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Abstract
Background Deep brain stimulation (DBS) delivered to the ventromedial prefrontal cortex (vmPFC) induces antidepres-
sant- and anxiolytic-like responses in various animal models. Electrophysiology and neurochemical studies suggest that these 
effects may be dependent, at least in part, on the serotonergic system. In rodents, vmPFC DBS reduces raphe cell firing and 
increases serotonin (5-HT) release and the expression of serotonergic receptors in different brain regions.
Methods We examined whether the behavioural responses of chronic vmPFC DBS are mediated by 5-HT1A or 5-HT1B 
receptors through a series of experiments. First, we delivered stimulation to mice undergoing chronic social defeat stress 
(CSDS), followed by a battery of behavioural tests. Second, we measured the expression of 5-HT1A and 5-HT1B receptors 
in different brain regions with western blot. Finally, we conducted pharmacological experiments to mitigate the behavioural 
effects of DBS using the 5-HT1A antagonist, WAY-100635, or the 5-HT1B antagonist, GR-127935.
Results We found that chronic DBS delivered to stressed animals reduced the latency to feed in the novelty suppressed 
feeding test (NSF) and immobility in the forced swim test (FST). Though no significant changes were observed in receptor 
expression, 5-HT1B levels in DBS-treated animals were found to be non-significantly increased in the vmPFC, hippocam-
pus, and nucleus accumbens and reduced in the raphe compared to non-stimulated controls. Finally, while animals given 
vmPFC stimulation along with WAY-100635 still presented significant responses in the NSF and FST, these were mitigated 
following GR-127935 administration.
Conclusions The antidepressant- and anxiolytic-like effects of DBS in rodents may be partially mediated by 5-HT1B receptors.
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Introduction

Deep brain stimulation (DBS) involves the delivery of 
electrical current to specific brain targets via surgically 
implanted electrodes (Awan et al. 2009; Hamani et al. 2010c; 

Hamani and Temel 2012). To date, several clinical studies 
have examined the efficacy of DBS for treatment-resistant 
depression. While open-label trials have shown promising 
results when DBS was delivered to the subcallosal cingu-
late gyrus (SCG) (Mayberg et al. 2005; Riva-Posse et al. 
2018), ventral capsule/ventral striatum (VC/VS) (Bergfeld 
et al. 2016; Malone et al. 2009), medial forebrain bundle 
(MFB) (Fenoy et al. 2018; Schlaepfer et  al. 2013), and 
nucleus accumbens (NAcc) (Schlaepfer et al. 2008), results 
of randomized clinical trials comparing active versus sham 
stimulation were quite disappointing (Dougherty et al. 2015; 
Holtzheimer et al. 2017). Recent improvements in neuro-
imaging techniques (Coenen et al. 2019, 2020; Riva-Posse 
et al. 2014, 2018) and the analysis of patients subdivided into 
responders and non-responders (Bergfeld et al. 2016; Puig-
demont et al. 2015) suggest that improvements in outcome 
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are possible and that specific populations of patients may 
be more suitable candidates for DBS. This urges the inves-
tigation of predictors of response and mechanisms for the 
antidepressant effects of DBS (Brown et al. 2020; Davidson 
et al. 2020; Frank et al. 2021; Sankar et al. 2020).

Preclinical research has been important for studying 
potential mechanisms and the development of novel treat-
ments for debilitating psychiatric disorders, including DBS 
for major depression (Dandekar et  al. 2019; Edemann-
Callesen et al. 2015; Furlanetti et al. 2015; Hamani and 
Nobrega 2012; Hamani et al. 2010c; Hamani and Temel 
2012; Jimenez-Sanchez et al. 2016a, b; Krishnan and Nes-
tler 2011; Lim et al. 2015a, b; Papp et al. 2019; Rummel 
et al. 2016; Thiele et al. 2018; Torres-Sanchez et al. 2017, 
2018). Despite the complex nature of this disorder, valuable 
animal models have emerged over the years, including the 
exposure of animals to chronic social defeat stress (CSDS) 
(Bartolomucci et al. 2001; Berton et al. 1999, 2006; Ham-
mels et al. 2015; Kudryavtseva et al. 1991; Raab et al. 1986). 
In a commonly used paradigm, a male “intruder” rodent is 
placed in the home cage of an unfamiliar male “resident” 
(Golden et al. 2011). The intruder is often dominated by the 
resident and, after several exposures, develops anxiety- and 
depressive-like responses (Berton et al. 2006; Golden et al. 
2011; Iniguez et al. 2014; Krishnan et al. 2007; Warren et al. 
2014). In addition to a valid behavioural phenotype, sus-
ceptible intruders demonstrate physiological changes asso-
ciated with a depressive-like state, including changes in the 
hypothalamic–pituitary–adrenal axis (Dallman et al. 2000; 
Gomez-Lazaro et al. 2011; Kronfeld-Schor and Einat 2012), 
increases in pro-inflammatory cytokines (Gomez-Lazaro 
et al. 2011), reduced synaptic plasticity, and neurogenesis 
(Christoffel et al. 2011; Gomez-Lazaro et al. 2011; Krishnan 
et al. 2007; Lagace et al. 2010; Warren et al. 2013, 2014).

Chronic stimulation delivered to the ventromedial 
prefrontal cortex (vmPFC), a region considered to be 
the rodent homologue of the human SCG (Hamani et al. 
2011; Hamani and Nobrega 2012; Hamani and Temel 
2012), reverses depressive- and anxiety-like behaviours 
in various animal models and rat lines (Bambico et al. 
2015; Bregman et al. 2018; Bruchim-Samuel et al. 2016; 
Edemann-Callesen et al. 2015; Furlanetti et al. 2015; Ger-
sner et al. 2010; Hamani et al. 2010a, b, 2012a, b,2014; 
Jimenez-Sanchez et al. 2016a, b; Lim et al. 2015b; Moshe 
et al. 2016; Papp et al. 2018; Thiele et al. 2018; Veera-
kumar et al. 2014). In rodent models, vmPFC DBS has 
been shown to modulate several neurotransmitters closely 
related to depression, including the serotonergic system 
(Bregman et al. 2018; Hamani et al. 2010b; Volle et al. 
2018). Serotonin (5-HT)-depleting raphe lesions block 
the effects of vmPFC stimulation (Hamani et al. 2010b). 
Likewise, DBS in this target reduces the firing of raphe 
cells (Lim et al. 2015b; Srejic et al. 2015) and increases 

serotonin release in the hippocampus (Hamani et  al. 
2010b; Volle et al. 2018). Despite the fact that vmPFC 
DBS increases 5-HT1B, but not 5-HT1A receptor expression 
(Volle et al. 2018), the functional role of specific serotonin 
receptors in the behavioural effects of DBS remains poorly 
understood.

