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Abstract
Parkinson’s disease is a neurodegenerative disease often characterized by motor deficits and most commonly treated with 
dopamine replacement therapy. Despite its benefits, chronic use of L-DOPA results in abnormal involuntary movements 
known as L-DOPA-induced dyskinesia. Growing evidence shows that with burgeoning dopamine cell loss, neuroplasticity in 
the serotonin system leads to the development of L-DOPA-induced dyskinesia through the unregulated uptake, conversion, 
and release of L-DOPA-derived dopamine into the striatum. Previous studies have shown that coincident 5-HT1A agonism 
and serotonin transporter inhibition may have anti-dyskinetic potential. Despite this, few studies have explicitly focused on 
targeting both 5-HT1A and the serotonin transporter. The present study compares the 5-HT compounds Vilazodone, YL-0919, 
and Vortioxetine which purportedly work as simultaneous 5-HT1A receptor agonists and SERT blockers. To do so, adult 
female Sprague Dawley rats were rendered hemiparkinsonian and treated daily for two weeks with L-DOPA to produce 
stable dyskinesia. The abnormal involuntary movements and forehand adjusting step tests were utilized as measurements for 
L-DOPA-induced dyskinesia and motor performance in a within-subjects design. Lesion efficacy was determined by analysis 
of striatal monoamines via high-performance liquid chromatography. Compounds selective for 5-HT1A/SERT target sites 
including Vilazodone and Vortioxetine significantly reduced L-DOPA-induced dyskinesia without compromising L-DOPA 
pro-motor efficacy. In contrast, YL-0919 failed to reduce L-DOPA-induced dyskinesia, with no effects on L-DOPA-related 
improvements. Collectively, this work supports pharmacological targeting of 5-HT1A/SERT to reduce L-DOPA-induced 
dyskinesia. Additionally, this further provides evidence for Vilazodone and Vortioxetine, FDA-approved compounds, as 
potential adjunct therapeutics for L-DOPA-induced dyskinesia management in Parkinson’s patients.
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SSRI	� Selective serotonin reuptake inhibitor
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6-OHDA	� 6-Hydroxydopamine hydrobromide
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FAS	� Forehand adjusting steps
PD	� Parkinson’s disease
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   L-DOPA efficacy.
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HPLC	� High-performance liquid chromatography
M.A.D.	� Median absolute deviation
S.E.M.	� Standard error of the mean

Introduction

Since its introduction in the late 1960s, 1–3-4-dihydroxy-
phenylalanine (L-DOPA) has been the most effective phar-
macotherapy in relieving Parkinson’s disease (PD) motor 
symptoms. Unfortunately, up to 90% of patients develop 
L-DOPA-induced dyskinesia (LID), often characterized 
by abnormal involuntary movements (AIMs) of the trunk, 
limb, and face, within 10 years of chronic L-DOPA treat-
ment (Ahlskog and Muenter 2001; Connolly and Lang 2014; 
Schrag and Quinn 2000; Smith et al. 2009; Hely et al. 2005).

Growing evidence indicates that late-stage effects of 
L-DOPA are driven by neuroplasticity in the serotoner-
gic system (Brown and Molliver  2000; Carta et al. 2007; 
Eskow et al. 2009; Politis et al. 2014). Numerous studies 
demonstrate serotonergic hyperinnervation in the stria-
tum following dopamine (DA) denervation (Kannari et al. 
2006; Politis et al. 2014; Rylander et al. 2010; Sellnow et al. 
2019). Within the dorsal raphe nucleus (DRN), serotonin 
(5-HT) neurons possess the machinery necessary to con-
vert and release DA from exogenous L-DOPA, contributing 
to its unregulated release within the raphe-striatal pathway 
(Brown and Molliver 2000; Tanaka et al. 1999; Lindgren 
et al., 2010; Sellnow et al. 2019; Fu et al. 2018). This pro-
cess is thought to play a causal role in the development of 
LID, in part, through overstimulation of populations of DA 
D1 receptors on medium spiny neurons (MSNs) in the dorsal 
striatum (Lanza et al. 2018; Girasole et al. 2018; Fieblinger 
et al. 2018; Parker et al. 2018).

