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Abstract
Withdrawal from opioids involves a negative affective state that promotes maintenance of drug-seeking behavior and relapse. 
As such, understanding the neurobiological mechanisms underlying withdrawal from opioid drugs is critical as scientists 
and clinicians seek to develop new treatments and therapies. In this review, we focus on the neural systems known to medi-
ate the affective and somatic signs and symptoms of opioid withdrawal, including the mesolimbic dopaminergic system, 
basolateral amygdala, extended amygdala, and brain and hormonal stress systems. Evidence from preclinical studies suggests 
that these systems are altered following opioid exposure and that these changes mediate behavioral signs of negative affect 
such as aversion and anxiety during withdrawal. Adaptations in these systems also parallel the behavioral and psychologi-
cal features of opioid use disorder (OUD), highlighting the important role of withdrawal in the development of addictive 
behavior. Implications for relapse and treatment are discussed as well as promising avenues for future research, with the hope 
of promoting continued progress toward characterizing neural contributors to opioid withdrawal and compulsive opioid use.
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Introduction

Opioid use disorder (OUD) is a chronic relapsing disorder 
characterized by various symptoms, including unsuccess-
ful efforts to decrease use, craving, continued use despite 
negative consequences, and the development of withdrawal 
symptoms that may be relieved by taking more of the drug 
(American Psychiatric Association, 2013). More than 26 
million people worldwide are affected by OUD, including 
more than 80,000 fatal overdoses in the USA in 2021 (Vos 
et al. 2017; Centers for Disease Control and Prevention, 
2022). While gold-standard treatments such as methadone 
maintenance therapy are effective when individuals are in 
treatment programs, relapse remains a serious concern after 
the completion of these programs (Bell and Strang 2020; 
Magura and Rosenblum 2001), underscoring the need for 
better treatments that prevent relapse long-term.

Critically, the characteristics of OUD exist in a repeti-
tive cycle in which individuals suffering from addiction 

experience negative emotion (e.g., aversion, anxiety) fol-
lowed by intense craving and temptation to use the drug 
again, which has the potential to induce relapse (Koob and 
Volkow 2010). Relief of negative affect is also thought to 
contribute to the addictive cycle via negative reinforcement 
mechanisms (Koob 2013). Understanding the neurobiologi-
cal mechanisms that produce negative emotional signs and 
symptoms of opioid withdrawal is therefore an important 
foundation for properly treating patients with OUD.

The aversive symptoms of withdrawal from drugs of 
abuse oppose the initial rewarding, euphoric effects of drug 
use (Solomon and Corbit 1974; Koob et al. 1989). For opi-
oids, this may include somatic signs such as body aches 
and chills, gastrointestinal upset, hyperalgesia, and affective 
signs such as anxiety, irritability, and reduced motivation for 
natural rewards (Koob et al. 1989; Pergolizzi et al. 2020). 
Importantly, this subsequent aversive process relies on some 
of the same neural circuits that mediate the euphoric and 
reinforcing effects of opioids (Stinus et al. 1990; Vargas-
Perez et al. 2009; Radke et al. 2011). Affective signs of 
withdrawal from opioids are observed after one or a few 
exposures in humans (Longnecker et al. 1973; Jones 1980) 
and animals (Schulteis et al. 1997; Parker and Joshi 1998; 
Harris and Gewirtz 2004; Rothwell et al. 2012) and inten-
sify in severity with additional drug exposure (Kenny et al. 
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2006; Edwards et al. 2012; Williams et al. 2012). Thus, as 
the cycle of addiction continues, relief of withdrawal is an 
important factor driving continuation of drug use (Weiss 
et al. 2001; Hutcheson et al. 2001; Koob and Volkow 2010; 
Piper 2015; Kosten and Baxter 2019).

A critical distinction in the motivation to continue using 
drugs despite the aversive symptoms of withdrawal is 
between somatic vs. affective withdrawal signs, and con-
temporary literature argues that it is primarily the affective 
symptoms of withdrawal that contribute to addiction rather 
than somatic signs (Koob and Volkow 2010). However, 
symptoms traditionally considered to be entirely physical 
also induce negative affect and as such may serve as pow-
erful motivators to continue opioid use, particularly in the 
immediate term when withdrawal begins. Because of their 
critical contribution to the cycle of addiction, this review 
will focus on the neural systems known to mediate the signs 
and symptoms of both affective and somatic signs of opioid 
withdrawal from a circuit perspective. A robust literature 
suggests that the functions of mesolimbic dopaminergic sys-
tem, basolateral amygdala, extended amygdala (i.e., central 
nucleus of the amygdala, bed nucleus of the stria terminalis, 
and nucleus accumbens shell), and brain and hormonal stress 

systems are altered following opioid exposure (Table 1). 
These changes mediate behavioral signs of negative affect 
such as aversion and anxiety during withdrawal and par-
allel the development of drug-seeking behavior. Addition-
ally, peripheral opioid receptors, the locus coeruleus, and 
the periaqueductal gray are important mediators of somatic 
signs of opioid withdrawal.

Mesolimbic dopamine system

The mesolimbic dopamine system consists primarily of 
dopamine (DA) neurons in the ventral tegmental area 
(VTA) that project to various limbic structures, including the 
amygdala and nucleus accumbens (NAc) (Kiyatkin 1995). 
Early studies demonstrated that animals robustly respond 
for intracranial stimulation of the VTA (Olds and Milner 
1954; Crow 1972) and NAc (Phillips and Fibiger 1980; Cole 
et al. 2018) and since then an abundance of research has 
demonstrated the significance of the mesolimbic DA sys-
tem in motivated behavior. The functions ascribed to the 
mesolimbic DA system are vast and varied, including roles 
in learning and plasticity, salience, value, effort, and choice 

Table 1  Brain regions and neurotransmitter systems involved in opioid withdrawal behaviors

BLA basolateral amygdala, BNST bed nucleus of the stria terminalis, CeA central amygdala, CRH corticotropin releasing hormone, DA dopa-
mine, LC locus coeruleus, NE norepinephrine, PAG periaqueductal gray

Region/system Role in withdrawal Citation

Mesolimbic DA Decreased DA neuron firing and DA release, enhancing 
impact of phasic signal

Pothos et al. (1991); Diana et al. (1995); Kaufling and 
Aston-Jones (2015); Fox et al. (2017); George et al. 
(2022)

Negative affective signs (e.g., aversion, anhedonia, anxi-
ety)

Stinus et al. (1990); Kenny et al. (2006); Chartoff et al. 
(2009); Radke et al. (2011); Radke and Gewirtz (2012)