We delivered chronic vmPFC stimulation to intruders in 
a modified CSDS paradigm to test whether the anxiolytic 
and antidepressant-type effects of DBS were mediated by 
5-HT1B receptors.

Materials and methods

All procedures were approved by the Sunnybrook Research 
Institute Animal Care Committee.

Modified chronic social defeat stress model

C57BL/6 male resident mice (Charles River, Quebec) were 
pair-housed with tube-ligated females. Three weeks later, 
residents were screened for aggressive behaviour with 
training Balb/c males (Charles River, Quebec). During 
screening, the female was removed, and the training mouse 
was transferred into the resident’s home cage in a perfo-
rated metal barrier for 2 min. The training mouse was then 
removed from the barrier and placed in the resident’s home 
cage for a 5-min unprotected encounter. For each resident, 
two screening sessions were performed daily with different 
training mice used in consecutive sessions. Daily screen-
ing was repeated until residents demonstrated a latency 
to aggression of 30  s or less and a consistent number 
of aggressive bouts in consecutive sessions. Once these 
aggression endpoints were met, screening was terminated.

The modified social defeat stress included 6 days of 
interactions between C57BL/6 male aggressive residents 
and Balb/c male intruders. After the female was removed, 
the intruder mouse was transferred into the resident’s 
home cage in a perforated metal barrier for 2 min. The 
intruder was then removed from the barrier and placed in 
the resident’s home cage for a 5-min contact encounter. 
Following the interaction, the intruder mouse was returned 
to its home cage. Each intruder was submitted to one 
defeat session per day over 3 consecutive days, followed 
by a 4-day break and another 3 consecutive days of defeat 
sessions (a total of 6 social defeat sessions per intruder). 
To avoid individual differences in defeat intensity, intrud-
ers were confronted with alternating residents on subse-
quent days. Non-stressed controls did not undergo social 
defeat, remaining in their home cage during an equivalent 
interval.
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Behavioural testing

The sequence of tests was chosen so that animals were 
subjected to the more stressful paradigms as the testing 
progressed.

Open field test (OFT)

Mice were placed in a 20 cm × 20 cm square plexiglass 
container and recorded for 5 min. The duration of loco-
motion and the distance travelled were quantified with a 
tracking software (Any-Maze; Wood Dale, IL).

Defensive burying test (DBT)

One hour after the OFT, mice were placed in a standard 
cage containing 5 cm of clean flattened bedding and 8 
identical marbles evenly arranged in two columns. The 
number of marbles buried in a 30-min session was quanti-
fied. A marble was considered buried when 50% or less of 
its surface was visible.

Novel location recognition tests (NLRT) and novel object 
recognition (NORT)

One day after a 5-min habituation session, mice were 
allowed to explore a 20  cm × 20 cm square plexiglass 
arena containing two identical objects for 5 min (famil-
iarization). During the location testing, one of the identi-
cal objects was repositioned into a novel quadrant. Dur-
ing object recognition testing, the object in the original 
location was replaced with a different object. NORT and 
NLRT sessions lasted 5 min each. Videotaped sessions 
were analysed with a tracking software (Any-Maze; Wood 
Dale, IL). The location recognition index was calculated 
according to the formula: time of novel location explora-
tion divided by the total exploration time × 100. The object 
recognition index was calculated as follows: duration of 
novel object exploration divided by total exploration 
time × 100 (Lueptow 2017).

Novelty suppressed feeding test (NSF)

Two days prior to the test, animals were trained to consume 
food treats (fruit loops) in their home cage. After a 16-h 
food deprivation, mice were placed in a plexiglass arena 
(50  cm × 10 × 60) containing a white platform with the 
habituated treat. The latency to eat the treat was recorded. 
Animals that did not eat were excluded from the analy-
sis (n = 1 DBS stress animal in the first experiment; n = 2 

stress vehicle, n = 1 DBS stress vehicle; n = 2 DBS stress 
GR-127935 animals in pharmacological experiments).

Forced swim test (FST)

Mice were placed in an inescapable cylindrical tank (30 cm 
height × 20 cm diameter) filled 15 cm from the top with 
26 °C water for 5 min. The last 3 min of the session were 
scored, and the total immobility time was quantified. We 
chose to measure immobility during the last 3 min of testing 
because this is the timeline in which differences between 
stimulated and non-stimulated animals are more prominent 
(Hamani and Nobrega 2012).

DBS surgery and stimulation

A timeline with the behavioural DBS experiments is pro-
vided in Fig. 1. Male Balb/c mice (Charles River, Quebec, 
Canada; 20–25 g) were anesthetized with isoflurane and 
received bilateral vmPFC stainless-steel implants to be 
used as cathodes (0.5 mm lead exposure, AP: + 1.9 mm: 
ML: ± 0.3 mm; DV: − 2.9 mm; Plastics One model 333/3) 
(Paxinos and Franklin 2012). Screws implanted into the 
skull over the parietal cortex served as anodes. Sham DBS 
animals had electrodes implanted but received no stimula-
tion. Control surgeries omitted electrode implants. Exposure 
to resident mice commenced 5–7 days after the procedure.

vmPFC DBS was delivered with a handheld stimulator 
(ANS model 3510, Plano, TX), connected to the animals 
through extension cables (Plastics One, model 335–340/3). 
Stimulation was delivered at 130 Hz, 90 μs, 100 μA (Breg-
man et al. 2018; Hamani et al. 2012b; Hamani and Nobrega 
2012) for 3 h/day prior to behavioural testing/encounters and 
5 h/day on non-testing days. No stimulation was delivered 
during the first 3 days of social encounters. Following the 
experiments, animals were sacrificed, and the brains of eight 
animals per group were randomly selected for neurochemi-
cal analyses.

