Vmax! Km ratios for the two enzymes. The high-K, site
was predicted to account for only a small fraction of
net reaction velocity except at very high substrate con-
centrations. Thus, metabolic activity of P450-1A2 in
vivo, including properties such as susceptibility to
induction and inhibition, are likely to reflect mainly the
low-K, enzyme component. Our Ky, values for the
low-Kp, site in human liver microsomes are in a range
similar to that reported in previous studies of human
microsomes (Distlerath et al. 1985; Sesardic et al. 1990;
Bragsen et al. 1993b; Bourrié et al. 1996) as well as trans-
fected cell lines expressing human P450-1A2 (Jensen
et al. 1995). However other reports have suggested
somewhat lower Ky, values for this site (Boobis et al.
1981; Tassaneeyakul et al. 1993).

a-Naphthoflavone is confirmed as being a highly
potent inhibitor of phenacetin O-deethylation (Boobis
et al. 1981; Tassaneeyakul et al. 1992, 1993; Chang
et al. 1994; Bourrié et al. 1996) as well as other reac-
tions mediated by cytochrome P450-1A2 (Boobis et al.
1981; Tassaneeyakul et al. 1992; Chang et al. 1994; Ono
et al. 1995; Siess et al. 1995; Tjia et al. 1996). The
potency and relative specificity of a-naphthoflavone as
an inhibitor of human P450-1A2 may allow this com-
pound to be used as an inexpensive and easily obtained
inhibitory chemical probe to identify the potential role
of P450-1A2 in specific metabolic reactions in vitro.
However, several properties of this compound must be
considered. The present study and other reports
(Boobis et al. 1981; Tassaneeyakul et al. 1992; Tjia et
al. 1996) suggest that inhibition of P450-1A2 by o-
naphthoflavone increased with concentration only in a
low concentration range; at higher concentrations the
inhibitory effect diminishes. The mechanism of this
complex relationship is not established. «-Naphtho-
flavone itself is both a substrate and an activator of
P450-3A isoforms (Schwab et al. 1988; Schou et al.
1994). We demonstrated significant enhancement of
P450-3A activity, based on velocity of alprazolam 4-
hydroxylation, at concentrations of «-naphthoflavone
in the range of 1-10 uM. Other studies have shown
even greater enhancement of P450-3A activity by o-
naphthoflavone (Schwab et al. 1988; Fleming et al.
1992; Andersson et al. 1993, 1994a,b; Patten et al. 1993;
Shou et al. 1994). Metabolic degradation by P450-3A
may explain why the inhibitory activity of «-naph-
thoflavone was diminished by preincubation.
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Inhibition of P450-1A2 by furafylline in vitro has
also been verified (Sesardic et al. 1990). Interaction of
furafylline with P450-1A2 substrates has also been
demonstrated in clinical studies (Tarrus et al. 1987).
Even without preincubation, furafylline was a moder-
ately potent inhibitor in vitro (Kjy = 4.7 uM), but its
inhibiting potency was increased considerably by prein-
cubation with microsomes and cofactors. This is con-
sistent with the identification of furafylline as a
mechanism-based inhibitor (Kunze and Trager 1993;
Newton et al. 1995; Clarke et al. 1994; Tassaneeyakul
et al. 1994b; Bourrié et al. 1996). Thus furafylline is
another candidate for a chemical inhibitor probe to
identify the role of P450-1A2 in specific metabolic reac-
tions. However, the potential value of furafylline needs
to be weighed against the preincubation requirement,
and the high cost of this chemical as available from
commercial sources.

Ketoconazole was a weak inhibitor of phenacetin O-
deethylation in vitro. Ketoconazole is well established
as a high-affinity inhibitory probe against P450-3A iso-
forms in vitro, making it a relatively specific inhibitor
at low concentrations (Murray and Reidy 1990; Halpert
et al. 1994; Baldwin et al. 1995; Halpert 1995; Newton
et al. 1995; von Moltke et al. 1995b). The mechanism
of ketoconazole inhibition of 3A isoforms appears to
be competitive, although this is not unequivocally
established (Wrighton and Ring 1994; Bourrié et al.
1996). In any case, inhibitory K; values for ketocona-
zole against 3A-mediated reactions generally fall in the
nanomolar range (Schmider et al. 1995; von Moltke
et al. 1994b, 1995a, 1996a,b; Bourrié et al. 1996).
However, the present study and other reports (von
Moltke et al. 1994a, 1995b; Newton et al. 1995; Bourrié
et al. 1996) emphasize that ketoconazole inhibition of
cytochrome activity becomes less selective at higher
concentrations. The K; for ketoconazole against
desipramine hydroxylation, a reaction mediated by
P450-2D6, averaged 10.3 uM (von Moltke et al. 1994a),
and the mean Kj; against phenacetin O-deethylation
was 32 uM. Quinidine, a relatively selective inhibitor
probe for Cytochrome P450-2D6 (Newton
et al. 1995; Bourrié et al. 1996), was a very weak
inhibitor of P450-1A2 in the present study. Cimetidine
also was a weak inhibitor of 1A2 activity in vitro,
although cimetidine may significantly inhibit clearance
of 1A2 substrates, such as caffeine and theophylline, in
clinical studies (Gerber et al. 1985; Troger and Meyer
1995). In vitro inhibiting activity of cimetidine proba-
bly would have been greater if the study design had
included preincubation with microsomes (Chang et al.
1992; Halpert 1995).