BLA Association of withdrawal-induced negative affect with 
cues

Frenois et al. (2002); Hellemans et al. (2006); Lucas et al. 
(2008); Lyons et al. (2013); Franco-Garcia et al. (2022)

Negative affective signs (e.g., anxiety) Harris et al., (2006); Deji et al. (2022)
Enhanced incentive value of rewards during withdrawal Wassum et al. (2016)

CeA Negative affective signs (e.g., aversion, anxiety), e.g., 
through CRH signaling

Heinrichs et al. (1995); Watanabe et al., (2002b); Harris 
et al. (2006); McNally and Akil (2002); Criner et al. 
(2007); Cabral et al. (2009)

BNST Negative affective signs (e.g., aversion, anxiety) and 
stress-related behaviors, e.g., through NE signaling

Aston-Jones et al. (1999); Delfs et al. (2000); Gracy et al. 
(2001); Frenois et al. (2002); Veinante et al. (2003); 
Nakagawa et al. (2005); Harris et al. (2006)

Activation of stress systems Aston-Jones et al. (1999); Fuentealba et al. (2000); Song 
et al. (2020)

Adrenal stress hormones Increased release of cortisol and NE from adrenals Fuertes et al. (2000); Houshyar et al. (2003); Almela et al. 
(2012); Navarro-Zaragoza et al. (2021)

Negative affective signs (e.g., place aversion) Garcia-Perez et al. (2012); Garcia-Perez and Milanes 
(2020); Solecki et al. (2019)

LC Somatic withdrawal signs Rasmussen et al. (1990); Maldonado and Koob (1993); 
Maldonado et al. (1992a, b)

PAG Somatic withdrawal signs Maldonado et al. (1992a, b); Chieng et al. (1995)
Withdrawal-induced pain sensitivity and aversion Stinus et al. (1990); Bagley et al. (2005); Bagley et al. 

(2011)
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(Wise 2004; Keiflin and Janak 2015; Berke 2018; Pianta-
dosi et al. 2021). Reward prediction error theory, which is 
based on the observation that DA neuron firing rates are 
increased following unexpected presentation of a reward or 
reward-predictive cue (Schultz et al. 1993), has been par-
ticularly influential in the addiction field. Because all major 
drugs of abuse acutely increase extracellular DA levels in the 
NAc (Di Chiara and Imperato 1988), some have argued that 
inflated reward prediction errors in the presence of drugs 
enhance learning about drugs and drug-paired cues (Ahmed 
2004; Redish 2004; Keiflin and Janak 2015). Sensitization 
of neural responses to drug-paired cues in turn elicits drug-
seeking behavior, often at the expense of other available 
rewards and long after drug use has ceased (Robinson and 
Berridge 2001).

Because the VTA and NAc support the positive rein-
forcing effects of opioids (Koob and Volkow 2010), it is 
not surprising that affective signs of withdrawal arise from 
compensatory mechanisms in these same structures. Obser-
vations of increased cFos expression in the NAc shell dur-
ing opiate withdrawal support this idea (Walters et al. 2000; 
Gracy et al. 2001). Further, infusion of an opioid receptor 
antagonist into the NAc of dependent animals induces con-
ditioned place aversion (Stinus et al. 1990; Carlezon and 
Thomas 2009). A state of anxiety-like behavior can also 
be observed during spontaneous withdrawal from an intra-
VTA infusion of morphine (Radke et al. 2011). In general, 
withdrawal from opioids is associated with decreases in 
mesolimbic DA neuron firing and DA release (Pothos et al. 
1991; Diana et al. 1995; Fox et al. 2017; George et al. 2022). 
Reductions in DA signaling disrupt baseline reward sensitiv-
ity, as evidenced by increases in intracranial self-stimulation 
(ICSS) thresholds that occur during withdrawal (Kenny et al. 
2006), and produce behavioral signs of withdrawal such as 
place aversion and increases in the startle reflex that can be 
reversed with infusions of DA receptor agonists into the NAc 
(Chartoff et al. 2009; Radke and Gewirtz 2012).

Intracellularly, the mu-opioid receptor (MOR) exerts an 
inhibitory influence on the membrane potential via cou-
pling to the Gi intracellular signaling pathway, which inhib-
its adenylyl cyclase activity (Chakrabarti et al. 1995). As 
a compensatory mechanism, activity of adenylyl cyclase 
and other components of the cAMP signaling pathway are 
upregulated (Sharma et al. 1975; Chan and Lutfy 2016). 
This causes increased “rebound” firing in MOR-expressing 
VTA GABAergic neurons during the opioid-withdrawn 
state (Bonci and Williams 1997). Greater inhibition from 
these MOR-expressing GABAergic cells in the VTA there-
fore results in decreases in DA neuron activity during with-
drawal (Diana et al. 1995; 1999). Projections from MOR-
expressing neurons outside of the VTA, for example, in the 
medial habenula (Boulos et al. 2020) and rostromedial teg-
mental nucleus (Kaufling and Aston-Jones 2015; Bobzean 

et al. 2019), also contribute to modulations of DA neuron 
firing during withdrawal. Another potential regulator of DA 
release during withdrawal are the cholinergic interneurons 
of the striatum, which modulate DA release by inducing 
action potentials in the axons of DA neurons (Liu et al., 
2022). Cholinergic interneurons express MORs (Ponterio 
et al. 2013; Mamaligas et al. 2016; Collins et al. 2019), and 
acetylcholine release is increased during precipitated with-
drawal (Rada et al. 1991, 1996).

Decreases in baseline sustained (i.e., tonic) DA neuron 
activity that occur during opioid withdrawal (Kaufling and 
Aston-Jones 2015; George et al. 2022) may serve to make 
opioid-induced changes in phasic DA signaling more sali-
ent during withdrawal. In other words, withdrawal may be 
critical to the development of addiction because it enhances 
the “signal-to-noise” ratio of the DA response (Wanat et al. 
2009; Zhang et al. 2012). This enhanced phasic DA signal 
that occurs after reexposure to drugs or drug-paired cues 
under withdrawal conditions may serve as a critical mecha-
nism in the motivation to continue drug use.

In addition to reductions in DA levels, opioid withdrawal 
is characterized by plasticity in glutamatergic signaling in 
the NAc, originating from cortical, thalamic, or amygdalar 
inputs (Zhu et al. 2016; Hearing et al. 2018). In morphine 
withdrawal-exposed striatal cells, evidence shows increased 
phosphorylation of the AMPA receptor subunit GluR1 and 
increased AMPA receptor-mediated currents (Chartoff et al. 
2003). Additionally, experimentally elevating GluR1 levels 
in the NAc enhances drug-induced CPA and AMPA receptor 
antagonist infusion in the NAc shell of morphine-dependent 
rats prevents naloxone-induced withdrawal CPA (Carlezon 
and Thomas 2009). Together, these findings suggest that 
heightened striatal glutamate is another important mediator 
of withdrawal-induced aversion (Russell et al. 2016).