Drug administration

WAY-100635 maleate (2.5  mg/kg s.c.; Tocris) and 
GR-127935 hydrochloride (5  mg/kg i.p.; Tocris) were 
diluted in saline and administered to the animals 30 min 
before DBS on behavioural testing days. Selected doses 
were based on safety profile or previous work suggesting that 
these drugs antagonized the effects of antidepressant medi-
cations (Castro et al. 2008; Cryan et al. 2005b; de Almeida 
et al. 2001; Hogg and Dalvi 2004; Kaster et al. 2005; Lopez-
Mendoza et al. 1998; Mayorga et al. 2001; O’Neill and Con-
way 2001; Rogoz et al. 2012; Takahashi et al. 2020; Tatarc-
zynska et al. 2002; Zanelati et al. 2010). In pharmacologic 
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experiments, stress animals underwent surgical procedures 
but were not implanted with electrodes.

Western blot and histology

After removal from the skull, brains were stored at − 80 
C°. In animals that did not undergo neurochemical analy-
ses, vmPFC electrode placement was confirmed in cresyl 
violet stained sections (Fig. 2) (Gidyk et al. 2021; Ham-
ani et al. 2010a, b, 2014). In brains processed for western 
blot, electrode tracks were visually inspected in thick coro-
nal sections prior to tissue processing. After this step, the 

following regions were dissected using a biopsy punch tool 
for analysis: ventromedial prefrontal cortex, nucleus accum-
bens (NAcc), dorsal hippocampus (HPC), and raphe (all 
raphe nuclei). Tissue from both hemispheres was collected 
for analysis. Protein extracts were separated by sodium 
dodecyl sulphate–polyacrylamide gel electrophoresis fol-
lowed by transfer onto polyvinylidene fluoride membranes. 
These were then exposed to blocking buffer at 4 °C over-
night. Primary antibodies were added at the following dilu-
tions: anti-5-HT1B rabbit pAb [Abcam: ab13896] 1:1000 
and anti-5-HT1A rabbit pAb [abcam # ab227165] 1:1000. 
For loading control, the membranes were incubated with 

Fig. 1  Timeline of behavioural experiments. A After 3 days of social 
defeat, animals went on a break for 4  days, followed by another 
3 days of social defeat and then behavioural testing. DBS was started 
1 day after the first round of social defeat sessions and continued to 
the end of the experiment. B Social defeat and behavioural testing 
conducted during pharmacological experiments. DBS was started 

1 day after the first round of social defeat sessions and continued to 
the end of the experiment. Arrows represent the timepoints of drug 
administration. D, day; DBS, deep brain stimulation; DBT, defensive 
burying test; FST, forced swim test; NLRT, novel location recogni-
tion test; NORT, novel object recognition test; NSF, novelty sup-
pressed feeding test; OFT, open field test

Fig. 2  Electrode location. A Photomicrograph of a coronal brain sec-
tion illustrating the trajectory of an electrode placed in the vmPFC 
(arrow). B Schematic representation of coronal brain sections show-
ing the location of the tip of the electrodes implanted in animals 
receiving deep brain stimulation (black circles; n = 9) or sham stimu-

lation (light grey circles; n = 9). Electrodes implanted bilaterally are 
depicted in a single hemisphere. In this representation, only elec-
trodes associated with the initial set of behavioural experiments were 
plotted. Electrodes in the remainder experiments were placed in a 
similar location
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anti-tubulin-β3 mouse mAb [BioLegend #801202] 1:2000. 
After washing, they were incubated with secondary antibod-
ies: 1:2000 HRP-linked, anti-rabbit IgG [CST #7074] and 
HRP-linked, anti-mouse IgG [CST #7076]. Thereafter, the 
membranes were washed, incubated in SignalFire™ ECL 
Reagent substrate solution, and imaged with a MicroChemi 
4.2 unit (DNR Bio-Imaging Systems) using GelCapture 
Chemi software. Representative blots of the groups included 
in our study may be found in Supplementary Figs. 1 and 2. 
5-HT1A and 5-HT1B values in the manuscript refer to protein 
expression.

Statistical analyses

One-way ANOVA (Tukey post hoc) was used to compare 
data across groups. Two-way ANOVA (Tukey post hoc) 
was used to analyse pharmacological data with DBS and 
drug administration as factors. A Student’s t test was used to 
compare behavioural data between stressed and non-stressed 

mice. Results in the text and figures are expressed as 
means ± standard errors. Statistical significance was set at 
p ≤ 0.05.

Results

Stress effects

Prior to DBS experiments, we tested the effects of stress 
in our modified paradigm. In the open field test, stressed 
animals without any surgical manipulation (n = 16) had a 
lower locomotion (189.4 ± 6.8 s vs 218.5 ± 6.3 s; p = 0.004; 
Fig. 3A) and travelled smaller distances (8.2 ± 0.5  s vs 
10.9 ± 0.8 s; p = 0.005; Fig. 3B) compared to non-stressed 
controls (n = 20). In contrast, no group differences were 
found in the defensive burying test (p = 0.1; Fig. 3C), novel 
location recognition test (p = 0.4; Fig. 3D), and novel object 
recognition test (p = 0.4; Fig. 3E). In the NSF, stressed mice 

Fig. 3  Stress-induced effects in a modified chronic social defeat stress 
paradigm. A In the open field, A locomotion and the B distance trav-
elled were significantly lower in stress-exposed mice (n = 16) com-
pared to non-stressed controls (n = 20). C In the defensive burying 
test (DBT), no difference was found in the number of marbles bur-
ied by stressed and non-stressed animals. Similarly, no differences 
between groups were found in the D the novel location recognition 

test (NLRT) or E the novel object recognition test (NORT). F In the 
novelty suppressed feeding test (NSF), the latency to feed in stressed 
animals was significantly higher than in non-stressed controls. G 
In the forced swim test (FST), stressed mice had significantly more 
immobility than non-stressed controls. Values represent mean and 
standard error. *Statistically significant
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had a significantly longer latency to feed (207.7 ± 30.8 s) 
compared to non-stressed controls (99.2 ± 12.8 s; p = 0.005; 
Fig. 3F). In the FST, animals exposed to stress spent a higher 
time in immobility (117.0 ± 7.4 s) compared to non-stressed 
controls (82.0 ± 5.7 s; p = 0.001; Fig. 3G).

