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Abstract
Major depression (MD) is one of the most common psychiatric disorders worldwide. Currently, the first-line treatment for 
MD targets the serotonin system but these drugs, notably the selective serotonin reuptake inhibitors, usually need 4 to 6 weeks 
before the benefit is felt and a significant proportion of patients shows an unsatisfactory response. Numerous treatments have 
been developed to circumvent these issues as venlafaxine, a mixed serotonin-norepinephrine reuptake inhibitor that binds and 
blocks both the SERT and NET transporters. Despite this pharmacological profile, it is difficult to have a valuable insight into 
its ability to produce more robust efficacy than single-acting agents. In this review, we provide an in-depth characterization of 
the pharmacological properties of venlafaxine from in vitro data to preclinical and clinical efficacy in depressed patients and 
animal models of depression to propose an indirect comparison with the most common antidepressants. Preclinical studies 
show that the antidepressant effect of venlafaxine is often associated with an enhancement of serotonergic neurotransmis-
sion at low doses. High doses of venlafaxine, which elicit a concomitant increase in 5-HT and NE tone, is associated with 
changes in different forms of plasticity in discrete brain areas. In particular, the hippocampus appears to play a crucial role 
in venlafaxine-mediated antidepressant effects notably by regulating processes such as adult hippocampal neurogenesis or 
the excitatory/inhibitory balance. Overall, depending on the dose used, venlafaxine shows a high efficacy on depressive-like 
symptoms in relevant animal models but to the same extent as common antidepressants. However, these data are counter-
balanced by a lower tolerance. In conclusion, venlafaxine appears to be one of the most effective treatments for treatment 
of major depression. Still, direct comparative studies are warranted to provide definitive conclusions about its superiority.
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Abbreviations
5-HT	� 5-hydrotryptamine or serotonin
5-HT1A	� Serotonin 1A receptor
5-HT1B	� Serotonin 1B receptor
[5-HT]ext	� Extracellular serotonin
BDNF	� Brain-derived neurotrophic factor
CA3	� Ammon’s horn 3
cFST	� Chronic forced swim test

CI	� Confidence interval
CNS	� Central nervous system
CORT	� Corticosterone
CSD	� Chronic social defeat
DA	� Dopamine
DAT	� Dopamine transporter
[DA]ext	� Extracellular dopamine
DRN	� Dorsal raphe nucleus
ED50	� Median effective dose
EPM	� Elevated plus maze
EZM	� Elevated zero maze
FST	� Forced swim test
HDRS	� Hamilton depressive rating scale
HPA	� Hypothalamic–pituitary–adrenal axis
LC	� Locus coeruleus
LPS	� Lipopolysaccharide
MADRS	� Montgomery-Asberg depression rating scale
MD	� Mean difference
MDD	� Major depressive disorder
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MED	� Minimal effective dose
MMP	� Matrix metalloproteinase
MS	� Maternal separation
NE	� Norepinephrine or noradrenaline
NET	� Norepinephrine transporter
[NE]ext	� Extracellular norepinephrine
NNT	� Number needed to treat
NRI	� Norepinephrine reuptake inhibitor
NSF	� Novelty-suppressed feeding
OB	� Olfactory bulbectomy
OCT2	� Organic cation transporter 2
OF	� Open field
OR	� Odds ratio
OVX	� Ovariectomy
PNN	� Perineuronal net
POCD	� Post-operative cognitive dysfunction
PV	� Parvalbumine
RCT​	� Randomized clinical trial
RR	� Risk ratio
RT50	� Recovery time 50
SERT	� Serotonin transporter
SMD	� Standard mean difference
SNRI	� Serotonin-noradrenaline reuptake inhibitor
SPT	� Sucrose preference test
SSRI	� Selective serotonin reuptake inhibitor
ST	� Splash test
TCA​	� Tricyclic antidepressant
TST	� Tail suspension test
UCMS	� Unpredictable chronic mild stress
VTA	� Ventral tegmental area
WHO	� World Health Organization

Introduction

Major depressive disorder (MDD) is a mental disorder 
characterized by numerous and persistent symptoms such 
as anhedonia, anxiety, despair, social withdrawal, cognitive 
deficits, sleep disturbance, and feelings of guilt. Accord-
ing to the World Health Organization (WHO), more than 
250 million patients worldwide will suffer from MDD in the 
coming years. The pathophysiological mechanisms underly-
ing MDD are not yet fully understood, but the monoamine-
deficiency hypothesis is now well accepted. This hypothesis 
stipulates that the occurrence of MDD is associated with 
deficiencies of the three main monoamine neurotransmit-
ters, namely 5-hydroxytryptamine (5-HT), norepinephrine 
(NE), and dopamine (DA). On the contrary, stimulating 
monoaminergic transmission using monoamine reuptake 
inhibitors or monoamine oxidase inhibitors have proven to 
be effective in improving mood (Blier 2014). By inhibiting 
the serotonin transporter (SERT), the selective serotonin 
reuptake inhibitors (SSRIs) such as fluoxetine, paroxetine, 

or (es)-citalopram block 5-HT reabsorption into neurons, 
thereby increasing extracellular serotonin concentrations 
in the synaptic cleft. Although the monoamine-deficiency 
hypothesis does not fully capture the complex dimension of 
MDD, efforts are still underway to improve the effectiveness 
of SSRIs (Liu et al. 2017). It is well documented that this 
class of antidepressants effectively relieves the symptoms of 
depression in 60%–65% of the cases. However, a significant 
proportion of depressed patients does not respond appropri-
ately to these treatments (Rush et al. 2006). Moreover, the 
remission rate of ~30% is low, and even if antidepressants 
rapidly increase the extracellular levels of monoamines in 
the central nervous system (CNS), the first therapeutic signs 
often take several weeks (i.e., 4–6) to appear.

Owing to the etiological heterogeneity of MDD and the 
obvious therapeutic limits of SSRIs, it is difficult to con-
ceive that modulating serotonergic neurotransmission alone 
can generate beneficial and enduring effects in all patients 
(Hasler 2010). In this context, research in neuropsychop-
harmacology aims to improve the therapeutic activity of 
pharmacological drugs that enhance serotonergic tone. It 
has been postulated that the concomitant inactivation of 
the SERT and NE transporters (NET) could produce more 
potent effects than single-acting compounds (Guiard et al. 
2009). However, it is still unclear whether adding the noradr-
energic component yields more robust antidepressant effects.

This review provides a synthetic overview of current 
knowledge of the pharmacological properties of venlafaxine 
from preclinical and clinical studies. Preclinical studies have 
focused on the mechanisms of action of venlafaxine and its 
behavioral effects. In contrast, clinical trials or meta-analy-
ses were designed to compare this drug's efficacy with other 
conventional antidepressant treatment options and highlight 
its potential superiority.

Pharmacological profile of venlafaxine

The venlafaxine binding profile was initially conducted 
in vitro and its affinity for different pharmacological targets 
was evaluated. In rats and humans, a preferential interaction 
of venlafaxine with SERT compared to NET was reported, 
whereas its affinity for DAT is very low and insignificant 
in both species (Bymaster et al. 2001; Millan et al. 2001). 
Venlafaxine displays a preferential (30-fold higher) affinity 
for the SERT compared to NET (i.e., KiSERT: 82 nM vs. 
KiNET: 2480 nM) in the rat brain (Bymaster et al. 2001). 
The affinity of venlafaxine towards other pharmacological 
targets involved in the modulation of cerebral monoaminer-
gic neurotransmission (serotonergic, adrenergic, dopamin-
ergic, muscarinic, and histaminergic receptors) was also 
evaluated. It appears that venlafaxine displays a negligi-
ble off-target affinity supporting the idea that it could lack 
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of side effects, notably those observed with the tricyclics 
(TCAs).

Regarding its functional activity, venlafaxine blocks the 
SERT at the dose of 8 mg/kg in mice, while a twice higher 
dose is necessary to inhibit the NET (Bacq et al. 2012). 
In line with the latter observations, it inhibits 5-HT reup-
take in a potent and robust manner at the dose of 75 mg in 
depressed patients, whereas higher doses (i.e., 150–225 mg) 
are required to induce NE reuptake inhibition (Debonnel 
et al. 2007). These data demonstrate that depending on the 
dose, venlafaxine can specifically target serotonergic neuro-
transmission alone or both serotonergic and noradrenergic 
tones without acting on off-targets.