Basolateral amygdala

The basolateral amygdala (BLA) signals the value of envi-
ronmental stimuli, and as such has an important role in asso-
ciative processes necessary for emotional learning (Wassum 
and Izquierdo 2015). Through its connections with areas 
such as the thalamus and sensory cortices, the BLA receives 
information about the external environment and guides 
behavior through its connections with the central amygdala 
(CeA), NAc, dorsal medial striatum, and bed nucleus of 
the stria terminalis (BNST) (Weller and Smith 1982; van 
Vulpen and Verwer 1989; McDonald 1998; Ambroggi et al. 
2008; Vertes et al. 2015; Kim et al. 2017). The role of BLA 
in learning about aversive and anxiogenic stimuli is well 
documented (Maren 2003; O’Neill et al. 2018), so it is not 
surprising that conditioned opioid withdrawal memories 
are stored here (Frenois et al. 2002; Hellemans et al. 2006; 
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Lucas et al. 2008; Lyons et al. 2013; Franco-García et al. 
2022). It is important to note that this function of associat-
ing the negative emotional effects of withdrawal with pre-
viously neutral cues is likely the primary role of the BLA 
in opioid withdrawal, rather than mediating aversion itself. 
As evidence of this, BLA lesions prevent the acquisition of 
conditioned withdrawal behavior (i.e., suppression of a food-
seeking response) in morphine-dependent rats but do not 
eliminate the acute expression of withdrawal signs (Schulteis 
et al. 2000). Precipitated withdrawal alone (without condi-
tioning) increases cFos expression in a number of limbic 
brain regions, but not in the BLA (Frenois et al. 2002). Fur-
ther, lesions of BLA reduced but did not eliminate acquisi-
tion of morphine withdrawal-induced CPA, suggesting that 
this manipulation does not prevent withdrawal-induced aver-
sion (Watanabe et al. 2002b).

The BLA-dependent mechanisms underlying conditioned 
opioid withdrawal include a number of neurochemical sys-
tems and connections with cortical and hippocampal cir-
cuits. Reduced DA transmission in the BLA is correlated 
with the magnitude of withdrawal-induced place aversion 
(García-Pérez and Milanés 2020). BLA projections to the 
prelimbic cortex express cFos in response to withdrawal-
induced CPA and optogenetically inhibiting these neurons 
eliminates expression of CPA (Song et al. 2019). Similarly, 
contextual fear conditioning is stronger when performed in 
a context previously paired with opioid withdrawal, and this 
effect involves projections from prelimbic cortex to BLA 
(Seno et al. 2022). Recruitment of BLA during opioid with-
drawal also involves the corticotropin releasing hormone 
(CRH) system, as a CRH receptor 1 antagonist prevents 
acquisition of morphine CPA and withdrawal-induced 
increases in BDNF expression in this region (Martínez-
Laorden et al. 2020).

Although studies using place conditioning have found 
that BLA’s role is primarily an associative one, other studies 
have implicated this structure in opioid withdrawal-induced 
defensive behaviors. Pharmacological inactivation of the 
BLA prevents elevations of the startle reflex, a behavioral 
index of anxiety-like behavior, during withdrawal from a 
single morphine exposure (Harris et al. 2006). Chemoge-
netic inhibition of BLA inputs and projections to the ventral 
hippocampus have also recently been shown to attenuate 
anxiogenic behaviors as measured on the elevated plus maze 
and open field test 2 weeks after cessation of chronic opioid 
exposure (Deji et al. 2022).

In addition to being required for forming memories 
of withdrawal, the BLA may mediate enhancements in 
the incentive value of rewards experienced during opioid 
withdrawal. Receipt of reward during opioid withdrawal 
enhances reward-seeking in rats (Hutcheson et al. 2001) and 
an elegant demonstration by the Wassum lab established that 
this effect is blocked by the inactivation of MORs in the 

BLA (Wassum et al. 2016). These BLA MORs appear to be 
necessary for recall of outcome-specific reward memories, 
and their recruitment by exogenous opioids likely plays an 
important role in promoting drug taking behaviors (Lichten-
berg and Wassum 2017). Another intriguing study in mice 
exposed to chronic morphine and withdrawal suggests that 
this treatment enhances learning about fearful stimuli by 
enhancing GluA1-dependent plasticity in the BLA (Pen-
nington et al. 2020). Thus, the role of withdrawal in shaping 
associated learning processes in the BLA appears to apply 
to both aversive and appetitive stimuli.

Central amygdala

The central amygdala (CeA) mediates the expression of 
behavioral output in a wide range of circumstances, both 
aversive and appetitive, and plays an important role in action 
selection and incentive motivation (Fadok et al. 2018; War-
low and Berridge 2021). This latter function of the CeA is 
particularly relevant to the maladaptive seeking responses 
that characterizes OUD. CeA plasticity induced by repeated 
cycle of opioid exposure and withdrawal may narrow and 
intensify behaviors directed toward drugs and drug-paired 
cues. In support of this idea, CeA has been shown to be nec-
essary for the expression of conditioned and unconditioned 
negative emotional signs of opioid withdrawal.

Lesioning the CeA significantly reduces morphine 
withdrawal-induced CPA in rats (Watanabe et al. 2002b), 
suggesting that this nucleus is critical for the production of 
avoidance responses during withdrawal. The central impor-
tance of the CeA in withdrawal-induced aversion is also sup-
ported by observations of cFos expression and increases in 
CRE-mediated transcription in this region after morphine 
withdrawal (Stornetta et al. 1993; Gracy et al. 2001; Shaw-
Lutchman et al. 2002; Frenois et al. 2002; Veinante et al. 
2003; Baidoo et al. 2021) and the finding that CPA and sup-
pression of operant responding for food can be precipitated 
following systemic morphine injection via intra-CeA infu-
sion of a MOR antagonist (Heinrichs et al. 1995; Criner et al. 
2007). Anxiety-like behavior, measured as startle potentia-
tion, during acute opioid withdrawal is also prevented when 
the CeA is pharmacologically inhibited (Harris et al. 2006; 
Cabral et al. 2009).