Chronic vmPFC DBS

Open field test

One-way ANOVA revealed a significant treatment effect 
on locomotion (F [2,25] = 3.96, p = 0.03), due to the higher 
value recorded in Sham DBS stress mice (216.0 ± 8.4 s; 
n = 9;) compared to Sham controls (183.4 ± 6.9 s; p = 0.03; 

n = 10), but not to the DBS stress group (189.6 ± 10.6 s; 
n = 9; Fig. 4A). In contrast, no significant treatment effect 
was found for the distance travelled (F [2,25] = 2.90, 
p = 0.07), with similar values recorded in Stress controls 
(6.9 ± 0.5 m), Sham stress (8.7 ± 0.5 m), and DBS stress 
mice (7.8 ± 0.6 m; Fig. 4B).

Defensive burying

No significant effect of stimulation was found in the DBT 
(F [2,25] = 2.34, p = 0.12), despite the lower number of mar-
bles buried by DBS stress animals (4 ± 0.9) compared to 
Stress controls (5.9 ± 0.5) and the Sham DBS stress group 
(5.3 ± 0.5; Fig. 4C).

Fig. 4  Antidepressant- and anxiolytic-like effects of deep brain 
stimulation (DBS) in a modified chronic social defeat stress para-
digm. A In the open field, locomotion was significantly higher 
in Sham DBS stress mice (n = 9) than in animals exposed to stress 
without implanted electrodes (Stress controls; n = 10), but not to the 
DBS stress group (n = 9). B In contrast, the distance travelled in the 
apparatus was similar across groups. C In the defensive burying test 
(DBT), no difference was found in the number of marbles buried by 
animals in different groups. Similarly, no differences across groups 

were found when the indexes calculated for D the novel location rec-
ognition test (NLRT) or E the novel object recognition test (NORT) 
were considered. F In the novelty suppressed feeding test (NSF), 
the latency to feed in DBS stress animals (n = 8) was significantly 
lower than in the Sham DBS stress group (n = 9) or in Stress controls 
(n = 10). G In the forced swim test (FST), both DBS stress and Sham 
DBS stress animals had significantly less immobility than Stress-
exposed controls. Values represent mean and standard error. *Statisti-
cally significant
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Novel location and novel object recognition tests

One-way ANOVA revealed no significant stimulation effects 
in the novel location (F [2,25] = 0.91, p = 0.42; Fig. 4D) and 
novel object recognition tests (F [2,25] = 0.34, p = 0.71; 
Fig. 4E). Similar NLRT and NORT indices were respec-
tively observed in DBS stress mice (45.3 ± 4.2; 62.7 ± 4.2), 
Sham DBS stress animals (51.6 ± 3.9; 58.4 ± 4.8) and Stress 
controls (50.3 ± 2.1; 58.6 ± 3.4).

Novel suppressed feeding

A significant treatment effect (F [2,24] = 9.0, p = 0.001) 
was observed in the NSF, with DBS stress animals present-
ing a lower latency to feed (51.6 ± 10.1 s; n = 8) compared 
to Sham DBS stress animals (178.7 ± 27.3 s; p = 0.0008; 
n = 9) and Stress controls (125.3 ± 18.7 s; p = 0.048; n = 10; 
Fig. 4F).

Forced swim test

One-way ANOVA revealed a significant treatment effect (F 
[2,26] = 12.4, p = 0.0002). Both DBS stress (62.5 ± 7.7 s; 
p = 0.0002) and Sham DBS stress animals (77.2 ± 9.4 s; 
p = 0.005) had significantly less immobility than Stress-
exposed controls (114.9 ± 6.1 s; p = 0.0002; Fig. 4G).

5‑HT1A and 5‑HT1B expression

Overall, no significant vmPFC stimulation effects were 
observed in the expression of 5-HT1A or 5-HT1B (Table 1). In 
most studied regions, 5-HT1A levels were non-significantly 
lower, whereas 5-HT1B expression was non-significantly 
higher in DBS-treated animals compared to controls (Fig. 5).

Pharmacological experiments

In our initial experiment, we showed that vmPFC DBS 
improved anxiety- and depressive-like responses in mice 
exposed to social defeat stress. To test whether the DBS 
effects are mediated by 5-HT1A or 5-HT1B receptors, we 

treated different groups of animals with WAY-100635 
(WAY) or GR-127935 (GR). Since DBS did not induce 
memory changes in our initial experiment, we did not con-
duct novel location or novel object recognition testing in 
pharmacological preparations. As Sham DBS stress animals 
did not differ substantially from non-implanted Stress con-
trols, only the latter group was injected with drugs.

5‑HT1A antagonism—WAY‑100635

Open field test

Two-way ANOVA revealed a significant effect of DBS (F 
[1,27] = 6.40, p = 0.02) but no effect of drug (F [1,27] = 0.26, 
p = 0.61), or a DBS × drug interaction (F [1,27] = 1.52, 
p = 0.23) on locomotion (Fig. 6A). No effects of DBS (F 
[1,27] = 3.1, p = 0.09), drug (F [1,27] = 0.01, p = 0.99), or 
a DBS × drug interaction (F [1,27] = 0.87, p = 0.36) were 
observed on the distance travelled (Fig. 6B). No significant 
differences were found when either variable was compared 
among animals receiving DBS stress WAY (159.2 ± 11.5 s; 
6.5 ± 0.7 m.; n = 8), DBS stress vehicle (180.6 ± 13.1 s; 
7.3 ± 0.8 m.; n = 10), Stress WAY (205.4 ± 4.6 s; 8.7 ± 0.8 m.; 
n = 7), and Stress vehicle (196.6 ± 15.1 s; 8.0 ± 1.0 m.; n = 6).

Defensive burying

No effects of DBS (F [1,27] = 0.50, p = 0.49), drug (F 
[1,27] = 0.57, p = 0.46), or a DBS × drug interaction (F 
[1,27] = 0.53, p = 0.47) were noted in the DBT. The num-
ber of marbles buried was similar in groups receiving DBS 
stress WAY (4.9 ± 0.9), DBS stress vehicle (3.6 ± 0.9), Stress 
WAY (4.9 ± 0.5), or Stress vehicle (4.8 ± 0.9; Fig. 6C).