Interestingly, several 5-HT1A receptor agonists display 
anti-dyskinetic profiles in preclinical and clinical models 
(Bibbiani et al. 2001; Bishop et al. 2012; Eskow et al. 2007; 
Politis et al. 2014; Meadows et al. 2017). 5-HT1A autorecep-
tors and heteroreceptors are positioned on or in proximity to 
5-HT neurons and, in the hemiparkinsonian rat brain, modify 
raphe-striatal neuron release of L-DOPA-derived DA and 
corticostriatal glutamate into the striatum (Kannari et al. 
2006; Carta et al. 2007; Dupre et al. 2011; Lindgren et al., 
2010). The partial 5-HT1A agonist buspirone, reduced LID 
and maintained motor improvement of L-DOPA in animal 
models (Dekundy et al. 2007; Eskow et al. 2007) but clini-
cal studies have indicated that higher doses may worsen PD 
symptoms (Hammerstad et al. 1986; Ludwig et al., 1986; 
Schneider et al. 2020). Similarly, the more selective 5-HT1A 
agonists, such as 8-OH-DPAT, sarizotan, and NLX-112 were 

able to mitigate LID but resulted in susceptibility to 5-HT 
syndrome and/or reduced L-DOPA efficacy (Bibbiani et al. 
2001; Fisher et al. 2020; Iravani et al. 2006; Lindenbach 
et al. 2015).

Inhibition of the 5-HT transporter (SERT) has also been 
shown to have anti-dyskinetic effects (Bishop et al. 2012, 
Inden et al. 2012; Kuan et al., 2008; Conti et al. 2014, Conti 
et al. 2016). Upregulation of striatal SERT during the pro-
gression of PD and particularly in subjects with LID sug-
gest it may be a pharmacologically therapeutic target (Conti 
et al. 2016; Larsen et al. 2011; Rylander et al. 2010; Rous-
sakis et al. 2016; Strecker et al. 2011). Selective serotonin 
reuptake inhibitors (SSRIs) have been shown to reduce LID 
and maintain L-DOPA’s promotor effects, possibly through 
indirectly targeting 5-HT1A autoreceptors while concomi-
tantly inhibiting DA reuptake (Bishop et al. 2012; Kannari 
et al. 2006; Navailles et al. 2010). In the rat hemiparkinso-
nian model of PD, subchronic pharmacological treatment 
with SSRIs completely suppressed LID development and 
expression at relatively low doses without compromising 
L-DOPA’s therapeutic efficacy (Conti et al. 2014; Linden-
bach et al. 2015). Conflicting results from non-human pri-
mate studies indicate acute impairment of L-DOPA efficacy 
that may or may not persist with chronic administration or 
lower doses (Fidalgo et al. 2015). Importantly, chronic SSRI 
treatment delayed LID onset in a small clinical trial as well 
as minimized comorbid affective disorders in PD patients 
(Mazzucchi et al. 2015).

Recent studies have focused on the dual action of 
5-HT1A agonists and SERT blockers for LID management 
(Altwal et al. 2020; Meadows et al. 2018). Vilazodone is a 
US Food and Drug Administration (FDA)–approved anti-
depressant leveraging this simultaneous partial 5-HT1A 
agonism and potent SERT inhibition  (Altwal et al. 2020; 
Cruz 2012; Meadows et al. 2018). Vortioxetine, a recently 
FDA-approved antidepressant, likewise targets 5-HT1A and 
SERT, but with a lower affinity for the 5-HT1A receptor in 
rodents than in humans (Okada et al. 2019). It also has a 
broad affinity for other serotonergic targets, including partial 
agonism for 5-HT1B, antagonism for 5-HT1D, 5-HT3, and 
5-HT7 receptors, highlighting its potential in treating LID 
(Chen et al. 2018; Lanza and Bishop 2018). The compound 
YL-0919 has an affinity for both 5-HT1A and SERT but has 
not been previously tested in PD models (Chen et al. 2013).