A number of neurochemical systems in the CeA have 
been implicated in opioid withdrawal. Withdrawal-induced 
CPA is attenuated by intra-CeA infusion of glutamate recep-
tor antagonists (Watanabe et al. 2002a; Ishida et al. 2008) 
and targeted deletion of NMDA receptors (Glass et al. 2008). 
The GluA1 subunit of the AMPA receptor is upregulated 
in the CeA during morphine withdrawal and suppression 
of GluA1 prevented elevated morphine-seeking behavior 
in withdrawn rats (Hou et al. 2015) (although this same 
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treatment enhanced morphine withdrawal CPA, see Cai et al. 
2020). Increased basal GABAergic transmission has also 
been demonstrated during opioid withdrawal, an effect that 
is mediated by activations in cAMP signaling (Bajo et al. 
2014; Guo et al. 2019). Specifically, firing of CeA parval-
bumin inhibitory interneurons, which regulate the activity of 
principal CeA neurons, is increased during withdrawal from 
morphine. Further, optogenetic inhibition of these neurons 
reduced expression of withdrawal-induced CPA, avoidance 
of the open arms on the elevated plus maze, and anhedonia 
in a saccharin preference test, whereas stimulation increased 
these affective withdrawal signs (Wang et al. 2016).

An important player in the CeA’s response to opioid with-
drawal is the neuropeptide CRH. CRH receptor blockade in 
the CeA reduces CPA and lesion of CeA CRH-containing 
neurons attenuates expression of conditioned operant sup-
pression of food seeking (Heinrichs et al. 1995; McNally 
and Akil 2002), suggesting an important role for CRH pro-
jections to and from this nucleus. In addition to attenuat-
ing negative affective signs of withdrawal, inhibition of the 
parvalbumin interneurons described above reduces upregu-
lated levels of CRH mRNA in the CeA (Wang et al. 2016). 
There is also evidence to suggest that reciprocal connec-
tions between the VTA and CeA CRH neurons are required 
for opioid withdrawal-induced CPA. 6-Hydroxydopamine 
lesions of the CeA-projecting VTA DA neurons impair the 
formation of a place aversion during withdrawal (Xu et al. 
2012). Further, CRH-containing neurons that project to the 
VTA are activated during withdrawal and participate in the 
formation of withdrawal-induced CPA (Jiang et al. 2021). 
Considering that stimulation of CRH neurons in the CeA 
has been shown to increase incentive motivation (Baum-
gartner et al. 2021), activation of this system during opioid 
withdrawal may serve as a neural substrate for the intense, 
maladaptive seeking behavior that characterizes addiction.

Bed nucleus of the stria terminalis

The role of the BNST, which is also part of the extended 
amygdala, in opioid withdrawal fits with its known role in 
mediating sustained defensive responses and stress-related 
behaviors (Lebow and Chen 2016). The BNST makes con-
nections with brain regions already discussed, such as the 
amygdala, NAc, and VTA and projects to and influences 
neurons in the paraventricular nucleus of the hypothalamus 
that regulate the hypothalamic–pituitary–adrenal (HPA) 
axis (Song et al. 2020). Afferent projections from the locus 
coeruleus and other noradrenergic nuclei in the brainstem 
are also present here and play an important role in BNST 
activity during opioid withdrawal.

As evidence of the BNST’s involvement in opioid with-
drawal, cFos is enhanced in this region during withdrawal 

and is correlated with the level of withdrawal-induced place 
aversion (Gracy et al. 2001; Frenois et al. 2002; Veinante 
et al. 2003; Nakagawa et al. 2005). Infusion of a MOR antag-
onist into the BNST also precipitates withdrawal, as meas-
ured by suppression of operant responding for food (Criner 
et al. 2007). Inactivation of BNST reduces the magnitude 
of withdrawal-potentiated startle during acute opioid with-
drawal (Harris et al. 2006) and BNST lesions reduce with-
drawal following chronic morphine exposure (Nakagawa 
et al. 2005). BNST neurons are more excitable following a 
history of opioid dependence (Francesconi et al. 2017), and 
this may result from changes in local inhibitory signaling. 
For example, systemic treatment with the GABA-B recep-
tor agonist baclofen reduces morphine withdrawal-induced 
anxiety-like behavior and prevents decreases in BNST brain 
derived neurotrophic factor (BDNF) (Pedrón et al. 2016). 
Changes in BNST GABAergic signaling have also been 
observed during morphine withdrawal in mice, although 
the direction of the effects diverged in males and females 
(Luster et al. 2020). Activation of BNST during withdrawal 
appears to be mediated through projections from the CeA, as 
CeA lesions prevent withdrawal-induced increases in cFos 
immunoreactivity in the BNST (Nakagawa et al. 2005).

The BNST has the most significant density of noradren-
ergic inputs over any other brain region, and BNST norepi-
nephrine (NE) signaling is important in mediating negative 
affect during opioid withdrawal. Extracellular levels of NE 
are increased in the ventral BNST after chronic morphine 
treatment (Fuentealba et al. 2000). Additionally, enhanced 
NE increases withdrawal-induced place aversion, whereas 
inhibiting NE activity blocks this behavior (Brownstein and 
Palkovits 1984; Aston-Jones et al. 1999; Delfs et al. 2000). 
The effects of NE are mediated by ꞵ-adrenergic receptors, 
as suggested by findings that withdrawal-induced cFos 
expression in the BNST is reduced by pretreatment with 
a ꞵ-adrenergic receptor antagonist and that intra-BNST ꞵ 
receptor antagonism reduces withdrawal-induced CPA 
(Aston-Jones et al. 1999). A major source of BNST NE dur-
ing withdrawal are the brainstem nuclei that project via the 
ventral noradrenergic bundle, i.e., the A1 and A2 cell groups 
(Aston-Jones et al. 1999; Delfs et al. 2000).

Stress systems

Opioid withdrawal is known to induce a robust peripheral 
stress response through activation of the HPA axis and the 
sympathetic nervous system. Release of cortisol and NE 
from the adrenal glands circulates systemically and impacts 
circuits throughout the central nervous system. Thus, activa-
tion of stress systems has the potential to impact all of the 
circuits discussed above and more.
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The production and secretion of glucocorticoids (e.g., 
cortisol in humans and corticosterone in rodents) is con-
trolled by the HPA axis. Neurons in the paraventricular 
nucleus of the hypothalamus (PVN) release CRH into the 
anterior pituitary, which releases adrenocorticotropic hor-
mone (ACTH) into the bloodstream to trigger glucocorticoid 
secretion from the adrenal cortex (Fulford and Harbuz 2005; 
Watson and Mackin 2006; Glynn et al. 2013). During with-
drawal from chronic morphine treatment, corticosterone and 
ACTH levels are increased in rodents (Fuertes et al. 2000; 
Houshyar et al. 2003; Almela et al. 2012; Navarro-Zaragoza 
et al. 2021). Additionally, formation of a withdrawal-induced 
place aversion and induction of delta FosB expression in 
NAc, BNST, CeA, and PVN is impaired following adrenal-
ectomy (García-Pérez et al. 2012, 2016; García-Pérez and 
Milanés 2020), although somatic withdrawal signs remain 
intact. Clinical findings also suggest increased HPA activity 
in humans during withdrawal. Increased cortisol has been 
observed during spontaneous and naloxone-precipitated 
withdrawal in individuals who are dependent on opioids 
(Tennant et al. 1991; Culpepper-Morgan and Kreek 1997; 
Nava et al. 2006; Zhang et al. 2008).