Novel suppressed feeding

In the NSF, two-way ANOVA revealed a significant DBS 
effect (F [1,25] = 76.5, p < 0.0001), but no drug effect (F 
[1,25] = 0.90, p = 0.35), or a DBS × drug interaction (F 
[1,25] = 0.66, p = 0.42). A significant reduction in the latency 
to feed was observed between DBS stress vehicle animals 
(49.8 ± 9.2 s; n = 9) and both Stress vehicle (261.2 ± 49.3 s; 
n = 5; p < 0.0001) and Stress WAY groups (222.1 ± 25.1 s; 
n = 7; p < 0.0001). Similarly, a reduction in the latency to 
feed was found between DBS stress WAY mice (46.8 ± 7.8 s; 
n = 8) and both the Stress vehicle (p < 0.0001) and Stress 
WAY groups (p < 0.0001; Fig. 6D).

Forced swim test

Two-way ANOVA revealed a significant effect of DBS 
(F [1,27] = 37.5, p < 0.0001), but no drug effect (F 
[1,27] = 0.78, p = 0.39), or a DBS × drug interaction (F 

Table 1  Statistical results of 5-HT1A and 5-HT1B comparisons in 
stressed mice given DBS, Sham stimulation or with no implanted 
electrodes according to region

NAcc nucleus accumbens, vmPFC ventromedial prefrontal cortex

Brain region 5-HT1A 5-HT1B

vmPFC F(2,21) = 0.35; p = 0.71 F(2,21) = 0.31; p = 0.74
Hippocampus F(2,21) = 2.36; p = 0.12 F(2,21) = 1.94; p = 0.17
NAcc F(2,21) = 0.11; p = 0.90 F(2,18) = 2.58; p = 0.22
Raphe F(2,21) = 0.15; p = 0.86 F(2,19) = 0.36; p = 0.70
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[1,27] = 1.0, p = 0.33). A significant reduction in immobility 
time was observed between the animals receiving DBS stress 
vehicle (63.0 ± 6.9 s) and both Stress vehicle (100.5 ± 11.3 s; 
p = 0.006) and Stress WAY groups (114.2 ± 6.6 s; p = 0.001). 
Similarly, a reduction in the latency to feed was found 
between DBS stress WAY mice (62.1 ± 3.8 s) and both Stress 
vehicle (p = 0.007) and Stress WAY groups (p = 0.002; 
Fig. 6E).

5‑HT1B antagonism—GR‑127935

Open field test

Two-way ANOVA revealed no effects of DBS (F 
[1,28] = 1.08, p = 0.31), drug (F [1,28] = 0.01, p = 0.92), 
or a DBS × drug interaction (F [1,28] = 0.61, p = 0.44) 

on locomotion (Fig. 7A). Similarly, no effects of DBS (F 
[1,28] = 0.13, p = 0.14), drug (F [1,28] = 0.30, p = 0.59), or 
a DBS × drug interaction (F [1,28] = 2.30, p = 0.14) were 
observed on the distance travelled (Fig. 7B). No signifi-
cant differences were found for either variable when DBS 
stress GR (172.2 ± 13.7 s; 6.6 ± 0.7 m.; n = 8), DBS stress 
vehicle (180.6 ± 13.1 s; 7.3 ± 0.8 m.; n = 10), Stress GR 
(194.4 ± 7.4 s; 7.9 ± 0.3 m.; n = 7) and Stress vehicle groups 
were compared (183.8 ± 10.2 s; 6.5 ± 0.6 m.; n = 7).

Defensive burying

No effects of DBS (F [1,28] = 0.14, p = 0.72), drug (F 
[1,28] = 0.01, p = 0.95), or a DBS × drug interaction (F 
[1,28] = 0.14, p = 0.72) were found in the DBT. The num-
ber of marbles buried was similar in groups receiving DBS 

Fig. 5  5-HT1A (upper panel) and 5-HT1B (lower panel) receptor pro-
tein expression measured with western blot in the Stress control, 
Sham DBS stress, and DBS stress groups. A 5-HT1A expression was 
non-significantly reduced by 11–17% in the vmPFC, hippocampus, 
and raphe, and increased by 10% in the NAcc of DBS-treated ani-

mals, compared to controls. B 5-HT1B expression in the stimulated 
group was non-significantly increased by 11% in the vmPFC, 19% in 
the hippocampus, 94% in the NAcc, and reduced by 16% in the raphe, 
compared to Stress controls. Values represent mean and standard 
error. n = 8 animals/group
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stress GR (4.0 ± 0.8), DBS stress vehicle (3.6 ± 0.9), Stress 
GR (4.00 ± 1.0), or Stress vehicle (4.3 ± 0.9; Fig. 7C).

Novel suppressed feeding

Two-way ANOVA revealed a significant DBS effect (F 
[1,25] = 8.0, p = 0.009), but no drug effect (F [1,25] = 0.08, 
p = 0.78), or a DBS × drug interaction (F [1,25] = 2.2, 
p = 0.16). A significant reduction in the latency to feed 
was observed between groups receiving DBS stress vehi-
cle (49.8 ± 9.2 s; n = 9) and Stress vehicle (213.0 ± 49.3 s; 

n = 7; p = 0.02). Values recorded in DBS stress GR animals 
(115.7 ± 38.6 s; n = 6) and Stress GR mice (168.1 ± 49.9 s; 
n = 7) were similar to stress vehicle controls (Fig. 7D).

Forced swim test

Two-way ANOVA revealed significant effects of DBS (F 
[1,28] = 4.4, p = 0.05) and drug (F [1,28] = 7.8, p = 0.01), 
but no DBS × drug interaction (F [1,28] = 1.4, p = 0.24). 
Significant differences in immobility were found between 
groups receiving DBS stress vehicle (63.0 ± 6.9  s), and 

Fig. 6  Antidepressant- and anxiolytic-like effects of deep brain stimu-
lation (DBS) are unaffected by the 5-HT1A antagonist WAY-100635 
(WAY). A Locomotion in the open field, B the distance travelled, 
and C the number of buried marbles in the defensive burying test 
(DBT) were similar in animals receiving Stress vehicle (Veh; n = 6), 
Stress WAY (n = 7), DBS stress vehicle (n = 10), or DBS stress WAY 
(n = 8). D) In the novelty suppressed feeding test (NSF), a signifi-
cant reduction in the latency to feed was observed when DBS stress 

animals treated with either vehicle (n = 9) or WAY (n = 8) were 
compared to groups receiving Stress vehicle (n = 5) or Stress WAY 
(n = 7). E In the forced swim test (FST), a significant decrease in 
immobility was observed when either DBS stress vehicle animals 
or DBS stress WAY mice were compared to groups receiving Stress 
vehicle or Stress WAY. Values represent mean and standard error. 
*Statistically significant
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either Stress GR (112.9 ± 9.8 s; p = 0.01), or DBS stress GR 
(103.8 ± 12.5 s; p = 0.03). None of the groups differed signif-
icantly from Stress vehicle controls (96.6 ± 11.7 s; Fig. 7E).