The current study therefore primarily sought to determine 
whether the unique shared profiles of these compounds as 
5-HT1A agonists and SERT blockers conferred anti-dys-
kinetic effects across a broad dose range. Secondarily, we 
hypothesized that differences in efficacy against LID across 
compounds could be conveyed through their divergent phar-
macological properties of serotonergic modulation.
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2. Materials and methods

Animals

Adult female Sprague-Dawley rats weighing 200–250g prior 
to surgery were used for all experiments (N=36). Animals 
had access to water and standardized lab chow (Rodent Diet 
5001; Lab Diet, Brentwood, MO, USA) ad libitum. Rats were 
kept in the colony at a room temperature of 22 to 23°C on a 
12-h light/12-h dark cycle beginning at 07:00h. Animals were 
cared for according to the Institutional Animal Care and Use 
Committee of Binghamton University and the “Guide for the 
Care and Use of Laboratory Animals” (Institute for Laboratory 
Animal Research, National Academic Press, 2011).

Surgical procedure

In all experiments, rats received a unilateral DA lesion using 
6-hydroxydopamine hydrobromide (6-OHDA; Sigma, St. 
Louis, MO, USA) in the left medial forebrain bundle to pro-
duce extensive DA cell loss in the nigrostriatal pathway (Conti 
et al. 2014). Rats were anesthetized with inhalant Isoflurane 
(2–3%; Sigma) in oxygen (2.5L/min) following an injection 
of Buprenex (buprenorphine HCL: 0.03mg/kg, i.p., Hospira 
Inc., Lake Forest, IL, USA) and placed in a stereotaxic appa-
ratus (David Kopf Instruments, Tujunga, CA, USA). A 10μL 
Hamilton syringe with a 26-gauge needle (Hamilton Company, 
Reno, NV) was lowered into the target site relative to bregma 
at the following coordinates: AP, −1.8mm; ML, −2.0mm; 
DV, −8.6mm (Paxinos and Watson 1998). The target site 
was reached by drilling a small hole into the skull. 6-OHDA 
(3μg/1μL; Sigma) dissolved in 0.9% NaCl + 0.1% ascorbic 
acid was injected slowly at a rate of 2μL/min for a total volume 
of 4μL over a 2-min period. The needle remained at the target 
site for 5 min after injection to ensure toxin diffusion. After 
the needle was withdrawn, sterile staples were used to close 
the surgical site. Following surgery, animals were pair-housed 
in clean thermoregulated cages for recovery from anesthesia. 
As a post-operative analgesic, Carprofen (Rimadyl: 5mg/kg, 
Zoetis Inc, Kalamazoo, MI, USA) was administered 12 and 
24 h following the surgery. Rats were closely monitored post-
operatively, receiving soft food, physiological saline (s.c.), and 
enrichment as needed over 10 days. To allow for sufficient 
recovery time, all experiments started 3 weeks post-surgery.

Behavioral analyses

Abnormal involuntary movements

Rat dyskinesia was evaluated using the abnormal involun-
tary movement (AIM) rating scale as previously described 
(Dekundy et al. 2007). Ten minutes following L-DOPA 

injections, rats were placed in clear Plexiglas cylinders 
with bedding. A trained and blinded observer-rated dys-
kinesia duration according to the presence of axial, limb, 
and orolingual behaviors (ALO) for 1 min every 10 min 
for 180 min total (Dekundy et al. 2007; Bishop et al. 2012; 
Bhide et al. 2015). Specifically, “axial” is identified by 
an uncontrolled torsion of the trunk contralateral to the 
lesion, “limb” is characterized by dystonic, repetitive 
movement of the limb contralateral to the lesion, and “oro-
lingual” is defined by side-to-side jaw movements accom-
panied with tongue protrusions. Behaviors were ranked 
on a scale from zero to four according to the duration of 
the observed behavior using the following qualifications: 
zero (absent), one (present for less than 30s), two (present 
between 30 and 59s), three (present for 60s but interrupted 
by stimulus), and four (present for 60s and not interrupted 
by stimulus). During the first 14 days of L-DOPA treat-
ment the development of LID was tracked by measuring 
AIMs on days 1, 8, and 14. A criterion summed ALO 
score >25 correlates with a striatal DA loss of 95% (Tay-
lor et al., 2005). Animals that did not meet this threshold, 
were excluded from the study.