HPA axis activation results from activity in the PVN dur-
ing withdrawal, as evidenced by cFos expression in CRH-
containing neurons and increases in CRH mRNA in the PVN 
(McNally and Akil 2002; Houshyar et al. 2003; Hamlin et al. 
2004), although decreases in CRH mRNA have also been 
observed (Milanés et al. 2002). The important role that CRH 
plays in withdrawal has also been demonstrated in mice with 
genetic deletion of CRH-1 or CRH-2 receptors (Contarino 
and Papaleo 2005; Ingallinesi et al. 2012; García-Carmona 
et al. 2015a) and through systemic pharmacological block-
ade of CRH receptors (Stinus et al. 2005; Skelton et al. 
2007). It is important to note here that systemic manipula-
tions such as these cannot differentiate between the actions 
of CRH in the HPA axis and in other extra-hypothalamic 
brain regions such as the CeA. Noradrenergic projections 
from the A1 and A2 cell groups are one mechanism through 
which PVN CRH neurons are recruited during withdrawal. 
Direct noradrenergic projections to PVN are activated dur-
ing withdrawal from chronic morphine exposure (Fuertes 
et al. 2000; Benavides et al. 2003). The BNST is also critical 
in regulating PVN CRH activity (Forray and Gysling 2004), 
meaning that NE release here likely also contributes to HPA 
axis activation during opioid withdrawal, although this has 
yet to be demonstrated.

Despite robust evidence for glucocorticoid release dur-
ing opioid withdrawal and the impacts of adrenalectomy on 
place aversion mentioned above (García-Pérez et al. 2016; 
García-Pérez and Milanés 2020), blockade of glucocorti-
coid receptors (GR) during withdrawal has been found inef-
fective in modifying affective signs of withdrawal (Solecki 
et al. 2019). The adrenal gland is also an important source 

of systemic epinephrine/norepinephrine that is activated 
by sympathetic projections from the spinal cord, which 
receive inputs from central nervous system nuclei, includ-
ing the PVN (Hosoya et  al. 1991). In human patients, 
naloxone-precipitated withdrawal increases plasma con-
centrations of epinephrine and NE (Kienbaum et al. 1998), 
which may underlie some of the effects of adrenalectomy 
on withdrawal-induced aversion. Systemic treatment with 
β adrenergic receptor antagonists attenuates affective signs 
of opioid withdrawal (Solecki et al. 2019), but much like 
systemic studies of the CRH system, it is difficult to ascribe 
these effects to sympathoadrenal vs. central mechanisms. 
Thus, the exact mechanisms through which the HPA axis 
contributes to the affective component of withdrawal have 
yet to be fully clarified.

Neural circuits mediating somatic 
withdrawal signs

Some of the most prominent aspects of the opioid with-
drawal syndrome include the somatic signs and symptoms. 
In humans, the somatic withdrawal syndrome begins within 
24 h of discontinuing opioids and reaches its peak within 
the next few days, though this time course can vary due 
to individual differences and whether an individual is dis-
continuing short or long-acting opioids (Dunn et al. 2019). 
Typical somatic signs of withdrawal include gastrointestinal 
issues such as diarrhea and nausea and vomiting, changes in 
pain sensitivity including muscle and joint aches and hyper-
algesia, hot and cold flashes, piloerection, pupil dilation, 
lacrimation, rhinorrhea, and yawning (Bradley et al. 1987; 
Dunn et al. 2019). Many of these signs can be measured in 
rodent models of opioid withdrawal, and species-specific 
signs can be observed as well. Scales of somatic withdrawal 
in rodents frequently include signs such as jumping, rear-
ing, wet dog shakes, abdominal constrictions, diarrhea, sali-
vation, hunched posture, and teeth chattering (Gellert and 
Holtzman 1978; Maldonado et al. 1992a, b; Maldonado and 
Koob 1993).

In general, somatic signs and symptoms of opioid with-
drawal can be attributed to compensatory rebound activa-
tion and neuronal hyperexcitability following opioid-induced 
inhibition. Peripheral MORs are found in the terminals 
of afferent sensory neurons and in enteric neurons (Stein 
2013; Galligan and Akbarali 2014), and these receptors 
are responsible for the gastrointestinal effects and other 
peripheral signs such as lacrimation, rhinorrhea, and sali-
vation (Bianchetti et al. 1986; Maldonado, Negus, Koob, 
1992a). For example, withdrawal-induced diarrhea was 
shown to be dependent on peripheral opioid receptors by 
administration of the peripherally selective opioid antagonist 
SR 58,002 C, which induces diarrhea, but not jumping, in 
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morphine-dependent mice (Bianchetti et al. 1986). Similarly, 
the widely available over-the-counter anti-diarrheal medica-
tion, loperamide, primarily reduces diarrhea by activating 
MORs in the gut (Kang et al. 2016).

Within the central nervous system, MOR antagonism in 
a wide array of brain regions precipitates withdrawal signs 
in rodents, with especially strong effects observed in two 
contiguous regions of the brainstem, the periaqueductal gray 
(PAG) and locus coeruleus (LC) (Maldonado et al. 1992a, 
b; Koob et al. 1992). Infusion of the opioid receptor antago-
nist methylnaloxonium into the PAG produced signs such as 
teeth chatter, jumping, rearing, piloerection, and loss of body 
weight in rats (Maldonado et al. 1992a, b) as well as severe 
agitation and development of a conditioned place aversion 
(Stinus et al. 1990). Manipulation of protein kinases in this 
region also attenuates withdrawal behaviors (Maldonado 
et al. 1995; Punch et al. 1997). Further, PAG neurons express 
cFos following precipitated withdrawal (Chieng et al. 1995) 
and have been shown to develop electrophysiological toler-
ance and withdrawal following opioid exposure (Chieng and 
Christie 1996). This sensitivity of the PAG to withdrawal is 
not surprising considering the large number of opioid recep-
tors expressed in this region and a well-characterized role in 
opioid-induced analgesia via descending projections to the 
dorsal horn of the spinal cord. Because of its important role 
in modulation of pain, the PAG is also the primary media-
tor of the enhanced pain sensitivity characteristic of with-
drawal. Withdrawal-induced hyperexcitability in GABAergic 
interneurons of the PAG reduces the ability of PAG out-
put neurons to suppress ascending pain signals (Hack et al. 
2003; Bagley et al. 2005, 2011).