In vivo preclinical studies of venlafaxine 
properties

Electrophysiological properties of venlafaxine

The electrophysiological properties of venlafaxine on mono-
aminergic neurons have been extensively investigated. Due 
to its ability to block the SERT and the NET, this com-
pound produces a strong impact on both 5-HT and NE sys-
tems, associated with different acute and chronic effects. To 
understand the in vivo electrophysiological properties of 
venlafaxine, it is essential to bear in mind that monoamine 
transporters are expressed in presynaptic cell bodies regions 
(either on collaterals or directly on soma) and nerve termi-
nals. Importantly, the acute inhibition of monoamines trans-
porters reduces neuronal firing rate due to the accumulation 
of endogenous monoamines around presynaptic inhibitory 
somatodendritic autoreceptors (Fig. 1, Table 1).

Acute in vivo studies on monoaminergic neurons

Initial electrophysiological studies demonstrate that the acute 
administration of venlafaxine dose-dependently inhibits the 
spontaneous firing rate of dorsal raphe nucleus (DRN) 5-HT 
neurons with an ED50 value of 233 μg/kg i.v. in anesthetized 
rats (Béïque et al. 1999). Evidence shows that the 5-HT1A 
receptor antagonist WAY 100635 abolishes this inhibitory 
response (Millan et al. 2001; Artaiz et al. 2005; Béïque et al. 
2000a; Gartside et al. 1997). This demonstrates that venla-
faxine leads to an accumulation of 5-HT around 5-HT cell 
bodies, which in turn, stimulates inhibitory somatodendritic 
5-HT1A autoreceptors. Regarding noradrenergic neurons, 
studies show that they are also dose-dependently inhibited 
by venlafaxine, but to a lesser degree. Indeed, the spontane-
ous firing of locus coeruleus (LC) NE neurons is inhibited 
by venlafaxine with an ED50 of 727 μg/kg i.v (Béïque et al. 
1999). This response is abolished in the presence of alpha2-
adrenergic receptor antagonist, idazoxan (Berrocoso and 

Mico 2007), raising the possibility that the over-activation 
of inhibitory somatodendritic alpha2-adrenergic receptors 
mediates such response.

Sub‑chronic and chronic in vivo studies on monoaminergic 
neurons

Single-unit recordings in the rat DRN show that two days 
of subcutaneous administration of venlafaxine (10 mg/kg) 
decreases the activity of 5-HT neurons and to a lesser extent, 
NE neurons (Béïque et al. 2000b), as observed after acute 
administration (Béïque et al. 1999). In marked contrast, this 
effect is no longer observed after 21 days of treatment, sug-
gesting a progressive attenuation of the inhibitory feedback 
exerted by somatodendritic 5-HT1A autoreceptors. This is 
evidenced by the fact that venlafaxine desensitizes these 
autoreceptors after 21 days of treatment at doses of 10 to 40 
mg/kg (Béïque et al. 2000b). In contrast, single-unit record-
ings in the LC show that the inhibitory action of venlafax-
ine persists after 14 and 21 days of treatment (10–40 mg/
kg). Although the reasons for such differences between the 
5-HT and NE systems remain debatable, it was proposed 
that the somatodendrtic alpha-2-adrenergic autoreceptors do 
not have the peculiarity to desensitize (Berrocoso and Mico 
2007; Béïque et al. 2000c).

The latter consideration is important since the time 
required for serotonergic antidepressants to desensitize 
somatodendritic 5-HT1A autoreceptors and thereby to sig-
nificantly increase 5-HT neuronal firing, coincides with their 
onset of therapeutic activity. Consequently, given that ven-
lafaxine displays the same electrophysiological properties 
than SSRIs in term of firing recovery, it is not surprising 
that the delay in venlafaxine response is similar to that of 
SSRIs. The lack of alpha2 adrenoceptor desensitization may 
be counterproductive for the beneficial effect of venlafaxine 
in term of efficacy or delay of action. In agreement with 
this hypothesis, electrophysiological studies showed that the 
pharmacological inactivation of alpah2 adrenoceptor with 
mirtazapine produces a rapid increase in noradrenergic but 
also serotonergic neurotransmission (Haddjeri et al. 1995). 
The latter results led to the hypothesis that the combination 
of venlafaxine with mirtazapine could produce more rapid 
improvement of depressive symptoms compared to SSRI 
alone. The interest for such combination derives from stud-
ies of mirtazapine augmentation of a variety of antidepres-
sant agents (principally SSRIs) rather than specifically of 
venlafaxine (Carpenter et al. 1999, 2002).

In vivo studies on postsynaptic monoaminergic neurons

At the nerve terminals and particularly in the hippocampus, 
postsynaptic pyramidal CA3 neurons are sensitive to 5-HT 
and NE. These post-synaptic neurons express 5-HT1A and 
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alpha-2 heteroreceptors which mediate inhibitory responses. 
Accordingly, acute intravenous administration of venlafaxine 
(5 mg/kg) in rats results in a massive (73%) suppression of 
CA3 pyramidal neurons firing, similar to the effects of the 
SSRI paroxetine (Béïque et al. 2000b). Interestingly, this 
effect is reversed by the 5-HT1A antagonist WAY100635 
(Béïque et al. 2000b). Hence, any increase in extracellu-
lar 5-HT levels, but also of NE, results in the progressive 
attenuation of postsynaptic neuronal activity. This property 
has been successfully used to assess the in vivo potency of 
pharmacological agents known to inhibit monoaminergic 
transporters. Indeed, the time required for the firing activity 
to recover 50% of the initial firing rate after application of 
5-HT or NE (recovery time: RT50 value) is an indication 

of reuptake inhibitors' ability to maintain 5-HT and/or NE 
in the synaptic cleft. The higher the RT50 value, the higher 
the ability to block the transporters. Of note, the subcutane-
ous administration of venlafaxine at 16 mg/kg significantly 
increased the RT50 after the microiontophoretic applica-
tion of 5-HT or NE (Bacq et al. 2012). This highlights the 
ability of venlafaxine to prolong inhibitory actions of 5-HT 
and NE onto CA3 pyramidal cells by blocking their respec-
tive transporters. Interestingly, the genetic depletion of the 
organic cation transporter 2 (OCT2), a transporter exhibit-
ing low affinity for monoamines, potentiates venlafaxine-
induced increase in RT50 (Bacq et al. 2012). This suggests 
that residual 5-HT and NE could be removed from the syn-
aptic cleft by OCT2.

Fig. 1   Mechanism of action of Venlafaxine.5-HT and NE are stored 
into presynaptic vesicles. Incoming action potentials trigger their 
release into the synaptic cleft after melding with the cell membrane. 
5-HT/NE can then bind to postsynaptic serotonergic and adrener-
gic G-coupled receptors. In parallel of the activation of these post-
synaptic elements, 5-HT/NE can return into the presynaptic neurons 
through serotonin/norepinephrine transporters (SERT/NET) through 
a high affinity reuptake process. 5-HT/NE can also be removed from 
the synaptic cleft by neighboring glial cells such as astrocytes (not 
shown here). Into the presynaptic neuron, 5-HT and NE can penetrate 
into exocytosis vesicles through a vesicular monoamine transporter 
or degraded by the monoamine oxidase (MAO). Serotonergic and 
noradrenergic neurons have multiple ways to up- and downregulate 
monoamines response thereby maintaining a normal excitatory/inhib-
itory balance and protecting the brain from a sub-or over-stimulation. 

Receptors are not only found on the postsynaptic neuronal membrane, 
but also presynaptically. In particular, autoreceptors are found on 
axon terminals (i.e. 5HT1B and A2R) or on the soma (i.e. 5HT1A 
and A2R). If too many neurotransmitters accumulate in the synap-
tic cleft, these Gi-coupled autoreceptors are activated to mediate an 
inhibitory signal on the firing or release activities of the presynaptic 
serotonergic and adrenergic neurons. By inhibiting the SERT and 
NET transporters, venlafaxine can simultaneously increase extracel-
lular 5-HT/NE levels in various brain regions involved and therefore 
to activate postsynaptic receptors involved in the regulation of emo-
tional states. However, this action is limited by the recruitment of the 
autoreceptors after an acute administration of venlafaxine. While the 
treatment is prolonged, such inhibitory feedbacks desensitize thereby 
producing a higher rate of monoamines in the synaptic cleft neces-
sary to promote beneficial behavioral effects.
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Chronic administration of venlafaxine (21 days by 
osmotic minipumps at either 10 or 40 mg/kg/day) increases 
RT50 for 5-HT (Béïque et al. 2000b). The authors show 
an enhancement of serotonergic neurotransmission after 
21-days of treatment with venlafaxine, and this effect is 
only achieved under conditions where the desensitization 
of the terminal 5-HT1B autoreceptors is appended to the 
somatodendritic 5-HT1A receptors (Béïque et al. 2000b). 
Remarkably, RT50 for NE is increased only at the dose of 
40 mg/kg/day, corroborating a preferential effect on SERT 
inhibition over NET inhibition (Béïque et al. 2000b). Taken 
together, these data confirm the above-mentioned in vitro 
data that venlafaxine blocks the reuptake of 5-HT and to a 
lesser degree NE.