Forepaw adjusting steps

The forepaw adjusting step (FAS) test is a measure of fore-
paw akinesia utilized to verify lesion post-surgery and moni-
tor drug-induced changes to motor performance. Rats with 
>80% striatal DA loss perform poorly on this test; hence, 
it is used to verify 6-OHDA lesion efficacy (Chang et al. 
1999). Importantly, L-DOPA and DA agonists improve FAS 
performance (Olsson et al., 1995), making it a useful test 
to measure treatment-related effects on motor performance. 
During testing, a trained and blinded experimenter held each 
rat so that one paw was restrained, and the opposite fore-
paw rested on a flat platform. Rats were moved laterally so 
that the forepaw steps were counted at a rate of 90 cm/10 s. 
Rats were dragged in the forehand (medial) and backhand 
(lateral) direction for each forepaw in 3 trials each test day. 
Rats were exposed to at least three acclimations to the proce-
dure prior to data collection. FAS tests were employed prior 
to L-DOPA priming to record a baseline measure of motor 
impairment, as well as during treatment while exhibiting 
peak dyskinesia during the AIMs test 70 min after receiving 
L-DOPA. Forehand percent intact (FPI) was calculated by 
dividing forehand lesioned paw steps by forehand intact paw 
steps and multiplying by 100. Total percent intact (TPI) was 
calculated to estimate the degree of the lesion by dividing 
lesioned stepping by intact stepping and multiplying by 100. 
Animals with ≥25% FPI were deemed to have insufficient 
lesions to become dyskinetic and were removed from the 
study.
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Experimental design

Pharmacological treatments

As depicted in Fig. 1A, following 3 weeks of recovery, all 
rats (n=36) went through FAS testing to establish baseline 
motor performance and evaluate lesion severity. Lesioned 
animals (<25% FPI) then received L-DOPA methyl ester 
(hereafter L-DOPA; 6 mg/kg, s.c.; Sigma) + DL-serine 
2-(2,3,4-trihydroxybenzyl) hydrazide hydrochloride (bens-
erazide; 15 mg/kg, s.c.; Sigma) dissolved in 0.9% NaCl 
+ 0.1% ascorbic acid once daily for 14 days to induce 
stable LID (Conti et al. 2014; Lindgren et al., 2006; Putter-
man et al., 2007). ALO AIMs were assessed on days 1, 
8, and 14 of daily L-DOPA treatment (n=24). On testing 
days, one of three serotonergic drugs that act as 5-HT1A 
agonists and SERT blockers, Vilazodone, YL-0919, and 

Vortioxetine, were administered 5 min prior to L-DOPA 
to determine their anti-dyskinetic efficacy. Each drug was 
administered in a within-subjects counterbalanced fash-
ion to ensure each rat received each drug at every dose. 
Each drug was tested within a given cohort, run sequen-
tially. Vilazodone doses were chosen using previous 
studies (Meadows et al. 2018; Page et al. 2015). Given 
that YL-0919 and Vortioxetine had not been previously 
tested in parkinsonian animal models, doses were selected 
based on effective doses that modulate the 5-HT system in 
depression rat models (Ran et al. 2018; Zhang et al. 2017, 
Jensen et al., 2014; Okada et al. 2019). Vilazodone was 
dissolved in 50% DMSO + dH2O (vehicle) for all experi-
ments. YL-0919 was dissolved in dH2O (vehicle). Lastly, 
Vortioxetine was dissolved in 20% beta-cyclodextrin + 
saline (vehicle). All drugs were administered subcutane-
ously at a volume of 1ml/kg.

A Experiment 1, 2 & 3: LID Intervention with VZD, YL-0919 & VXT

Female Sprague-
Dawley Rats

N = 36

Priming Days Median ALO Sums

3 weeks 2 weeks

Daily L-DOPA
(6 mg/kg s.c.)