Another brain region that has received a great deal of 
attention for its role in somatic signs of opioid withdrawal 
is the LC, the primary source of NE in the brain. Rasmussen 
and colleagues demonstrated that the time course of multi-
ple somatic withdrawal signs paralleled increased activity 
in the LC (Rasmussen et al. 1990). Increased cFos activ-
ity has also been observed in the LC during precipitated 
withdrawal (Hayward et al. 1990; Alvarez-Bagnarol et al. 
2022). Increases in LC activity are mediated by excitatory 
inputs from the nucleus paragigantoceullularis and orex-
inergic inputs from the lateral hypothalamus in addition 
to MOR antagonism (Rasmussen and Aghajanian, 1989; 
Akaoka and Aston-Jones, 1991; Aghajanian et al. 1994; 
Hooshmand et al. 2019). Maldonado and Koob showed that 
lesioning the LC in dependent rats reduces a wide breadth 
of somatic withdrawal signs, including jumping, hyperac-
tivity, and wet dog shakes (Maldonado and Koob 1993). 
Additionally, methylnaloxonium injection directly into the 
LC enhances somatic withdrawal signs in dependent rats 
(Maldonado et al. 1992a, b) while intra-LC AMPA recep-
tor antagonism (Rasmussen et al. 1996; Taylor et al. 1998), 
GABA-B receptor agonism (Riahi et al. 2009), and orexin-1 

receptor antagonism (Azizi et al. 2010) reduces their expres-
sion. A role for noradrenergic involvement in withdrawal 
symptoms is further demonstrated in clinical data with α2 
adrenergic agonists demonstrating promise for reduction of 
withdrawal signs and improvement of treatment outcomes 
in addicted individuals (Gowing et al. 2016). Despite this 
robust evidence suggesting a role for the LC, studies using 
neurochemical lesion techniques to target LC noradrener-
gic neurons have failed to find a role for these neurons in 
the somatic component of withdrawal (Chieng and Chris-
tie, 1995; Christie et al. 1997; Caillé et al., 1999). The pre-
cise role of the LC in somatic signs of withdrawal therefore 
remains an unresolved issue (Williams et al. 2001).

Discussion

Taken together, the evidence reviewed suggests that opioid 
withdrawal results in severely dysregulated reward and stress 
systems. Because preclinical studies in rodents do not pro-
vide insight into an animal’s affective consciousness it is 
impossible to conclude that brain regions such as the amyg-
dala or NAc mediate the subjective emotional experience 
of withdrawal. Still, the reward and stress systems reviewed 
above can be said to work together to produce behaviors 
that represent negative emotional states, such as aversion, 
anhedonia, and anxiety. Further, neural changes in these cir-
cuits parallel the psychological phenomena of OUD, such as 
an unusual focus on drug reward at the expense of natural 
rewards and self-medication or relapse in response to anxi-
ety or stress.

Role in addiction

A number of theoretical frameworks have been proposed 
to explain the psychology of addictive behavior, and there 
is ongoing debate over the relative contribution of negative 
affect, habit, decision-making processes, and incentive moti-
vation to maladaptive drug seeking (Field and Kersbergen, 
2020; Hogarth 2020; Epstein 2020). Relief of withdrawal 
has long been seen as a key driver of continued drug use 
although thinking about the nature of this contribution has 
shifted over time (Wikler 1948; Dole et al. 1966; Koob and 
Volkow 2010). One important observation that strongly sup-
ports the supposition that withdrawal is critical to initiating 
and maintaining the cycle of addiction is the observation 
that opioids are most likely to be abused when administered 
intermittently (vs. continuously). For example, rapidly deliv-
ered and short-acting heroin has a greater abuse liability than 
long-acting methadone (Stimmel and Kreek 2000). Preclini-
cal markers of addiction such as psychomotor sensitization 
and opioid self-administration are similarly observed follow-
ing intermittent opioid exposure only (Vanderschuren et al. 
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1997; Rothwell et al. 2010; Yu et al. 2014; Lefevre et al. 
2020; Fragale et al. 2021). As such, withdrawal, or perhaps 
more specifically reexposure to opioids during withdrawal, 
drives the development of addictive behaviors by creating 
an altered neural state that contributes to maladaptive drug-
induced plasticity. These withdrawal-induced changes in the 
function of the mesolimbic dopamine system, BLA, CeA, 
and BNST consequently set the stage for opioids and opioid-
paired cues to become more salient, valued, and motivating 
than other stimuli.

An important line of evidence suggesting a role for opioid 
withdrawal in promoting addiction comes from the experi-
ences of patients with OUD. For example, a study of patients 
seeking treatment for prescription opioid use found with-
drawal avoidance to be the number one factor motivating 
current use (Weiss et al. 2014) and multiple other studies 
have found at least a partial role for withdrawal when exam-
ining factors that motivate opioid use (Heiwe et al. 2011; 
Harocopos et al., 2016; Stumbo et al. 2017; Frank et al. 
2016; Cicero and Ellis 2017; AbdelWahab et al. 2018). Fear 
of withdrawal also contributes to risky decision making and 
continued use despite negative consequences. Individuals 
with OUD report making risky medical decisions (Summers 
et al. 2018) and avoiding treatment for their drug use (Mitch-
ell et al. 2009) over concerns related to opioid withdrawal.

The preclinical literature also supports a role for with-
drawal in motivating opioid consumption, although the lit-
erature is mixed. Injection of naloxone in morphine-depend-
ent rats increases responding for heroin at low doses (e.g., 
0.01 mg/kg), but higher doses of naloxone (e.g., 0.03 mg/kg) 
do the opposite (Carrera et al. 1999). Stimuli conditioned 
to acutely precipitate heroin withdrawal can also stimulate 
heroin self-administration behavior in rats and blunt the sen-
sitivity of the brain reward system, as measured with ICSS 
(Kenny et al. 2006). Experience with heroin during with-
drawal has also been shown to be necessary for withdrawal 
to motivate future drug seeking in rats (Hutcheson et al. 
2001). Work in rhesus monkeys has further demonstrated 
that heroin (vs. food) choice increases following cessation of 
21-h heroin access (Negus, 2006; Negus and Rice 2009). A 
number of pharmacological manipulations that reduce signs 
of opioid withdrawal reduce self-administration behaviors, 
including reinstatement, in rats, and these manipulations can 
include a wide range of pharmacological targets including 
α1 adrenergic receptors (Greenwell et al. 2009), CRF (Park 
et al. 2015), PPAR-γ, (de Guglielmo et al. 2017), dopamine 
D3 receptors (de Guglielmo et al. 2019), and 5α-Reductase 
(Bosse et al. 2021). However, drugs targeting withdrawal 
signs did not reduce heroin choice in monkeys (Negus and 
Rice 2009) and have not yet successfully translated to the 
clinic. In contradiction to findings supporting a role for 
withdrawal in opioid consumption, another line of evidence 
suggests that opioid withdrawal-induced anhedonia (i.e., 

increases in ICSS thresholds) is associated with reduced 
morphine self-administration behaviors (Holtz et al. 2015; 
Swain et al. 2020). Examinations of the influence of with-
drawal on heroin seeking also fail to find an effect of nalox-
one injection on reinstatement of lever pressing (Shaham 
and Stewart 1995; Shaham et al. 1996).