Taken together, these data suggest that venlafaxine blocks 
5-HT and NE reuptake processes but its potency to target 
the 5-HT system is greater compared to the NE system. At 
low doses, venlafaxine act as an SSRI whereas higher doses 
are required to impact both systems. Chronic administra-
tion of venlafaxine leads to an overall increased 5-HT neu-
rotransmission in response to a progressive desensitization 

of somatodendritic 5-HT1A autoreceptors as classical anti-
depressant drugs do (Quentin et al. 2018). Interestingly, 
although a 21-day treatment of venlafaxine desensitizes 
somatodendritic and terminal 5-HT1A/1B autoreceptors, 
it fails to do so on alpha2-adrenergic autoreceptors. This 
agrees with previous studies showing that different classes 
of antidepressants such as the NRI reboxetine but also the 
IMAO and the TCA do not modify the functional sensitivity 
of alpha2-adrenoceptors even after sustained administration 
(Blier and de Montigny 1985; Lacroix et al. 1991; Szabo 
and Blier 2001).

Neurochemical properties of venlafaxine

The neurochemical effects of venlafaxine on extracellular 
monoamines have been assessed in different brain structures 
using in vivo microdialysis in rodents.

In the rat frontal cortex, Millan and collaborators exam-
ined the acute effects of increasing doses of subcutane-
ous venlafaxine on the extracellular concentrations of the 
three monoamines ([5-HT]ext, [NE]ext, and [DA]ext). 

Table 1   Synthesis of the electrophysiological properties of venla-
faxine on monoaminergic neurons. Venlafaxine was delivered either 
by systemic (i.v.) or delivered by osmotic pump. Electrophysiologi-
cal recordings were performed within the dorsal raphe nucleus, locus 
coeruleus, and ventral tegmental area which are the place of mono-

aminergic neuron cell bodies (respectively 5-HT, NE, and DA). 
*Extrapolation of ED50 value from dose-effect curve. Arrows (↓) 
mean that venlafaxine induces a decrease in neuronal firing rate, 
while (=) means that the discharge rate remains unchanged

Model Duration 
of treat-
ment

Route of administra-
tion

Recording site Methods Electrophysiological 
effect

References

Wistar rats Acute i.v. VTA Dose effect curve =N.A. (Millan et al. 2001)
Sprague Dawley rats Acute i.v. DRN Dose effect curve ↓ ED50= 233 ± 12 

μg/kg
(Béïque et al. 1999)

Wistar rats Acute i.v. DRN Dose effect curve ↓ ED50= 125 μg/
kg *

(Millan et al. 2001)

Wistar rats Acute i.v. DRN Dose effect curve ↓ ED50= 358 ± 44 
μg/kg

(Artaiz et al. 2005)

Sprague Dawley rats Acute i.v. DRN Dose effect curve ↓ ED50= 160 ± 23 
μg/kg

(Gartside et al. 1997)

Sprague Dawley rats Acute i.v. LC Dose effect curve ↓ ED50= 1800 μg/kg (Berrocoso and Mico 
2007)

Sprague Dawley rats Acute i.v. LC Dose effect curve ↓ ED50= 737 ± 68 
μg/kg

(Béïque et al. 1999)

Wistar rats Acute i.v. LC Dose effect curve ↓ ED50= 1000 μg/
kg *

(Millan et al. 2001)

Sprague Dawley rats 2-day osmotic pump (10 
mg/kg)

DRN Basal firing rate 
recording

↓ N.A. (Béïque et al. 2000b)

Sprague Dawley rats 2-day osmotic pump (10- 
40 mg/kg)

LC Basal firing rate 
recording

↓ N.A.

Sprague Dawley rats 14-day osmotic pump (40 
mg/kg)

LC Dose effect curve ↓ ED50= 2000 ± 500 
μg/kg

(Berrocoso and Mico 
2007)

Sprague Dawley rats 21-day osmotic pump (10 
mg/kg)

DRN Basal firing rate 
recording

=N.A. (Béïque et al. 2000b)

Sprague Dawley rats 21-day osmotic pump (10- 
40 mg/kg)

LC Basal firing rate 
recording

↓ N.A.
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In agreement with venlafaxine ability to block the SERT 
and the NET, the authors observed a significant and dose-
dependent increase of [5HT]ext starting from 0.63 mg/kg 
up to 40 mg/kg of venlafaxine with a maximal increase of 
400% from baseline. Likewise, venlafaxine increases [NE]
ext approximately by 500% which remains elevated for up 
to 3 hours after subcutaneous administration of the antide-
pressant at the dose of 40 mg/kg. Although venlafaxine has 
no affinity for the DAT, increases of cortical [DA]ext are 
also detected in response to venlafaxine from 2.5 mg/kg 
up to 40 mg/kg (Millan et al. 2001). It was proposed that 
the pharmacological inactivation of the NET might prevent 
DA reuptake by a heterologous reuptake process (Guiard 
et al. 2008; Morón et al. 2002). Regarding NE, a significant 
increase of [NE]ext was detected in the rat brain following 
administration of 3 to 30 mg/kg of venlafaxine (Koch et al. 
2003; Beyer et al. 2002). Similar results were obtained from 
mice in which intraperitoneal administration of venlafaxine 
at the dose of 30 mg/kg also increased the cortical extracel-
lular concentrations of the three monoamines (Higashino 
et al. 2014). In mice, the effects of venlafaxine on [5HT]
ext (but not on [NE]ext) were even observed at a lower dose 
(i.e. 8 mg/kg) (David et al. 2003). It should be noted that all 
these data originate from non-depressed mice. In the rat hip-
pocampus, another brain region critically involved in MDD, 
the acute subcutaneous administration of venlafaxine (5, 10, 
and 20 mg/kg) fosters [5HT]ext and [NE]ext (Millan et al. 
2001; Sánchez et al. 2007). In the rat striatum and nucleus 
accumbens, venlafaxine (10 mg/kg, s.c) induces an increase 
in [5HT]ext whereas [DA]ext remains unchanged (Millan 
et al. 2001).

Only a few studies assessed the effect of chronic venla-
faxine on monoaminergic neurotransmission. Surprisingly, 
a 14 or 21 day-period of subcutaneous or intraperitoneal 
administration of venlafaxine at the doses of 10 and 30 mg/
kg does not affect cortical [5HT]ext, [NE]ext, and [DA]ext 
basal levels (Millan et al. 2001; Higashino et al. 2014). Gur 
and colleagues also evaluated the effect of the intraperitoneal 
administration of venlafaxine at the dose of 5 mg/kg for 28 
days and again, they did not observe significant effects on 
[5HT]ext (Gur et al. 1999). However, another study reports 
that the chronic subcutaneous administration of venlafaxine 
for 14 days at the dose of 10 mg/kg increases cortical [5HT]
ext and [NE]ext and that such effects could be potentiated 
by an OCT2 pharmacological blocker (Rahman et al. 2008). 
This finding further confirms that OCT2 contributes to the 
clearance of the remaining 5-HT and NE in the synaptic 
cleft.

To conclude, it appears that acute venlafaxine has a 
positive impact on monoaminergic systems due to its abil-
ity to block the SERT and the NET. These transporters are 
present in brain regions involved in the regulation of mood 
and their pharmacological blockade enhances extracellular 

5HT and NE levels. Evidence also suggests that venla-
faxine may act on dopaminergic transmission through the 
inactivation of a heterologous reuptake process involv-
ing the NET, notably in the frontal cortex. An increase in 
monoamine levels is also observed in the cell body areas 
(i.e., in the DRN and LC) and this favors the importunate 
binding and activation of inhibitory 5HT1A/alpha2 auto-
receptors. Surprisingly and contrary to what is observed 
in electrophysiological studies, microdialysis data do 
not show a preferential effect of venlafaxine on [5HT]
ext compared to [NE]ext (even at low doses) excepted 
in one study (David et al. 2003). In these microdialysis 
experiments, literature reports a great variability from one 
study to another that could depend on different parameters. 
Although neurochemical data come from rat studies, we 
noticed differences between species in response to ven-
lafaxine treatment. One might ask whether the levels of 
expression of the SERT and/or NET is different in rats 
and mice for example. Doses and routes of administration 
could be other factors determining the impact venlafax-
ine on the 5-HT and NE systems. Finally, the precise site 
of implantation of the microdialysis probes could also be 
a critical point because brain structures display different 
monoaminergic inputs and different levels of monoamin-
ergic transporters.