AIMs Days 1,8,14
ALO Sum >25

HPLC
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Fig. 1   Experimental timeline and design and axial, limb and orolin-
gual (ALO) abnormal involuntary movement (AIMs) development 
during chronic L-DOPA treatment. A In all 3 experiments, female 
Sprague Dawley rats received a unilateral medial forebrain bundle 
(MFB) lesion with 6-hydroxydopamine (6-OHDA). Rats were accli-
mated for at least 1 week and handled for a minimum of 4 days pre-
surgery. Surgery was followed by a 3-week recovery period after 
which lesion efficacy was assessed using the forepaw adjusting steps 
(FAS) test. Thereafter, all rats received daily L-DOPA (hereafter, 
6  mg/kg + 12  mg/kg benserazide, s.c.) to produce stable L-DOPA-
induced dyskinesia (LID). B When monitoring the development of 
AIMs in all subjects, analyses revealed increased AIMs from days 1 
to 8  that were maintained on day 14 (*p < 0.05 vs. Day 1). Thereafter 

rats meeting an ALO criterion score of > 25 by day 14 were tested in 
drug-specific cohorts in a within-subjects counterbalanced design. In 
experiment 1 rats were injected with Vehicle or Vilazodone (VZD; 
5, 10, 20 mg/kg, s.c.) 5 min prior to L-DOPA. In experiment 2, rats 
were injected with Vehicle or YL-0919 (0.625, 1.25, 2.5 mg/kg, s.c.) 
5  min prior to L-DOPA. In experiment 3, rats received Vehicle or 
Vortioxetine (VXT; 2.5, 5, 10 mg/kg, s.c.) 5 min prior to L-DOPA. 
During treatment, rats were rated on the observed ALO AIMs scale 
every 10  min for 180  min. Sixty min after their first AIMs rating, 
FAS was used to evaluate motor performance. Each treatment day 
was followed by a 3-day washout. A week after testing, left and right 
striata were harvested off-treatment to measure monoamine levels and 
confirm lesion via high-performance liquid chromatography (HPLC)
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Neurochemical analyses

High‑performance liquid chromatography

After subjects completed experiments, their brains were har-
vested following rapid decapitation, flash-frozen in 2-meth-
ylbutane on dry ice, and stored at -80°C for subsequent tis-
sue dissection. HPLC was used to analyze striatal levels of 
5-HT, and DA for lesion verification as previously described 
(Conti et al. 2014). DA was electrochemically detected with 
a limit of detection of 10-10M. Final oxidation current values 
were plotted on a standard curve with concentrations rang-
ing from 10-6 and 10-10M. Values were adjusted for tissue 
weight. Monoamine levels were expressed as a picogram of 
monoamine per milligram of tissue.

Statistical analyses

Group AIMs data were represented as medians + median 
absolute deviations (M.A.D.) and analyzed using non-para-
metric Friedman ANOVAs for effects on overall ALO AIMs 
and for individual ALO AIMs timepoints. When significant 
main effects of treatment were revealed, Wilcoxon post hocs 
were used to examine differences amongst treatment condi-
tions. FAS and HPLC data were represented as mean percent 
intact + standard  error of the mean (S.E.M.). FAS data were 
analyzed using ANOVAs and Fisher LSD for pairwise com-
parisons. HPLC data were analyzed using paired t-tests. The 
SPSS statistics software (Chicago, IL, USA) was used for all 
statistical analyses with an alpha of p< 0.05.

Results

FAS baseline and development of LID 
in hemiparkinsonian rats

The AIMs test was used to monitor LID development in 
6-OHDA-lesioned rats that demonstrated significant step-
ping deficits on the FAS (<25% FPI). Of the original 36 rats 
that started the study, 6 rats did not meet FAS criteria and 
were removed prior to chronic L-DOPA treatment (n=30, 
µ = 2.25 ± 0.55). Six additional rats did not meet ALO 
AIMs threshold (>25) after 14 days of L-DOPA treatment 
and were also withdrawn prior to the start of interventional 
studies with the 5-HT compounds (n=24). When analyzing 
ALO AIMs development in the remaining rats, an effect of 
treatment day was revealed (n=9; Fig. 1B χ2 (2) = 28.80, 
p<0.05). Post hoc analyses indicated a significant increase 
in LID from day 1 to 8 (p<0.05) which was maintained on 
day 14 (p<0.05 vs. day).