Discussion

Our study shows that chronic vmPFC stimulation induces 
anxiolytic and antidepressant-like effects in a chronic social 
defeat stress paradigm. Most importantly, the behavioural 
response of DBS was mitigated by the administration of 
the 5-HT1B but not 5-HT1A antagonists. This finding sug-
gests that, in contrast to antidepressant medications (Lesch 
1991; Lucki 1996; Lucki et al. 1994), the anxiolytic- and 

antidepressant-like effects of vmPFC stimulation may be 
mediated by 5-HT1B serotonin receptors.

Based on anatomical connections and cytoarchitectural 
features, the ventral aspect of the medial prefrontal cortex 
(vmPFC) has been suggested to be the anatomical correlate 
of the subgenual cingulum (Gabbott et al. 2003; Hamani 
et al. 2010b, 2011; Takagishi and Chiba 1991). Since the 
SCG is a commonly stimulated target in clinical trials for 
major depression (Holtzheimer et al. 2012, 2017; Lozano 
et al. 2012; Mayberg et al. 2005; Riva-Posse et al. 2018), we 
opted to stimulate the vmPFC in the current study.

The behavioural effects of chronic vmPFC stimula-
tion have been previously demonstrated in rodent models 
induced by stress, neurobiological preparations, and in 

Fig. 7  The antidepressant- and anxiolytic-like effects of deep 
brain stimulation (DBS) are diminished by the 5-HT1B antagonist 
GR-127935 (GR). No significant differences were found when groups 
receiving Stress vehicle (Veh; n = 7), Stress GR (n = 7), DBS stress 
vehicle (n = 10), or DBS stress GR (n = 8) were compared in A, B the 
open field or C the defensive burying test (DBT). D In the novelty 
suppressed feeding test (NSF), a significant reduction in the latency 
to feed was observed between groups receiving DBS stress vehi-

cle (n = 9) and Stress vehicle (n = 7). Values recorded in DBS stress 
GR animals (n = 6) and Stress GR mice (n = 7) were similar to those 
observed in Stress vehicle controls. E In the forced swim test (FST), 
significant differences in immobility were found between groups 
receiving DBS stress vehicle and either Stress GR or DBS stress GR. 
None of the groups differed significantly from Stress vehicle controls. 
Values represent mean and standard error. *Statistically significant

3884 Psychopharmacology (2022) 239:3875–3892



1 3

specific animal lines (Bambico et al. 2015; Gersner et al. 
2010; Hamani et al. 2012b; Lim et al. 2015b; Moshe et al. 
2016; Veerakumar et al. 2014). A commonly used rodent 
paradigm involves exposure to chronic unpredictable mild 
stress (Muscat et al. 1988; Willner et al. 1992, 1987). This 
model, however, is notoriously complex and difficult to rep-
licate (Antoniuk et al. 2019; Willner 2017). Moreover, it 
is particularly cumbersome in mice, often requiring long 
timeframes and complex readouts to detect anxiety- and 
depressive-like behaviours (Maluach et al. 2017; Prevot 
et al. 2019). An alternative model is chronic social defeat 
stress, which has been shown to induce depressive- and anx-
iety-type behaviours in rodents (Bartolomucci et al. 2001; 
Berton et al. 1999, 2006; Hammels et al. 2015; Kudryavt-
seva et al. 1991; Raab et al. 1986). In the current study, we 
used a modified version of this paradigm. In contrast to a 
continuous interaction (Golden et al. 2011), intruders were 
exposed to residents in two 3-day sessions separated by a 
4-day break. By inserting an interval between two runs of 
social defeat, we were able to deliver 1 week of DBS to 
stress-exposed animals before behavioural testing began. 
This timeline corresponds to a scenario in which patients 
would receive DBS after the development of the disease. In 
addition, in this modified version of the model, DBS could 
be administered for 1–2 weeks, a timeframe that would allow 
several neuroplastic phenomena to develop. In general, the 
expression of anxiety and depression-type responses follow-
ing stress tends to decrease over time following stress expo-
sure. By dividing the 6 days of social encounters into two 
segments of 3 days, we theoretically maximized the chances 
of detecting depressive- and anxiety-like behaviours. While 
our modified preparation was adequate for our purposes, we 
do not know if changes in the interval between exposure tri-
als or the timeframe between stress and testing would yield 
different results.

In the clinical scenario, DBS has been shown to improve 
several symptoms associated with depression (Holtzhei-
mer et al. 2012, 2017; Lozano et al. 2012; Mayberg et al. 
2005; Riva-Posse et al. 2018). In the current study, we have 
selected a battery of behavioural tests to study the effects 
of DBS in multiple dimensions, including depressive-like 
behaviour (e.g. FST), anxiety (e.g. defensive burying, nov-
elty supressed feeding), and memory function (e.g. novel 
object and location recognition). We found that vmPFC 
stimulation was most effective in improving depressive- and 
anxiety-like behaviour, exerting no effect on memory perfor-
mance. Though anhedonic-like behaviour following vmPFC 
stimulation has been previously demonstrated by our group 
and others (Bambico et al. 2015; Hamani et al. 2012b; Lim 
et al. 2015b), this was not formally assessed in the current 
study. Whether DBS-induced improvements in sucrose pref-
erence, sucrose consumption, or the splash test are depend-
ent on 5-HT1B receptors remains to be demonstrated.

The main findings of our initial behavioural experiments 
were that vmPFC DBS reduced the latency to feed in the 
NSF and immobility in the FST. In the latter, the effects 
of DBS could not exclusively be attributed to the electri-
cal current delivered to the parenchyma but instead to a 
combination of stimulation plus electrode insertion since 
sham implanted animals also presented an antidepressant-
like effect. In contrast, stimulation did not affect defensive 
burying in the DBT or memory performance in the NORT 
and NLRT. The former is an innate rodent behaviour that has 
routinely been used as a measure of anxiety (Reznikov et al. 
2016). In our memory paradigm, no substantial interval was 
given between the initial item presentation and changes in 
either object or location. We investigated short-term memory 
because we were directly stimulating the vmPFC, a region 
largely involved in mechanisms of novel object recognition, 
novel location recognition, and working memory (Aggleton 
and Nelson 2020; Chao et al. 2020). Previous studies have 
shown that DBS delivered to stressed rats rescued CUMS-
induced memory deficits (Papp et al. 2018, 2019). Future 
work in CSDS paradigms is still required to test whether 
vmPFC stimulation mitigates deficits in hippocampus- or 
amygdala-dependent memory tasks.