Regarding chronic exposure, electrophysiological 
studies report a functional desensitization of 5-HT1A 
autoreceptors after chronic venlafaxine treatment. How-
ever, this effect is not accompanied by an enhancement of 
serotonergic neurotransmission. A large number of stud-
ies have failed to show increases in basal 5-HT level in 
terminal areas after chronic administration of venlafax-
ine but also with other 5-HT reuptake inhibitors, unless 
the sample collections were performed less than 24 h 
after the last drug administration (Bel and Artigas 1993; 
Kihara and Ikeda 1995; Bosker et al. 1995; Invernizzi 
et al. 1995, 1996; Hjorth and Auerbach 1999; Jaskiw 
et al. 2006). This lack of effect could reflect adaptive 
changes. Indeed, according to the homeostasis rules, it 
is possible the release process is attenuated. 5-HT syn-
thesis and degradation can also be modified which could 
explain this lack of significant action of venlafaxine on 
5-HT tone. Finally, it is important to note that there are 
no studies assessing the chronic effects of venlafaxine 
on animal models of depression. One would expect that 
chronic venlafaxine could exert its beneficial effects spe-
cifically in pathological conditions characterized by low 
extracellular 5-HT levels. Another explanation can be a 
technical issue with intracerebral microdialysis. It is well 
known that the gold standard technique to probe mono-
aminergic tone after chronic exposure is the “no net flux” 
(Guiard et al. 2005) but this approach was not applied in 
the currently available publications.
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Behavioral effects of venlafaxine

Preclinical studies have explored its antidepressant prop-
erties in naïve non-stressed animals and in various animal 
models of depression. These include animals submitted to 
unpredictable chronic mild stress (UCMS), chronic social 
defeat (CSD), maternal separation (MS), olfactory bulbec-
tomy (OB), ovariectomy (OVX), or prolonged adminis-
tration of corticosterone (CORT). This part of the review 
focuses on the behavioral effects of venlafaxine on mice.

In naïve mice

The efficacy of venlafaxine on mice depressive-like behav-
ior was mainly evaluated using the FST and the TST tests 
and a wide range of doses was screened (from 1 up to 80 
mg/kg). Michel Bourin’s group was the first to evaluate the 
behavioral effects of venlafaxine in mice and reported that 
its acute venlafaxine (8 to 64 mg/kg) elicits antidepressant-
like effects in the FST and TST as evidenced by a reduction 
of animal’s immobility time. This study also showed that 
8 mg/kg of venlafaxine blocks 5-HT reuptake inhibition, 
while doses above 16 mg/kg seem to inhibit the SERT and 
the NET (Redrobe et al. 1998). Such beneficial effects are 
unlikely to result from a psychostimulant effect since high 
doses of venlafaxine do not influence locomotor activity 
(Berrocoso and Mico 2007). Of note, most of the subsequent 
studies did not demonstrate the antidepressant-like effects 
of venlafaxine when doses below 8 mg/kg were used (Bor-
tolatto et al. 2010; Castagné et al. 2009; Bourin et al. 2009; 
David et al. 2001) (Table 2). However, some studies report 
beneficial effects of venlafaxine intraperitoneal administra-
tion at doses of 4 (Kulkarni and Dhir 2007) (Table 2). To 
explain these mixed results, the importance of mice strain 
and gender was explored (variables not shown in Table 2). 
It appears that most studies used males and that C57BL6 
and albino (CD1/SWISS/LACA) mice were more prone to 
respond to low doses (<8 mg/kg) of venlafaxine. The mode 
of administration could be another important parameter of 
venlafaxine efficacy since in acute experiments performed 
in mice, its antidepressant-like effects appear at 80 mg/kg 
but not at 20 mg/kg when oral administration was performed 
(Yamada et al. 2013).

Collectively, these data suggest that in non-pathological 
conditions, the acute administration of venlafaxine produces 
antidepressant-like effects at doses ranging from 8 to 80 mg/
kg and that the expression of its beneficial effects does not 
necessarily require the noradrenergic system.

With respect to sub-chronic (< 7 days) administra-
tion, two studies tested whether prolonged treatment with 
venlafaxine could produce more robust effects than those 
observed after acute administration (Ren et al. 2018; Ide 
et al. 2010). It is noteworthy that the antidepressant-like 

effects of venlafaxine (10 mg/kg; i.p.) were observed in both 
FST and TST, following daily drug administration for three 
consecutive days (Ren et al. 2018). In another work, venla-
faxine was administered for 5 days at either 10 or 30 mg/kg, 
and despair was evaluated each day in the FST (Ide et al. 
2010). Remarkably, at 10 mg/kg, venlafaxine produced 
antidepressant-like effects observable from the first day of 
treatment, and this response persisted to the fourth day. In 
contrast, at 30 mg/kg, venlafaxine triggered antidepressant-
like effects only after 3 and 4 days of treatment. Considering 
these data, one would anticipate that chronic administration 
of venlafaxine also promotes positive effects in the FST and 
TST. Indeed, such beneficial effects were observed from the 
seventh day of treatment in the TST and after 2 weeks of 
exposure in the FST and TST (Liu et al. 2012). It is plausible 
that such delay coincides with the time required for the cel-
lular and structural adaptations that underlie the therapeu-
tic effect of antidepressants and contribute to the adaptive 
plasticity induced in the brain by these drugs. In another 
study, 2 weeks of venlafaxine at the dose of 16 mg/kg had no 
antidepressant-like effect (Liang et al. 2016). However, after 
3 weeks of treatment, venlafaxine 4 (Thomas et al. 2016a) 
and 5 (Abdel-Wahab and Salama 2011) mg/kg elicited anti-
depressant-like effects in the FST and TST. Higher doses 
were also tested (10–20 mg/kg), revealing a dose-response 
relationship (Abdel-Wahab and Salama 2011). After 4 weeks 
of treatment with venlafaxine (10 mg/kg, p.o.) antidepres-
sant-like effects were also observed in the TST (Carlini et al. 
2012). Although interesting, these data focused on despair 
and further experiments are needed to determine whether 
venlafaxine also acts on other symptoms of depression.

The acute anxiolytic effect of venlafaxine was assessed 
using a large spectrum of concentrations (i.e. 10 – 60 mg/
kg) and found from 30mg/kg (Li et al. 2006). Despite the 
beneficial effect on anxiety of a single administration of ven-
lafaxine, several studies failed to demonstrate anxiolytic-like 
effects of this drug when administered chronically. Indeed, 2 
or 4 weeks of venlafaxine at the dose of 10 or 16 mg/kg had 
no effect on the time spent in the open arms or in the center 
of the arena in the EPM, OF, or EZM test whereas some 
studies reported beneficial effects after the administration of 
the SSRIs fluoxetine and paroxetine or the SNRI duloxetine 
(Carlini et al. 2012; Hu et al. 2018; Mirza et al. 2007).

Altogether, studies using acute, sub-chronic, and 
chronic administration of venlafaxine in naive mice 
suggest that over 8 mg/kg, venlafaxine elicits antide-
pressant-like effects on despair (Table 2). Furthermore, 
additional anxiolytic effects of venlafaxine are observed 
after acute administration when administered at high 
dose, whereas prolonged treatment does not. Moreo-
ver, when many doses were evaluated, several studies 
observed a dose-response relationship with greater effects 
in response to high doses and this could be correlated 
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with electrophysiological or neurochemical measures. 
This dual effect of venlafaxine on serotonergic (low/high 
doses) and noradrenergic (only high dose) can explain 
such a dose-response relationship.

In mouse models of depression

A review of the literature reveals a dozen of publications 
evaluating the effects of venlafaxine in mouse models of 

Table 2   Antidepressant-like effects of venlafaxine in naïve, non-depressed mice. FST, forced swim test; TST, tail suspension test; EPM, elevated 
plus maze; OF, open field; EZM, elevated zero maze; NSF, novelty-suppressed feeding test; SPT, sucrose preference test.