Experiment 1: Effects of Vilazodone 
on L‑DOPA‑induced behaviors

Vilazodone attenuates LID expression

In experiment 1 (n=9), AIMs were quantified in dyskinesia-
primed rats that received various doses (5, 10, 20mg/kg) 
of Vilazodone, 5 min prior to L-DOPA (6 mg/kg, s.c.). As 
depicted in Fig. 2, Vilazodone significantly reduced dys-
kinetic behavior. Across the entire 3h testing period, the 
moderate (10mg/kg) and high (20mg/kg) doses significantly 
differed from vehicle (Fig. 2A inset; χ2 (3) = 15.13, p<0.05). 
Analysis across time further revealed dose-dependent dif-
ferences. The high dose (20mg/kg) reduced ALO AIMs 
from time points 40-130 min when compared to vehicle (all 
p<0.05). The moderate dose (10mg/kg) reduced ALO AIMs 
at time points 40, 60, 70, 90, 100, 110, and 130min (all 
p<0.05). The low dose (5mg/kg) differed from the vehicle 
at time points 40 and 130min (both p<0.05).

Vilazodone maintains L‑DOPA motor efficacy

Vilazodone maintains L‑DOPA motor efficacy

FAS was conducted to evaluate motor performance during 
drug treatments. Analysis revealed a significant main effect 
of treatment compared to baseline (F(1,4) = 23.321, p<0.05). 
Post hoc comparisons showed that compared to baseline, all 
rats showed significant improvements in motor performance 
(Fig. 2B; all p<0.05). Moreover, there were no significant 
differences in motor performance between Vilazodone and 
L-DOPA treatments, indicating Vilazodone treatment main-
tained L-DOPA-induced motor improvements at all doses.

Experiment 2: Effects of YL‑0919 on L‑DOPA‑induced 
behaviors

YL‑0919 fails to reduce LID expression

In experiment 2 (n=9), shown in Fig. 3A, YL-0919 across 
all doses (0.625, 1.25, 2.5mg/kg), failed to significantly 
reduce overall ALO AIMs (Fig 3A. inset; χ2 (3) = 3.305; 
ns). Further timepoint analyses revealed that while there was 
an overall effect of treatment at 100min (p<0.05), there was 
no effect of any YL-0919 dose compared to vehicle.

YL‑0919 maintains L‑DOPA motor efficacy

When examining the effects of YL-0919 on the FAS test, 
an ANOVA demonstrated a significant main effect of treat-
ment (F(1,4) = 21.694, p<0.05). Post hoc analyses revealed 
that all treatments that included L-DOPA were effective in 
reversing lesion-induced deficits seen at baseline (Fig. 3B; 
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all p<0.05), indicating YL-0919 at all doses also maintained 
the benefits of L-DOPA administration.

Experiment 3: effects of Vortioxetine 
on L‑DOPA‑induced behaviors

Vortioxetine reduces LID expression

In experiment 3 (n=6) shown in Fig. 4A, Vortioxetine 
(2.5, 5, 10mg/kg) significantly reduced overall ALO 
AIMs (Fig. 4A inset; χ2 (3) = 18.0, p<0.05). Post hoc 