The introduction of the SSRI antidepressants into
clinical practice a decade ago was followed by recog-
nition that this class of compounds had the additional
property of being inhibitors of human cytochromes
P450 (Ciraulo and Shader 1990; von Moltke et al.
1994c). Numerous pharmacokinetic drug interac-
tions with SSRI antidepressants have been reported in
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controlled studies (Lemberger et al. 1988; Lasher et al.
1991; Bergstrom et al. 1992; Greenblatt et al. 1992;
Brgsen et al. 1993a; Spina et al. 1993; Daniel et al.
1994; Fleishaker and Hulst 1994; Perucca et al. 1994;
Preskorn et al. 1994; El-Yazigi et al. 1995). However,
the available SSRIs are not equally active inhibitors of
any specific cytochrome, nor are the various human
cytochromes equally susceptible to inhibition by any
specific SSRI. In vitro studies have provided consider-
able information on this topic (Brgsen and Skjelbo
1991; Crewe et al. 1992; Skjelbo and Brgsen 1992;
Brgsen et al. 1993b; Otton et al. 1993, 1996; von Moltke
et al. 1994a,b,1995a, 1996a,b; Jensen et al. 1995;
Rasmussen et al. 1995; Ring et al. 1995; Schmider et
al. 1995). Extrapolation of in vitro data to clinical cir-
cumstances of drug coadministration must be done
with caution. In vivo inhibition of cytochrome activ-
ity depends not only on inhibitory K; values, but also
on the dose and plasma concentration of the inhibitor
and its metabolites, partitioning of the inhibitors from
plasma to the site of metabolic inhibition, and the
pharmacokinetic characteristics of the drug whose
metabolism is inhibited (von Moltke et al. 1995b).
Nonetheless, in vitro results have largely been consis-
tent with findings from clinical studies. The present in
vitro study of human liver microsomes indicates that
the four SSRIs available for clinical use in the United
States (and the two quantitatively important endoge-
nous metabolites) are inhibitors of human Cytochrome
P450-1A2 activity. However, as reported previously
(Brgsen et al. 1993b; Rasmussen et al. 1995), the inhi-
biting potency of fluvoxamine against human P450-
1A2 activity exceeds that of the other five SSRIs by an
average of at least tenfold. This suggests that fluvo-
xamine might potentially serve as an inhibitory probe
for P450-1A2 activity. Although full reports of inter-
action studies of fluvoxamine with P450-1A2 substrates
are not yet published, anecdotal reports and other data
suggest that fluvoxamine may produce quantitatively
large in vivo clearance inhibition of drugs such as theo-
phylline, caffeine, and clozapine (Brgsen 1995). The rel-
ative inhibiting potency of the SSRIs against P450-1A2
contrasts sharply with effects on other cytochromes.
Fluoxetine, norfluoxetine, and paroxetine are highly
potent inhibitors of P450-2D6, whereas sertraline,
desmethylsertraline, and fluvoxamine are much weaker
(Crewe et al. 1992; Otton et al. 1993; von Moltke et al.
1994a, 1995a). For P450-3A isoforms, fluoxetine itself
is consistently a weak inhibitor, whereas norfluoxentine
has greater inhibiting potency (von Moltke et al. 1994b,
1995a, 1996a,b; Rasmussen et al. 1995; Ring et al. 1995;
Schmider et al. 1995).

The serotonin antagonist antidepressant nefazodone
is biotransformed in humans to a sequence of metabo-
lites (Schmider et al. 1996b), via reactions mediated
principally by P450-3A isoforms (von Moltke et al.
1996c¢). The triazoledione and the aliphatic hydroxy
metabolite are of greatest quantitative importance in

human plasma; smaller amounts of mCPP can be
detected as well (Greene et al. 1995; van Laar et al.
1995). Nefazodone itself is a relatively potent inhibitor
of human P450-3A isoforms in vitro (von Moltke
et al. 1996b, c) and significantly impairs in vivo clear-
ance of P450-3A substrates such as triazolam and
alprazolam (Barbhaiya et al. 1995; Greene et al. 1995).
Potent inhibition of P450-3A isoforms is shared by the
two hydroxylated metabolites of nefazodone, but not
by mCPP or the triazoledione (von Moltke et al. 1996c).
However, nefazodone and all of its identified metabo-
lites are very weak inhibitors of human cytochrome
P450-2D6 (Schmider et al. 1996b). The present study
indicates that nefazodone and its metabolites also are
weak inhibitors of P450-1A2 activity, suggesting that
clinically important interactions of nefazodone with
P450-1A2 substrates are unlikely.

The mechanism of action of the antidepressant ven-
lafaxine involves a combination of norepinephrine and
serotonin reuptake inhibition (Holliday and Benfield
1995). The principal human metabolite of venlafaxine
is O-desmethylvenlafaxine, formed via P450-2D6
dependent biotransformation (Fogelman et al. 1995;
Otten et al. 1996). A second product, N-desmethyl-ven-
lafaxine, is dependent at least in part on P450-3A iso-
forms (Fogelman et al. 1995; Otten et al. 1996).
Venlafaxine and its O- and N-desmethyl metabolites
are extremely weak inhibitors of P450-1A2 activity in
vitro. Venlafaxine and metabolites also are weak
inhibitors of P450-3A isoforms (von Moltke et al.,
unpublished data) as well as of P450-2D6 (Otten et al.
1996). Thus currently available data suggest that phar-
macokinetic drug interactions of venlafaxine with sub-
strates of these cytochromes are unlikely.
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