While early theories postulated a role for relief of physi-
cal signs of withdrawal in addiction (Wikler 1948; Dole 
et al. 1966), views have shifted to consider the affective 
signs and symptoms of withdrawal to be of primary moti-
vational significance (Koob and Volkow 2010). One reason 
for this distinction is that while the somatic component of 
opioid withdrawal resolves in a few days to weeks, affective 
signs can persist much longer. Additionally, the low abuse 
liability of many pharmacologically active substances that 
nonetheless produce tolerance and a state of withdrawal 
upon abstinence (e.g., caffeine) argues against the idea that 
physical dependence alone is sufficient for addiction (Heinz 
et al., 2020). Indeed, opioids themselves can produce opi-
oid withdrawal syndrome and opioid dependence separately 
from OUD (Kosten and Baxter 2019; Ballantyne et al. 2019). 
Preclinical work also suggests a dissociation in the neural 
substrates mediating the affective and somatic components 
of withdrawal (see mechanisms reviewed above; Frenois 
et al. 2002) and that somatic signs are not predictive of 
affective withdrawal or opioid self-administration behaviors 
(Mucha 1987; Swain et al. 2020). That said, while affective 
withdrawal signs may be more reflective of neural plasticity 
in circuits responsible for addictive behavior, somatic signs 
should not be completely dismissed when considering the 
role of withdrawal in addiction.

One reason to consider a role for somatic withdrawal in 
OUD is that physical and emotional signs are not entirely 
separable. Although not typically life-threatening, acute 
somatic withdrawal signs such as aches and pains, nausea 
and diarrhea, and hot/cold flashes are severely unpleas-
ant (Dunn et al. 2019). As such, the symptoms of opioid 
withdrawal are thought to resemble a severe flu-like illness 
(Farrell 1994) that individuals are highly motivated to avoid 
(Summers et al. 2018). These symptoms therefore construct 
a highly salient event composed of multiple aversive physi-
cal symptoms, and there is evidence to suggest that at least 
some addicted individuals continue drug use to avoid these 
symptoms. For instance, opioid-dependent patients cite a 
fear or concern about increased pain sensitivity as one of the 
primary reasons why they wish not to experience withdrawal 
(Stumbo et al. 2017; Frank et al. 2016). Because many of the 
symptoms of opioid withdrawal are uncomfortable and pain-
ful, it is not possible to categorize them as purely “physi-
cal.” There may also be overlap between the physical and 
emotional aspects of withdrawal as anticipation of somatic 
withdrawal signs produces distress and anxiety (Bruneau 
et al. 2021). It should further be noted that there is overlap in 
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the neural structures demonstrated to produce affective and 
somatic signs of withdrawal in animal models. For example, 
the dopaminergic system contributes to somatic withdrawal 
signs in rats (Harris and Aston-Jones 1994; Chartoff et al. 
2006) and methylnaloxonium infused into the PAG of mor-
phine-dependent rats produces a place aversion (Stinus et al., 
1990). Therefore, it is important to recognize that physi-
cal dependence also contributes to negative affect and that 
avoidance of these symptoms is in fact a powerful influence 
in maintaining opioid use.

Implications for relapse and treatment

In the early stages of abstinence from opioids, negative emo-
tional signs and symptoms of withdrawal contribute to the 
motivation to continue drug use as individuals take drugs 
to avoid the associated pain and dysphoria. As discussed 
above, exposure to drugs during this state promotes the neu-
ral plasticity that underlies compulsive use and drug craving 
(Koob 2020). Although this acute phase of withdrawal is a 
temporary state, persistent emotional dysregulation and sen-
sitization of pain and stress systems far beyond the detoxi-
fication stage leave individuals vulnerable to opioid craving 
months or even years after abstinence is achieved (Sinha 
2009; Koob 2020). Cues conditioned to withdrawal can also 
trigger craving and promote renewed drug taking (Pantazis 
et al. 2021). Thus, the state of protracted withdrawal is an 
important contributor to relapse in individuals recovering 
from OUD.

In animals, relapse is modeled by examining reinstate-
ment of drug seeking following exposure to drugs, drug-
paired cues, stress, or withdrawal-paired cues (Shaham 
and Stewart 1995; Kenny et al. 2006; Mantsch et al. 2016; 
Bossert et al. 2019). It is notable that many of the neural 
circuits and neurotransmitters implicated in affective with-
drawal from opioids have also been identified as participants 
in reinstatement, particularly when it is induced by stress 
(for a thorough review of the stress-induced reinstatement 
model see Mantsch et al. 2016). These overlapping neural 
circuits include the CeA, BNST, VTA, and NAc and within 
these roles for NE, CRH, DA, and glutamate have been 
found. Precipitators of relapse such as stress consequently 
engage the same neural circuits that are sensitized during 
repeated cycles of drug exposure and withdrawal. Thus, 
withdrawal is critical in setting the stage for relapse to be 
initiated by pain, stress, and cues in the long term.