analyses revealed that each Vortioxetine treatment sig-
nificantly reduced LID in a dose-dependent manner ver-
sus L-DOPA alone (all p<0.05). Analyses of timepoints 
across the 180min of testing revealed significant differ-
ences between treatment groups. The high dose (10mg/
kg) suppressed ALO AIMs from 10 to 110min and 130min 
when compared to vehicle pretreatment (all p<0.05). At 
the moderate dose (5mg/kg), ALO AIMs were signifi-
cantly lower from vehicle pretreatment at time points 
20-70min, 90-110min, and 130min (all p<0.05). The low 
dose (2.5mg/kg) reduced ALO AIMs from the vehicle at 
time points 60min and 100–130min (all p<0.05).
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Fig. 2   Effects of Vilazodone (VZD) on L-DOPA (LD)-induced axial, 
limb, and orolingual abnormal involuntary movements (ALO AIMs) 
and motor performance on the forepaw adjusting steps test (FAS). 
In a counterbalanced within-subjects design, unilaterally 6-hydroxy-
dopamine-lesioned rats (N = 9) received Vehicle (Veh) or VZD (5, 
10, 20 mg/kg, s.c.) 5 min prior to LD (6 mg/kg + 15 mg/kg benser-
azide, both s.c.). A ALO AIMs were recorded and are shown every 
10 min for 180 min and summed over the entire testing period (see 
inset). B To examine the effects of VZD on LD improvements on 
the FAS test, 60 min after treatments on AIMs test days, rats’ step-
ping was assessed. AIMs data are expressed as medians + median 
absolute deviation (M.A.D.), FAS data were calculated as a per-
cent of forehand stepping on the lesioned vs. intact side and shown 
as means + standard error of the mean (S.E.M.). *p < 0.05 VZD(20) 
vs. VEH, ^p < 0.05 VZD(10) vs. VEH, + p < 0.05 VZD(5) vs. VEH, 
@p < 0.05 vs. baseline)
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Fig. 3   Effects of YL-0919 (YL) on L-DOPA (LD)-induced axial, limb, 
and orolingual abnormal involuntary movements (ALO AIMs) and 
motor performance on the forepaw adjusting steps test (FAS). In a 
counterbalanced within-subjects design, unilaterally 6-hydroxydo-
pamine-lesioned rats (N = 9) received Vehicle (Veh) or YL (0.625, 
1.25, 2.5 mg/kg, s.c.) 5 min prior to LD (6 mg/kg + 15 mg/kg bens-
erazide, both s.c.). A ALO AIMs were recorded and are shown every 
10 min for 180 min and summed over the entire testing period (see 
inset). B To examine the effects of YL on LD improvements on 
the FAS test, 60 min after treatments on AIMs test days, rats’ step-
ping was assessed. AIMs data are expressed as medians + median 
absolute deviation (M.A.D.), FAS data were calculated as a percent 
of forehand stepping on the lesioned vs. intact side and shown as 
means + standard error of the mean (S.E.M.). @p < 0.05 vs. baseline)
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Vortioxetine maintains L‑DOPA motor efficacy

Upon analysis of the effects of Vortioxetine on FAS 
(Fig. 4B), an ANOVA revealed a significant main effect of 
treatment (F(1,4) = 5.48, p<0.001). Post hoc analyses demon-
strated that any pretreatment paired with L-DOPA improved 
stepping versus baseline, while there were no significant dif-
ferences in forehand percent intact between these treatments 
(all p<0.05).

Neurochemical analyses

High‑performance liquid chromatography

Severity of lesion was assessed post-mortem by analysis of 
DA and DOPAC levels in the left (lesion) and right (intact) 
striata via reverse-phase HPLC (Table 1). Rats displayed a 
significant reduction in pg/mg tissue of DA (Mlesion= 64.60, 
Mintact= 10799.18; t23= −23.37, p<0.05) and DOPAC 
(Mlesion= 106.88, Mintact= 4038.90; t23= −21.99, p<0.05) 
levels in the lesioned striatum compared to the intact side 
(99.40% and 97.35% respectively). DA turnover revealed 
a main effect of lesion (Mlesion= 1.97, Mintact = 0.38; t23= 
−5.98, p<0.05). Upon analysis of non-DA monoamines 
and metabolites, 5-HT was significantly lower in lesioned 
striata (Mlesion= 47.07, Mintact= 138.15; t23= −7.03, p<0.05) 
while no significant difference in NE (Mlesion= 1.33, Mintact= 
10.02; t14= −1.95, p>0.05) or 5-HIAA (Mlesion= 815.25, 
Mintact= 651.28; t23= 1.10, p>0.05) were observed. 5-HT 
turnover showed no significant effects of lesion (Mlesion= 
18.50, Mintact= 9.82; t23= –1.43, p>0.05).