Strain Acute vs. chronic Dose–route of adminis-
tration

Behavioral test Behavioral effect References

Swiss mice Acute 1–2–4–8–16–32–64 
mg/kg

FST Antidepressant effect 
from 8 mg/kg

(Redrobe et al. 1998)

Swiss mice Acute 2 mg/kg; i.p. FST Antidepressant effect (Socała et al. 2012)
Swiss mice Acute 2–8 mg/kg; i.p FST Antidepressant effect 

only at 8 mg/kg
(Bortolatto et al. 2010)

NMRI mice Acute 2–4–8–16–32–64 mg/
kg; i.p.

FST Antidepressant effect 
from 8 mg/kg

(Castagné et al. 2009)

Swiss mice Acute 4–8–16 mg/kg; i.p. FST 4-week-old mice: antide-
pressant effect 8 mg/kg

(David et al. 2001)

40-week-old mice: anti-
depressant effect only 
at 16 mg/kg

Laca mice Acute 4–8–16 mg/kg; i.p. FST Antidepressant effect (Kulkarni and Dhir 2007)
Swiss mice Acute 4–8–16 mg/kg; i.p. FST Antidepressant effect 

only at 16 mg/kg
(Bourin et al. 2009)

Swiss mice Acute 10–20–40 mg/kg; i.p. TST - FST Antidepressant effect at 
20 and 40 mg/kg only 
in FST

(Auclair et al. 2013)

CD1 mice Acute 10–30–60 mg/kg; p.o. FST - TST Antidepressant effect 
from 30 mg/kg

(Artaiz et al. 2005)

Swiss mice Acute 10 up to 60 mg/kg; i.p. Marble - Nestlet shred-
ding

Anxiolytic effect from 
30 mg/kg

(Li et al. 2006)

ICR mice Acute 20–80 mg/kg; per os FST Antidepressant effect at 
80 mg/kg

(Yamada et al. 2013)

C57BL/6J mice Acute 10 mg/kg; i.p. TST Antidepressant effect (Ren et al. 2018)
3 days FST

C57BL/6J mice 1 to 5 days 10–30 mg/kg; s.c. FST 10 mg/kg: antidepressant 
effect day 1 to 4

(Ide et al. 2010)

30 mg/kg: antidepressant 
effect day 3 and 4

Swiss mice 7–14–21 days 4 mg/kg; i.p. TST - FST Antidepressant effect (Thomas et al. 2016b)
ICR mice 7–14 days 9.4 mg/kg; i.p. FST - TST Antidepressant effect at 

7 days only in TST and 
14 days in both tests

(Liu et al. 2012)

C57BL/6J mice 14 days 16 mg/kg; i.p. EPM – OF - SPT No anxiolytic but 
hedonic effect

(Hu et al. 2018)

C57BL/6J mice 14 days 16 mg/kg; i.p. SPT Hedonic effect (Liang et al. 2016)
TST

Swiss mice 21 days 5–10–20 mg/ kg; i.p FST - TST Antidepressant effect (Abdel-Wahab and Salama 
2011)

Swiss mice 28 days 10 mg/ kg; p.o. TST Antidepressant effect (Carlini et al. 2012)
OF No anxiolytic effect

NMRI mice 28 days 10 mg/ kg; p.o EZM No effect (Mirza et al. 2007)
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depression. Among them, 3 used the chronic forced swim-
ming test (cFST) model which involves subjecting mice to 
repeated swimming stress. In one study, mice are submit-
ted to this protocol for 21 consecutive days while receiving 
low doses of venlafaxine (from 2 to 16 mg/kg; i.p.)(Thomas 
et al. 2016a). Antidepressant-like effects in the FST and tail 
suspension test (TST) were observed only after 3 weeks of 
treatment at the dose of 4 mg/kg. At higher doses (8 and 16 
mg/kg), the antidepressant-like effects occur after 2 weeks of 
treatment (Thomas et al. 2016a, 2017). In another study, the 
cFST is applied for one week while mice receive venlafaxine 
at doses of 5 and 10 mg/kg. An immediate beneficial effect 
persisting for seven days was revealed (Kumar et al. 2010). 
At the end of this experimental procedure, anxiolytic effects 
were also found in the elevated plus maze (EPM) and the 
mirror chamber test (approach-avoidance test when animals 
are confronted by a mirror), whatever the dose administered 
(5 and 10 mg/kg; i.p.) (Kumar et al. 2010).

The behavioral effects of venlafaxine were also tested in 
the chronic social defeat (CSD) model of depression which 
consists in repeatedly exposing naïve mice to aggressor 
mice. Venzala and colleagues treated mice with venlafax-
ine for 4 weeks at a dose of 20 mg/kg (i.p.) before submit-
ting them to a battery of behavioral tests. They observed 
antidepressant-like effects in the FST and sucrose preference 
test (SPT), anxiolytic responses in the EPM and novelty-
suppressed feeding (NSF). However, venlafaxine did not 
abolish the deficit in the social interaction test (Venzala et al. 
2012). In a different study, mice were treated with venla-
faxine for six weeks at the dose of 16 mg/kg (i.p.) before 
evaluating their behavior (Bai et al. 2017). While no anti-
depressant nor anxiolytic effects were seen in the FST and 
TST or EPM, an improved capacity for social interaction 
was observed in these animals (Bai et al. 2017). Moreover, 
in postoperative cognitive dysfunction (POCD), venlafaxine 
(16 mg/kg; i.p.) was shown to increase working memory in 
the Y-maze (Li and Zhang 2021). Furthermore, mice submit-
ted to mechanical and cold hyperalgesia induced by repeated 
injection of oxaliplatin, developed traits characteristic of an 
anxiety-depressive phenotype, whereas the acute venlafax-
ine treatment (16 mg/kg, s.c) alleviated neuropathic pain 
and promoted antidepressant-like effects in these animals 
(Hache et al. 2015). In summary, the 16 mg/kg i.p. chroni-
cally administered is the optimal dose to treat depression 
andanxiety but also to improve cognitive performances in 
several animal models of depression.

In two other studies, mice submitted to the Unpredict-
able chronic mild stress (UCMS) were used to address 
venlafaxine’s antidepressant properties. After 7 days of 
venlafaxine (10 mg/kg, i.p.) treatment, antidepressant-like 
effects were observed in the FST and TST, while only 3 
days of treatment were not sufficient to elicit such effects 

(Ren et al. 2018). As expected, in UCMS mice, prolonged 
venlafaxine treatment (i.e., 2 weeks, i.p.) using the same 
dose also produced antidepressant-like effects, notably by 
improving social interaction (Wang et al. 2020).

Chronic administration of corticosterone (CORT) in the 
drinking water of mice is a widely used model of depres-
sion, which allows screening the effects of antidepressant 
drugs. For instance, an 8-week period of CORT exposure 
induces depressive-like behaviors which are reversed by 
monoaminergic antidepressant drugs (David et al. 2009). 
Indeed, 3 weeks (16mg/kg) chronic administration of ven-
lafaxine exerted antidepressant- and anxiolytic-like effects 
in the splash test (ST) and the zero maze respectively (Bacq 
et al. 2012). Interestingly, studies showed that ovariectomy 
(OVX)-induced depressive-like symptoms in females are 
reversed by long-term intragastric administration of venla-
faxine. In a first study, depressive-like behaviors occurred 
8 weeks only after ovariectomy, and venlafaxine (70 mg/
kg, intragastric) therapeutic action in the TST is observed 
as early as after 1 and 2 weeks of treatment in OVX mice 
compared to vehicle mice while depressive-like behavior 
occurred only 8 weeks after ovariectomy (Ye et al. 2016). 
More recently, these authors reported that intragastric 
administration of venlafaxine (9.75 mg/kg) in OVX females 
had no effect in the EPM (Xu et al. 2019). Lastly, Poretti 
et  al. (2016) used bulbectomy-induced depressive-like 
behavior in mice. In this model, the oral administration of 
venlafaxine (5 to 20 mg/kg) elicited antidepressant effects 
in the TST after 3weeks of chronic treatment at the highest 
dose (20 mg/kg) while antidepressant effects were observed 
after 4weeks of treatment at 10 to 20 mg/kg (Poretti et al. 
2016). The lowest dose (5 mg/kg) did not induce a change 
in immobility time in this test.