The complexity and interconnectivity of the circuits 
recruited during opioid withdrawal may explain, at least in 
part, the difficulty of treating OUD and preventing relapse. 
Some of the most successful treatments available today help 
patients achieve abstinence by avoiding the withdrawn state. 
For instance, pharmacological maintenance therapies such 
as methadone and buprenorphine are long-acting opioid 

receptor agonists (Joseph et al. 2000). The chronic, stable 
levels of opioid receptor agonism provided by these phar-
macotherapies prevent the highs and lows associated with 
opioid use, including the acute and protracted withdrawal 
states. Of course, despite the success and critical importance 
of pharmacological maintenance therapies to current OUD 
treatment strategies, a limitation of these treatments is that 
they do not correct the long-lasting brain circuit alterations 
that come along with addiction and influence complex phe-
nomena such as salience, value, or motivation. For example, 
methadone maintenance significantly reduces heroin rein-
statement after a priming injection of heroin; however, that 
study saw no effect of methadone maintenance on stress-
induced reinstatement (Leri et  al. 2004). Furthermore, 
although methadone maintenance therapy is effective at 
reducing relapse while individuals are currently undergo-
ing treatment (Bell and Strang 2020), relapse to opioids still 
remains a significant concern after completion of metha-
done therapy programs (Magura and Rosenblum 2001). 
Thus, although methadone maintenance therapy is effective 
in the short-term, it does not adequately address the issue of 
long-term relapse susceptibility. In this sense, it may allow 
providers and patients to feel comfortable for as long as the 
individual is in treatment, but any holistic treatment plan that 
does not adequately prevent relapse years later ultimately 
fails to achieve the goal of long-term success. Thus, the chal-
lenge for the future is to develop treatment strategies that 
normalize some of the long-term neural circuit alterations 
resulting from opioid use and withdrawal.

Future directions

Given the importance of withdrawal in maintaining the cycle 
of addiction and setting the stage for relapse in abstinent 
patients, continued research into the neural mechanisms 
underlying withdrawal-induced negative emotional states is 
necessary. Contemporary research has begun to assess the 
influence of additional neurotransmitter systems and brain 
circuits, and this work has outlined some promising new ave-
nues for OUD treatments. In terms of opioid receptors, most 
of the studies reviewed above have focused on the role of 
MORs. A few recent studies suggest that kappa opioid recep-
tor (KOR) stimulation, which is known to inhibit striatal 
DA release and increase aversion (for review, see Bruijnzeel 
2009), may also contribute to aversion during withdrawal. 
For instance, systemic KOR antagonism reduces morphine 
withdrawal-induced CPA (Kelsey et al. 2015). This effect 
may be mediated by KORs in the BLA and CeA, which are 
thought to be involved in anxiety-like behavior (Knoll et al. 
2011). Advanced genetic and neural circuit approaches (e.g., 
selective gene knockout, optogenetics) will help determine 
the exact mechanisms by which KORs may be involved in 
the described circuit. Another popular treatment currently 
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used in OUD patients is α2 adrenergic agonists. As has been 
discussed, the adrenergic system plays a crucial role in the 
physical symptoms of withdrawal and α2 agonists are quite 
effective at reducing these symptoms (Gowing et al. 2016). 
Furthermore, the use of α2 agonists decreases stress-induced 
drug seeking in rats as well as craving in humans (Sinha 
et al. 2011).

Another promising target is the cannabinoid type 1 recep-
tor  (CB1R). This system is increasingly being implicated in 
anxiety and negative affect (Witkin et al. 2005) and modula-
tion of  CB1R signaling in the BNST, BLA, CeA, and insu-
lar cortex all attenuate morphine withdrawal-induced place 
aversion (Wills et al. 2016, 2017). Other neurotransmitter 
systems such as adenosine (Jafarova Demirkapu et al. 2020) 
and orexin (Laorden et al. 2012) have also been implicated in 
withdrawal and are worthy of further investigation.

In addition to new neurochemical targets, future studies 
into the role that cortical circuits play in withdrawal are also 
needed. The insular cortex, known for its role in interocep-
tion and self-awareness, has been identified as a potential 
therapeutic target for addictive disorders (Naqvi et al. 2007; 
Dinur-Klein et al. 2014; Droutman et al. 2015). This region 
is highly interconnected with the brain circuits reviewed 
here, including the BLA, CeA, and BNST, and it receives 
DAergic inputs from the VTA (Gogolla 2017). Inactivation 
of the insula in rats has been shown to disrupt the forma-
tion of morphine withdrawal-induced CPA (Li et al. 2013) 
as do manipulations of  CB1R signaling in this area (Wills 
et al. 2016). The anterior cingulate cortex (ACC) is another 
cortical region implicated in emotional processes and highly 
interconnected with subcortical circuits known to partici-
pate in withdrawal. Neuroimaging suggests that the ACC is 
activated during opioid withdrawal in men (Chu et al. 2015) 
and inhibition of this region has recently been demonstrated 
to prevent somatic signs of opioid withdrawal in male mice 
(McDevitt et al. 2021).

Finally, female subjects are currently vastly underrepre-
sented in the literature on the neural mechanisms of opioid 
withdrawal. The majority of studies reviewed here were 
conducted exclusively in male subjects. While many areas 
of addiction neuroscience research have made progress in 
regard to the study of sex differences (Radke et al. 2021), 
sex differences in opioid withdrawal remain almost entirely 
unexplored. Male rodents are known to exhibit greater 
somatic signs of morphine withdrawal than females (Craft 
et al. 1999; Kest et al. 2001; Radke et al. 2013; Bobzean 
et al. 2019), which we speculate may depend on the PAG 
given demonstrated sex differences in opioid-induced anal-
gesia mediated by this region (Loyd and Murphy 2009). In 
regard to affective signs of withdrawal, conditioning to mor-
phine withdrawal may be equivalent in male and female mice 
(García-Carmona et al. 2015b), although at least one report 
suggests that the acquisition of place aversion is dependent 

on estradiol in female rats (Martinez-Casiano et al. 2015). 
Similar increases in the acoustic startle response during 
withdrawal from acute morphine in male and female rats 
(Radke et al. 2013, 2015) have also been observed. Many 
studies additionally find sex differences in self-administra-
tion of opioids (Lynch and Carroll 1999; Cicero et al. 2003; 
Mavrikaki et al. 2017; Fulenwider et al. 2019; Smethells 
et al. 2020; Monroe and Radke 2021; Radke et al. 2021); 
however, several studies also demonstrate a lack of sex dif-
ferences under certain self-administration parameters (Ven-
niro et al. 2019; Venniro et al. 2017; Fredriksson et al. 2020; 
Bossert et al. 2022). Further research is needed to clarify the 
influence of biological sex on opioid-seeking behaviors and 
the extent to which withdrawal contributes to these behav-
iors in males vs. females.

Summary

In sum, negative affect during opioid withdrawal is a cru-
cial motivational phenomenon in the cycle of addiction. It 
involves brain systems underlying reward and motivated 
behavior, learning and memory, and stress. These systems 
interact with one another under conditions of dysregulated 
reward systems, hyperactive stress, and enhanced sensitiv-
ity to environmental cues, contributing to the complicated 
pathophysiology underlying opioid addiction. Continued 
progress in this area over the next several decades has the 
potential to lead to new and better treatments for OUD and 
other addictive disorders.
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