Similar to our previous work, one of the main tests used 
to measure depression-like behaviour in the current study 
was the FST (Hamani et al. 2010a, b, 2014). In addition to 
immobility, different types of behaviours may be assessed in 
this test, including swimming and climbing. Previous work 
has shown that the former is more sensitive to serotoner-
gic compounds while the latter is more responsive to drugs 
that modulate catecholamine transmission (Cryan et al. 
2002, 2005a, b; Detke et al. 1995). Our choice to predomi-
nantly focus on immobility time was based on three factors 
observed in our previous work. DBS had no significant effect 
on climbing (Hamani et al. 2010a, b, 2014). Reductions in 
immobility time were almost always the inverse representa-
tion of swimming (Hamani et al. 2010a, b, 2014). Immobil-
ity has been a reliable measure for the study of the antide-
pressant-like effects of DBS in mice (Bregman et al. 2018; 
Hamani and Nobrega 2012).

As described above, some DBS effects may be partially 
attributed to electrode implantation. This so-called inser-
tional effect has been previously reported in rodents. In those 
studies, animals demonstrated behavioural or neurochemical 
changes following electrode insertion that resembled those 
recorded after DBS, albeit of smaller magnitude (Casquero-
Veiga et al. 2018; Hamani and Nobrega 2012; Perez-Cabal-
lero et al. 2018). The mechanisms responsible for such an 
effect are still disputed. Perez-Caballero et al. have shown 
that an increase in astrocytic immunoreactivity temporally 
correlates with behavoural responses (Perez-Caballero et al. 
2018). Of note, however, the consequences of electrode 
insertion may still be observed long after surgery in brain 
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regions distant from the stimulated target (Chakravarty et al. 
2016; Hamani et al. 2012b; Hamani and Nobrega 2012). 
Similar to rodent studies, the presence of an insertional 
effect has been documented in patients with tremor, pain, 
epilepsy, and even depression (Fenoy et al. 2018; Hamani 
et al. 2006, 2021; Lim et al. 2007; Tasker 1998). Clinically, 
this is characterized by symptomatic amelioration following 
electrode implantation, prior to the administration of current.

In our view, the consequences of DBS, at least in pre-
clinical models, are a composite of electrode insertion and 
current delivery. As the effects of DBS often tend to be more 
robust than those of electrode insertion alone (Hamani et al. 
2012b; Hamani and Nobrega 2012; Hammels et al. 2015), 
we opted to only include DBS-treated animals and not a 
separate sham implanted group during our pharmacological 
experiments. Previous studies have shown that the admin-
istration of anti-inflammatory drugs, but not analgesics 
mitigated the antidepressant-like effects of DBS in rodents 
(Perez-Caballero et al. 2014, 2018). This was particularly 
evident when the interval between surgery and testing was 
relatively short (Perez-Caballero et al. 2014). Though evi-
dence for a focal inflammatory effect of electrode insertion 
is compelling, it is possible that additional mechanisms may 
play a role. For example, the behavioural effects of DBS 
have been mitigated by blocking serotonergic transmission 
(Hamani et al. 2010b; Perez-Caballero et al. 2014). In our 
current study, GR-127935 countered antidepressant- and 
anxiolytic-type responses.

At present, the mechanisms through which DBS exerts its 
antidepressant effects remain elusive (Dandekar et al. 2018; 
Hamani and Nobrega 2012; Hamani and Temel 2012). One 
possibility is the modulation of the serotonergic system 
(Dandekar et al. 2018; Hamani and Nobrega 2012; Hamani 
and Temel 2012). vmPFC stimulation increases serotonin 
levels in several brain regions and induces neuroplasticity of 
raphe nuclei and serotonin receptors (Bregman et al. 2018; 
Hamani et al. 2010b; Lim et al. 2015b; Srejic et al. 2015; 
Veerakumar et al. 2014; Volle et al. 2018). In addition, the 
antidepressant-like effects of DBS were not observed in rats 
bearing serotonin-depleting raphe lesions (Hamani et al. 
2010b). We have recently measured 5-HT1A and 5-HT1B 
receptor binding in several areas receiving serotonergic 
projections, as well as their mRNA expression in the raphe 
following acute and chronic treatment with vmPFC DBS 
or fluoxetine (Volle et al. 2018). In general, chronic DBS 
increased 5-HT1B receptor binding in the dorsal raphe, pre-
limbic cortex, substantia nigra, and lateral globus pallidum, 
but did not alter the binding of the 5-HT1A receptor in any 
region (Volle et al. 2018). In contrast, chronic fluoxetine 
administration decreased 5-HT1A binding in the PFC and 
hippocampus but did not affect 5-HT1B binding (Volle et al. 
2018). In the current study, we investigated whether chronic 
vmPFC DBS altered 5-HT1A or 5-HT1B protein expression 

in the vmPFC, hippocampus, nucleus accumbens, and raphe. 
As some of the structures showing significant binding in our 
previous report were too small to be dissected, they were 
not analysed in the current study. While no significant dif-
ferences were found when DBS, sham stimulation, or non-
implanted Stress controls were compared, DBS-treated mice 
had a non-significant increase in 5-HT1B expression in all 
investigated structures, but the raphe.