The literature review indicates that venlafaxine displays 
antidepressant-like effects in various mouse models of 
depression, when administered acutely, sub-chronically as 
well as chronically (Table 3). The effective dose, i.e., the 
dose that promotes beneficial behavioral effects on anxi-
ety, was found to start at 8 mg/kg, although a few stud-
ies have documented antidepressant-like effects at lower 
doses. This indicates that targeting the 5HT system is suf-
ficient to elicit beneficial effects and there is no evidence 
showing that a high dose of venlafaxine promotes greater 
antidepressant-like responses. The possibility that low and 
high doses promote distinct effects warrant further inves-
tigations. Furthermore, the different routes of administra-
tion (i.p. vs. p.o.) elicit similar behavioral effects in the 
mouse models of depression. Finally, treatment duration is 
another parameter that should be considered. Most studies 
show that venlafaxine becomes effective after a minimum 
of 3 weeks of treatment, as is the case with conventional 
antidepressants (i.e., SSRI).
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Effects of venlafaxine on sleep

Links between sleep, depression, and antidepressant treat-
ments are strong. About three-quarters of depressed patients 
have insomnia symptoms, and hypersomnia is present in 
about 40% of young depressed adults. As well as the sub-
jective experience of sleep symptoms, there are well-doc-
umented changes in sleep architecture in depression (Nutt 

et al. 2008). Evidence shows that sleep architecture is mod-
ified by an increase in rapid eye movement (REM) sleep 
propensity in the early night resulting in an increased REM 
sleep quantity and sleep fragmentation. This leads to poor 
sleep quality (Grønli et al. 2004). Interestingly, venlafaxine 
is able to modify sleep architecture. For instance, in naïve 
rats, it was shown that venlafaxine produces a dose-related 
suppression of REM sleep as TCA or SSRIs do (Wichniak 

Table 3   Antidepressant-like effects of venlafaxine in different mouse 
models of depression. FST, forced swim test; TST, tail suspension 
test; EPM, elevated plus maze; OF, open field; EZM, elevated zero 
maze; NSF, novelty-suppressed feeding test; SPT, sucrose preference 

test; YM, Y-maze; OVX, ovariectomized female mice; UCMS, unpre-
dictable chronic mild stress. Route of administration: i.p. for intra-
peritoneal, p.o. for per os.

Strain Model of depres-
sion

Treatment duration Dose–Route of 
administration

Behavioral test Behavioral effect References

Laca mice Chronic FST 1 to 7 days 5–10 mg/kg; i.p. FST Antidepressant 
effect in FST 
from 1 day

(Kumar et al. 2010)

EPM – Mirror 
chamber test

Anxiolytic effect

Swiss mice Chronic FST 7–14–21 days 2–4–8–16 mg/kg; 
i.p.

FST - TST 14 days: Antide-
pressant effect 
from 8 mg/kg

(Thomas et al. 
2016a)

21 days: Antide-
pressant effect at 
each dose

Swiss mice Chronic FST 7–14–21 days 2–4 mg/kg; i.p. FST Antidepressant 
effect after 21 
days of venlafax-
ine 4 mg/kg

(Thomas et al. 2017)

ICR mice OVX 1–2 -8 weeks 71.92 mg/kg; p.o.. TST Antidepressant 
effect after 1 
weeks

(Ye et al. 2016)

ICR mice OVX 8 weeks 9.75 mg/kg; p.o. EPM No effect (Xu et al. 2019)
C57BL/6J mice UCMS 3–7 days 10 mg/kg; i.p. TST – FST - SPT Antidepressant 

effect only at 7 
days

(Ren et al. 2018)

C57BL/6J mice UCMS 2 weeks 10 mg/ kg; i.p. FST - TST Antidepressant 
effect

(Wang et al. 2020)

C57BL/6J mice Chronic social 
defeat

30 days 20 mg/kg; i.p. FST Antidepressant 
effect in FST

(Venzala et al. 2012)

OR - EPM - NSF- 
Social - SPT

Anxiolytic and 
Hedonic effect in 
EPM and NSF

C57BL/6J mice Chronic social 
defeat

6 weeks 16 mg/kg; i.p. SPT - OF - TST - 
EPM - YM - FST

No effect (Bai et al. 2017)

C57BL/6J mice CORT 21 days 16 mg/kg; i.p. SPT - O maze - 
Coat state - ST

Anxiolytic effect 
– Hedonic effect 
– Decrease mice 
coat degradation/
Reverse mice 
coat degradation

(Bacq et al. 2012)

Swiss mice Bulbectomy 14–21–28 days 5–10–20 mg/ kg; 
p.o.

TST Antidepressant 
effect from 21 
days (20mg/kg) 
and at 28 days 
(10–20mg/kg)

(Poretti et al. 2016)
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et al. 2017). Venlafaxine also increases wake time (Salin-
Pascual and Moro-Lopez 1997). Although these effects were 
found in non-depressed rodents, the reduction of total sleep 
duration and sleep efficiency (hypersomnia) observed in the 
mouse CORT model of depression (Le Dantec et al. 2014) 
strongly suggests that venlafaxine could have a beneficial 
action on this parameter, notably due to its neurochemical 
properties. Indeed, at the neurochemical levels, it is well 
known that the serotonergic and noradrenergic systems are 
involved in the regulation of sleep and wakefulness, their 
activity being at maximum during the awake state and mini-
mum during sleep (Adrien 2002). Because the production 
of REM sleep depends on the decrease of serotonergic and 
noradrenergic tones in brain stem structures, it is possible 
that the ability of this antidepressant to favor inhibition of 
REM relies on its ability to increase monoaminergic tone. 
Evidence demonstrated that both SSRIs and SNRIs have the 
same effects on the suppression of REM (Wichniak et al. 
2017) suggesting that the elevation of 5-HT neurotransmis-
sion is sufficient to impact this parameter and therefore to 
counterbalance sleep disturbances observed in depression. 
Whether or not the effects of venlafaxine on sleep differ 
according to the dose and its ability to increase 5-HT and/or 
NE extracellular levels has yet to be solved.

Mechanism of action venlafaxine: emphasis 
on brain plasticity

Impact of venlafaxine on adult hippocampal 
neurogenesis

Ex vivo studies evaluated the influence of animal mod-
els of depression on Brain-Derived Neurotrophic Factor 
(BDNF). They showed that corticosterone, mimicking an 
increased HPA reactivity and LPS induce a significant 
reduction of BDNF gene and protein expression in the 
frontal cortex and hippocampus (Lin et al. 2019; Huang 
et al. 2011). Going one step further, several studies evalu-
ated the effects of venlafaxine on BDNF expression and on 
hippocampal adult neurogenesis. After 7 days of admin-
istration, venlafaxine increases BDNF expression in the 
hippocampus (Larsen et al. 2008) while fluoxetine fails 
to do so. In another study, 7 days of venlafaxine (10 mg/
kg, p.o.) fails to modify hippocampal or cortical BDNF 
protein level (Cooke et  al. 2009). Nevertheless, the 
authors reported enhanced cortical BDNF protein levels 
in response to the chronic administration of venlafax-
ine (21 days, 10 mg/kg, p.o.), while citalopram had no 
effect. Cortical and hippocampal BDNF levels were also 
increased after a 5-week period of venlafaxine treatment 
in rat (20 mg/kg, p.o) (Czubak et al. 2009). Interestingly, 
a 28-day period of venlafaxine treatment (10 mg/kg, p.o.) 

followed by 28 days of chronic restrained stress (CRS) 
without treatment in rat, enhanced BDNF expression 
(Lapmanee et al. 2017). In the same model of depression, 
systemic administrations of venlafaxine (5 mg/kg) for 
14 and 21 days rescued hippocampal BDNF expression 
(Xu et al. 2004). Following UCMS, a marked increase of 
BDNF was observed in the rat hippocampus after 28 of 
venlafaxine(Wang et al. 2020; Huang et al. 2014).

Regarding the influence of venlafaxine on hippocampal 
neurogenesis, it was shown that the administration of a 
high (but not low) dose of venlafaxine (40 mg/kg) for 14 
days increased cell proliferation in the dentate gyrus of 
rats (Mostany et al. 2008). In the Chronic Restraint Stress 
(CRS) rat model, a 21-day treatment with venlafaxine 
(5 mg/kg, i.p.) rescues the impairment of hippocampal 
progenitors’ proliferation (Xu et al. 2004). Accordingly, 
Zhang and colleagues showed that the deleterious effects 
of UCMS on hippocampal cell proliferation were abol-
ished by 21 days of venlafaxine (15 mg/kg, i.p.) (Zhang 
et al. 2015). Similar effects were found in the MS and 
UCMS models of depression after 14 days of venlafaxine 
treatment (respectively 20 & 5 mg.kg; p.o.) (Belovicova 
et al. 2017; Martisova et al. 2015).

Another important step of adult neurogenesis is the 
survival of adult-born cells. While the expression of pro-
apoptotic or anti-apoptotic molecules such as Bax or Bcl-xl 
are respectively up- and downregulated in the hippocampus 
of UCMS submitted animals, a 21-day treatment with ven-
lafaxine (15 mg/kg, p.o.) counteracts these effects (Wang 
et al. 2011). Two studies confirm the anti-apoptotic role 
of venlafaxine. Indeed, in the UCMS, 28 days of venlafax-
ine administration (10 mg/kg, i.p.) prevents the increase of 
apoptotic neurons in the hippocampus (Huang et al. 2014). 
Moreover, Saad et al. (2019) report that after 28-day of ven-
lafaxine treatment, ovariectomized rats exhibit a marked 
reduction of hippocampal Bax/Bcl2 ratio, caspase-3 activ-
ity, and tumor necrosis factor alpha levels (Saad et al. 2019).

The ability of venlafaxine to influence cell fate choice 
during adult neurogenesis process was also studied. For 
this, primary astrocyte cultures were treated with differ-
ent antidepressants including venlafaxine, imipramine, 
and fluoxetine (Cabras et al. 2010). In the presence of 
each of these drugs, cultured astrocytes rapidly acquired 
a neuronal morphology and expressed neuronal mark-
ers. This reveals a process that might contribute to the 
antidepressant-like effect of venlafaxine. Several studies 
have shown that the response of chronic antidepressants is 
mediated by the stimulation of adult hippocampal neuro-
genesis (Hanson et al. 2011) whereas the ablation of this 
process attenuates the antidepressant-like effect of some 
antidepressants as described with SSRI and TCA (Santar-
elli et al. 2003; David et al. 2009). However, this proof of 
concept is still lacking using venlafaxine.
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Impact of venlafaxine on fast‑spiking interneurons 
extracellular matrix remodeling

Emerging evidence suggests that MDD impacts the remod-
eling of extracellular matrix in various brain regions. The 
extracellular matrix is the major constituent of perineuronal 
nets (PNNs) enwrapping parvalbumin (PV) expressing cells 
(Sorg et al. 2016), a subpopulation of GABAergic interneu-
rons. Although the role of PNNs is not fully understood, 
it has been proposed that they contribute to reinforce the 
activation of these GABAergic interneurons, through a bet-
ter sensitivity to glutamatergic inputs (Tewari et al. 2018; 
Frischknecht et  al. 2009). As PV interneurons contact 
excitatory pyramidal cells in the hippocampus, PNNs sig-
nificantly influence the excitatory/inhibitory (E/I) balance. 

Most notably, they alter this balance (Yizhar et al. 2011), 
an endpoint relevant to stress-induced depressive-like 
state (Albrecht et al. 2016; Wang et al. 2019). In support 
of this assumption, an increase of PNNs has been reported 
in several animal models of depression such as the CSD or 
CORT models (Riga et al. 2017).

On the contrary, the digestion of PNNs with chondroi-
tinase (ChABC) reduces the excitability of GABAergic 
interneurons (Tewari et al. 2018; Favuzzi et al. 2017) thereby 
increasing hippocampal activity. Interestingly, a chronic 
treatment with venlafaxine has been shown to reverse 
CORT-induced increase in PNNs as the result of an upregu-
lation of metalloproteases (MMPs) such as MMP-9 (Bijata 
et al. 2017; Alaiyed et al. 2019; Alaiyed et al. 2020). MMPs 
are enzymes that cleave PNNs and subsequently reduce the 

Fig. 2   Impact of venlafaxine on the excitatory/inhibitory (E/I) bal-
ance in the hippocampus. Stress increases perineuronal nets (PNNs) 
deposition around parvalbumin positive (PV+) GABAergic interneu-
rons in the hippocampus due to the inactivation of metalloproteases 
(MMP) such as MMP9. This reinforces the excitatory synapses upon 
PV+ GABAergic interneurons thereby leading to their hyperactivity. 
Such a process would be associated to an increased release of GABA 
in the hippocampus. As PV+ GABAergic interneurons contact excita-
tory pyramidal cells, their hyperactivity induces a local inhibition of 
pyramidal cells. Overall altered E/I balance is observed in animal 

models of depression (left panel). Venlafaxine, through the inhibition 
of serotonin (5-HT) and norepinephrine (NE) reuptake, promotes the 
accumulation of these monoamines in the synaptic cleft. Evidence 
demonstrates that both 5-HT and NE favor the activity of MMP9, 
which in turn, leads to PNNs degradation. In that condition, the acti-
vation of PV+ GABAergic interneurons is attenuated. A decreased 
release of GABA is then expected causing the disinhibition of pyram-
idal glutamatergic neurons. As a functional consequence, the E/I bal-
ance is rescued (right panel), a process necessary for antidepressant 
response.

2746 Psychopharmacology (2022) 239:2735–2752



1 3

activation of inhibitory PV interneurons (Bozzelli et al. 
2020). As depicted in Fig. 2, a new hypothesis in the field 
of neuropsychopharmacology posits that venlafaxine would 
attenuate the PNNs which in turn would restore a normal 
E/I balance in CORT-exposed mice (Fig. 2). Interestingly, 
elevated MMP-9 levels were found in autopsy-derived pre-
frontal cortex samples of MDD patients treated with anti-
depressants compared to controls (Alaiyed et al. 2020). The 
involvement of MMP-9 in the regulation of emotional state 
is further supported by pharmacological or genetic studies 
showing that the inactivation of MMP-9 increases basal anx-
iety (Ringland et al. 2021) but also despair and sociability 
in stressed animals (Vafadari et al. 2019). Moreover, single 
nucleotide polymorphisms of MMP-9 have been unveiled in 
human and they have been associated with MDD (Bobińska 
et al. 2016a; Bobińska et al. 2016b) but also to treatment 
response (Rybakowski et al. 2011).

Efficacy of venlafaxine in the treatment 
of depressed patients

This is, now, well-established in clinics that venlafaxine is 
an efficient antidepressant treatment. Compared with pla-
cebo, a recent meta-analysis highlighted an odds ratio (OR) 
of 1.78 [95% confidence intervals (95% CI)1.61–1.96] (Cip-
riani et al. 2018). In the early 1990s, a number of studies 
compared venlafaxine with SSRIs. A first study showed a 
greatest improvement of depressive symptoms (Montgomery 
Asberg Rating Scale (MADRS) and Hamilton Depressive 
Rating Scale (HDRS)) in the venlafaxine group (200mg/
day) versus fluoxetine (40mg/day) after 4 and 6 weeks treat-
ment, in a population with melancholic features (Clerc et al. 
1994). However, this first study focused only in 34 patients 
in each group. A second study compared venlafaxine 75mg 
(n=153) to fluoxetine 25mg (n=161). A clinical improve-
ment was reported in the two groups, without difference 
between groups. There was a subgroup analysis focusing on 
88 patients for which there was an increase of venlafaxine 
from 75mg to 150mg and so targeting both monoaminergic 
systems. Significant differences were described in favor of 
venlafaxine in the HDRS total from weeks 3 to 8 (Dierick 
et al. 1996). A first meta-analysis focusing on the efficacy 
of venlafaxine compared with SSRIs and other antidepres-
sants highlighted that venlafaxine seemed more efficient 
than SSRIs. However, these results were less clear, focus-
ing on other antidepressants such as TCAs. Moreover, this 
meta-analysis showed that venlafaxine carried an advantage 
of about 1.2 HDRS points compared with all other anti-
depressants (total size effect: 0.14) and even a little more, 
when focusing specifically on SSRIs (size effect: 0.17). 
This decrease seemed too small to be clinically pertinent. 
In addition, the NNT (number needed to treat) was of 19 