5-HT1B receptors can be categorized as autoreceptors or 
heteroreceptors (Sari 2004). In general, 5-HT1B autorecep-
tors inhibit the release of 5-HT into the synapse, whereas 
heteroreceptors modulate the transmission of glutamate, 
GABA, ACh, and DA (Maura and Raiteri 1986; Moore et al. 
2000; Sari 2004; Tiger et al. 2018). In the raphe, 5-HT1B 
receptors are expressed in interneurons and principal cells, 
including collateral axonal projections (Bagdy et al. 2000; 
Davidson and Stamford 1995; Tao et al. 1996). The acti-
vation of raphe 5-HT1B autoreceptors reduces neuronal 
firing and serotonin release (Lim et al. 2015b; Srejic et al. 
2015). From a behavioural perspective, mice with selective 
knockdown of raphe 5-HT1B autoreceptors present reduced 
depressive-like behaviours, while the overexpression of 
raphe 5-HT1B receptors is anxiogenic (Anthony et al. 2000; 
Nautiyal et al. 2016; Neumaier et al. 1996). In our study, 
vmPFC DBS induced antidepressant- and anxiolytic-like 
effects, while non-significantly reducing raphe 5-HT1B pro-
tein expression. Though these findings may help to explain 
the reduced firing of raphe cells following DBS, they are 
difficult to reconcile with the increase in serotonin release 
observed after vmPFC stimulation (Volle et al. 2018). Also 
difficult to reconcile are the disparities observed in the cur-
rent study and the increased 5-HT1B binding observed in 
DBS-treated rats from our previous report. Potential expla-
nations for these discrepancies include the use of different 
species, techniques to detect 5-HT1B expression, and the use 
of naïve versus stressed animals. Future studies need to be 
conducted to clarify the neurochemical effects of vmPFC 
stimulation in raphe serotonin receptors.

In contrast to the raphe, our current and previous find-
ings suggest that 5-HT1B expression increased, albeit non-
significantly, in regions expressing heteroreceptors (e.g. 
PFC). 5-HT1B heteroreceptors have been associated with 
the antidepressant-like effect of SSRIs in the FST (Chenu 
et al. 2008; Medrihan et al. 2017). Moreover, the pharma-
cological activation of these receptors induces antidepres-
sant- and anxiolytic-like effects in different rodent models 
(Tatarczynska et al. 2004). To examine whether 5-HT1B 
and 5-HT1A receptors are involved in the antidepressant-
like effects of vmPFC stimulation, we conducted pharmaco-
logical experiments antagonizing these receptors in animals 
receiving DBS. Based on our current and previous work, we 
predicted that blocking 5-HT1B but not 5-HT1A receptors 
would mitigate behavioural DBS responses. Confirming our 
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hypothesis, the antidepressant- and anxiolytic-like effects of 
DBS were countered in animals given the 5-HT1B antagonist 
GR-127935, but not in those given the 5-HT1A antagonist 
WAY-100635. These effects could not be attributed to the 
simple administration of the drugs, as no differences were 
found between animals given GR-127935 or WAY-100635 
alone and vehicle-treated controls.

In our study, 5-HT1B and 5-HT1A antagonists were admin-
istered 30 min prior to stimulation for the last 4 days of 
the study (i.e. 3.5 h before behavioural testing began). This 
timing was chosen to ensure that the drugs would peak 
during the onset of DBS. The dose of WAY was selected 
based on previous work showing that it could mitigate the 
neurochemical effects of several antidepressants, includ-
ing SSRI-induced improvements in the FST (Castro et al. 
2008; Cryan et al. 2005b; Kaster et al. 2005; O’Neill and 
Conway 2001; Takahashi et al. 2020; Zanelati et al. 2010). 
Moreover, at this dose range, WAY was observed to counter 
gepirone-mediated changes in aggressive behaviour (Lopez-
Mendoza et al. 1998; Rogoz et al. 2012; Tatarczynska et al. 
2002). Finally, 2.5 mg/kg of WAY administered to residents 
receiving DBS in our paradigm successfully decreased the 
anti-aggressive-like effects of this therapy (data not shown). 
Considering that vmPFC did not change 5-HT1A receptor 
binding or protein levels in our studies (Volle et al. 2018), 
it was not surprising that WAY administration did not block 
the anxiolytic- and antidepressant-like effects of DBS in the 
CSDS model. Despite not mitigating the antidepressant- or 
anxiolytic-like effects of vmPFC stimulation, we note that it 
is still possible that 5-HT1A might play a role in the behav-
ioural effects of DBS. Different and sometimes antagonistic 
effects have been recorded with the focal administration of 
drugs that modulate 5-HT1A autoreceptors and heterorecep-
tors in different parts of the brain (Bambico et al. 2018; 
Blier et al. 1998; Gardier et al. 1996; Popova and Naumenko 
2013). Future work taking these variables into account is 
still required.

To determine whether 5-HT1B receptors were involved in 
the DBS response, we administered GR-127935 at a 5.0-mg/
kg dose 30 min prior to DBS onset. Corroborating our initial 
hypothesis, antagonism of the 5-HT1B receptor countered the 
effects of DBS in the NSF and FST. Previous studies sug-
gest that this drug blocks 5-HT1B receptors at a wide dose 
range (0.056–10 mg/kg) (de Almeida et al. 2001; Hogg and 
Dalvi 2004; Mayorga et al. 2001). Though GR-127935 has 
primarily been studied in the context of aggressive behav-
iour (Bannai et al. 2007), it has also been shown to block the 
effects of antidepressants. At 10 mg/kg, GR-127935 dimin-
ished immobility induced by the agonist RU 24,969, imi-
pramine, and paroxetine in the tail suspension test (O’Neill 
et al. 1996). Likewise, 4 mg/kg of GR-127935 reduced the 
antidepressant-like effects of paroxetine and citalopram in 
the FST (Chenu et al. 2008). Though GR-127935 was found 

to block the effects of some antidepressant treatments, the 
administration of this drug even at high doses (e.g. 10 mg/
kg in mice and 20 mg/kg in rats) was not found to induce 
depressive-like behaviour (O’Neill and Conway 2001; 
Tatarczynska et al. 2002). In a pilot study, we have injected 
animals with 10 mg/kg and found this dose to be toxic, with 
the animals presenting a substantial decrease in locomo-
tion, grooming, and shivering. Therefore, we have decided 
to lower the dose to 5 mg/kg, a threshold recommended in 
this compound’s safety sheet (Tocris Safety Data Sheet).

Conclusion

Our study shows that chronic vmPFC stimulation induces 
antidepressant- and anxiolytic-like responses in a modified 
CSDS paradigm. More importantly, we demonstrate that the 
behavioural effects of DBS were mitigated in animals given 
the 5-HT1B antagonist GR-127935. Future studies are still 
necessary to further dissect the molecular and neurochemi-
cal mechanisms through which DBS interacts with 5-HT1B 
receptors and modulates the serotonergic system.
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