(95%CI 11–63) for response and of 14 (95%CI 9–29) for 
remission (Smith et al. 2002). Another meta-analysis, focus-
ing on 17 randomized controlled studies, showed a trend 
towards superiority of venlafaxine over SSRIs in remission 
rates (risk ratio [RR]= 1.07, 95%CI=0.99 to 1.15), and a 
slight superiority in response rates (RR=1.06, 95%CI=1.01 
to 1.12) over SSRIs. However, the NNT were 34 and 27 
for remission and response, respectively. There was also a 
modest advantage for venlafaxine in change scores (using 
MADRS or HDRS) (effect size=−0.09, 95% CI=−0.16 to 
−0.02, p=0.013) (Weinmann et al. 2008). In addition, a 
meta-analysis of data from 39 published and unpublished 
clinical trials randomized 8659 patients (n = 4644 to ven-
lafaxine; n = 4015 to an SSRI). This meta-analysis found 
that venlafaxine had a higher response rate than SSRIs 
(RR=1.084 95% CI=1.019–1.101) (Papakostas et al. 2007). 
Another meta-analysis of 34 randomized, double-blind stud-
ies focusing only on remission rates, included 8744 patients 
(4191 patients treated with venlafaxine and 3621 treated with 
SSRIs). It showed that the difference in remission rates was 
5.9% in favor of venlafaxine over SSRIs, as a class (95% CI= 
0.038–0.081: p= 0.001). The NNT was 17 (95% CI: 12–26). 
Focusing on specific SSRIs, the difference from fluoxetine 
was significant (6.6% [95% CI: 0.030–0.095]). The differ-
ence between paroxetine, sertraline, and citalopram was not 
significant (Nemeroff et al. 2008). More recently, two other 
meta-analyses have addressed the efficacy of venlafaxine ver-
sus SSRIs. One focused on published studies. De Silva et al. 
noted that venlafaxine was superior to SSRIs by focusing on 
remission [odds ratio (OR= 1.13, 95% CI = 1.0–1.28, p = 
0.05)] and response (OR = 1.17, 95% CI = 1.03–1.34, p = 
0.02). In addition, venlafaxine seemed to have a significantly 
better response rate than fluoxetine (OR = 1.28, 95% CI = 
1.05–1.55, p = 0.01). There were no significant differences in 
response or remission between venlafaxine and other individ-
ual SSRIs (de Silva and Hanwella 2012). The second meta-
analysis included unpublished data. It showed that response 
rates were significantly higher for venlafaxine than for SSRIs 
(OR = 1.20, 95% CI 1.07–1.35). But, the remission rate was 
not higher for venlafaxine than for SSRIs (OR = 1.12, 95% 
CI 0.98–1.28) (Schueler et al. 2011). Recently, Cipriani et al. 
showed, in a network meta-analysis focused on comparing 
the efficacy of 21 antidepressant drugs for the acute treat-
ment of adults with MDD, that fluoxetine is less effective 
than venlafaxine (OR= 0.84, 95% CI = 0.73–0.97) (Cipri-
ani et al. 2018). Interestingly, a very recent meta-analysis of 
venlafaxine and duloxetine showed that non-RCTs (random 
clinical trials) are generally better suited to describe a drug 
efficacy in clinical practice than RCTs. However, it appears 
that non-RCTs are associated with a smaller size-effect than 
RCT (Schneider et al. 2021). In conclusion, it seems that 
venlafaxine is more effective than SSRIs (mainly fluoxetine 
which is one of the most prescribed) in terms of response 
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rate, despite a relatively weak size effect measured on depres-
sion scales. Interestingly, in treatment-resistant patients, it is 
possible to switch from SSRI to SNRI treatment like venla-
faxine to observe a therapeutic response. In this way, a ret-
rospective study showed that patients who remain severely 
depressed following SSRI treatment may gain benefit from 
a high dose of venlafaxine (i.e., 225 mg/daily) which likely 
improve both 5-HT and NE tone, rather than switching to 
another SSRI (Barak et al. 2011).

Finally, it is noteworthy that there is no evidence for the 
occurrence of serotonin syndrome with venlafaxine alone 
even in high doses. To the best of our knowledge, only 
one study reported that a 29-year-old depressed Taiwanese 
woman developed serotonin syndrome at the dose of 37.5 
mg/d (Pan and Shen 2003). Several cases, however, were 
described when venlafaxine is combined with other phar-
macological compounds including mirtazapine (Decoutere 
et al. 2012), tranylcypromine (Brubacher et al. 1996), fluox-
etine (Bhatara et al. 1998), trazodone (McCue and Joseph 
2001), or tramadol (Albiñana Pérez et al. 2012). Although 
the underlying mechanisms remain unknown, it is likely that 
the functional and reciprocal interactions between the mono-
aminergic systems or between 5-T/NE and the opioid system 
may precipitate such a syndrome.

Concluding remarks

In vitro binding studies report that venlafaxine displays a 
strong affinity for the human/rat SERT although a higher 
affinity is observed with an SSRI and a TCA (i.e., citalo-
pram and clomipramine). Similarly, human NET/rat bind-
ing assays indicate that venlafaxine displays a good affinity 
for this target but to a lower extent than the NRI rebox-
etine (Millan et al. 2001). Compared with other SNRIs 
(duloxetine and levomilnacipram), venlafaxine has also 
less affinity for the SERT and NET transporters (Auclair 
et al. 2013; Béïque et al. 1998) indicating that it repre-
sents a reliable SERT and NET blocker but not the best. 
In vivo, electrophysiological approaches show that ven-
lafaxine and the SSRI paroxetine share the same potency 
at inhibiting the SERT even though there is no direct 
comparison (Béïque et  al. 1998). This property worth 
mentioning because paroxetine is recognized as the most 
potent SSRI currently available. However, this remarkable 
pharmacological property is limited to the 5HT system 
because studies demonstrate that several antidepressants 
are more potent than venlafaxine at blocking the NET. 
Indeed, venlafaxine is less potent at blocking the NET than 
reboxetine or desipramine (Auclair et al. 2013; Béïque 
et al. 1998). This in vivo electrophysiological profile can 
be compared with neurochemical studies using micro-
dialysis. Comparing the minimal effective doses (MED) 

required to increase cortical extracellular 5-HT concentra-
tions, Millan and collaborators showed that venlafaxine 
has a similar profile than citalopram but is four-fold lower 
than that of clomipramine (Millan et al. 2001), levomil-
nacipran, and duloxetine (Auclair et al. 2013). As regard 
cortical extracellular NE concentrations, similar MED are 
found between venlafaxine and other SNRIs levomilnacip-
ran and duloxetine (Auclair et al. 2013) which is quite 
unexpected considering the in vitro binding studies and 
in vivo electrophysiological data. This likely emphasizes 
the fact that mechanisms occurring at the nerve terminals 
might change our predictions regarding the net effects of 
venlafaxine noradrenergic neurotransmissions and behav-
ioral properties. Indeed, in terms of behavior, only few 
differences were detected between antidepressants when 
comparing venlafaxine with the SSRIs fluoxetine, sertra-
line, escitalopram, and fluvoxamine; the SNRI duloxetine; 
the TCAs desipramine/imipramine; or other atypical anti-
depressants such as bupropion. Nevertheless, behavioral 
studies showed that venlafaxine has the lowest MED of the 
above-mentioned antidepressants in the TST and/or FST 
(Castagné et al. 2009; Socała et al. 2012). Such a differ-
ence could negatively reverberate on the onset of action 
of venlafaxine. In support of this hypothesis, it was shown 
in an animal model of depression, that the antidepressant-
like effects of venlafaxine (20 mg/kg) occurred as soon as 
21 days of treatment whereas a 14-day period is required 
with fluoxetine (20 mg/kg) to promote beneficial behavio-
ral effects (Poretti et al. 2016). On the contrary, regarding 
anxiolytic response, venlafaxine is less effective than the 
SSRI fluoxetine or citalopram and the SNRI duloxetine 
when assessed in marble burying test, nestlet shredding, 
or zero maze (Li et al. 2006; Mirza et al. 2007)

Collectively, it appears that venlafaxine is a potent 
SERT inhibitor and at higher doses, is also able to block 
NET as NRIs do. Behavioral studies did not yield strong 
evidence regarding the greater effects of venlafaxine com-
pared to the other antidepressants. With respect to clinical 
practice, it appears that at higher doses, thus acting as a 
mixed SERT/NET inhibitor, venlafaxine shows superior 
effects than SSRIs on response rate, but these results have 
yet to be confirmed. However, these potential beneficial 
effects are accompanied by a weaker tolerance than SSRIs, 
especially during the first week of treatment, thus reduc-
ing compliance and possibly attenuating its response rate 
(Dierick et al. 1996; Weinmann et al. 2008).
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