Discussion

Despite advances in drug formulation and deep brain stim-
ulation, LID remains an intractable problem for a subset 
of PD patients. (Ahlskog and Muenter 2001; Cenci et al. 
2020; Fisher et al. 2020). Although various mechanisms are 
involved in LID development, growing evidence points to 
aberrant neuroplastic changes within the 5-HT system that 
lead to striatal DA fluctuations and eventual LID expres-
sion (Carta et al. 2007; De La Fuente-Fernández et al. 2004; 
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Fig. 4   Effects of Vortioxetine (VXT) on L-DOPA (LD)-induced axial, 
limb, and orolingual abnormal involuntary movements (ALO AIMs) 
and motor performance on the forepaw adjusting steps test (FAS). 
In a counterbalanced within-subjects design, unilaterally 6-hydroxy-
dopamine-lesioned rats (N = 6) received Vehicle (Veh) or VXT (2.5, 
5, 10  mg/kg, s.c.) 5  min prior to LD (6  mg/kg + 15  mg/kg benser-
azide, both s.c.). A ALO AIMs were recorded and are shown every 
10 min for 180 min and summed over the entire testing period (see 
inset). B To examine the effects of VXT on LD improvements on 
the FAS test, 60 min after treatments on AIMs test days, rats’ step-
ping was assessed. AIMs data are expressed as medians + median 
absolute deviation (M.A.D.), FAS data were calculated as a percent 
of forehand stepping on the lesioned vs. intact side and shown as 
means + standard error of the mean (S.E.M.). *p < 0.05 VXT (10) 
vs. VEH, ^p < 0.05 VXT(5) vs. VEH, + p < 0.05 VXT(2.5) vs. VEH, 
@p < 0.05 vs. baseline)

Table 1   Effects of 6-hydroxydopamine lesion on concentrations of monoamine and metabolite levels and turnover ratios in intact and lesioned 
Striata

NE, norepinephrine; DOPAC, 3,4-dihydroxyphenylacetic acid; DA, dopamine; 5-HIAA, 5-hydroxyindoleacetic acid; 5-HT, serotonin
Units are picogram of monoamine or metabolite per milligram of tissue, or ratios of metabolite to monoamine (mean ± SEM) with percentage of 
vehicle group in *p < 0.05 compared with (right) striata

Side NE (pg/mg) DOPAC (pg/mg) DA (pg/mg) DOPAC/DA 5-HIAA (pg/mg) 5-HT (pg/mg) 5-HIAA/5-HT

Intact (right) 5.70 ± 0.85 4018.19 ± 165.81 10,799.18 ± 464.56 0.38 ± .01 651.28 ± 128.26 138.15 ± 11.74 9.82 ± 1.21
Lesion (left) 1.42 ± 0.49 106.88 ± 28.47* 64.60 ± 21.04* 1.97 ± 0.27* 815.25 ± 78.23 49.03 ± 4.84* 18.50 ± 0.34
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Eskow et al. 2009; Politis et al. 2014; Sellnow et al. 2019). 
Over the last two decades, investigations of the 5-HT sys-
tem in LID have provided various targets for therapeutic 
intervention (for review, see Lanza and Bishop 2018). Yet, 
translation of serotonergic compounds to the clinic to pro-
vide beneficial LID relief has not yet been realized.

Prior studies have examined upregulation of SERT and 
several 5-HT receptors in the basal ganglia, 5-HT1A and 
5-HT1B, all of which have shown potential modulation of 
LID (Carta et al. 2007; Hamadjida et al. 2018; Huot et al. 
2012; Eskow et  al. 2009; Rylander et  al. 2010; Morin 
et al. 2015; Conti et al. 2016; Padovan-Neto et al. 2020). 
Many compounds such as Buspirone, Eltoprazine, Sarizo-
tan, and NLX-112, act as agonists at the 5-HT1A receptor 
and have been shown to significantly reduce LID (Bezard 
et al. 2013; Depoortere et al. 2020; Eskow et al. 2007; Ider-
berg et al. 2015; Paolone et al., 2015; Svenningsson et al., 
2015; McCreary et al 2016. However, approval of 5-HT1A 
compounds, like Sarizotan which progressed all the way to 
Phase III clinical trials (NCT00105521), was not procured 
due to intrinsic side effects and/or reduction of L-DOPA’s 
motor benefits (Goetz et al. 2007; Grégoire et al. 2009; 
Marin et al. 2009). Compounds that act as SERT inhibitors, 
including Citalopram and Fluoxetine, reduce the reuptake 
of 5-HT and, in the PD brain, L-DOPA-derived DA, and 
have also successfully reduced LID in preclinical models 
(Kannari et al. 2006; Bishop et al. 2012; Conti et al. 2014; 
Fidalgo et al. 2015). Unfortunately, even though SSRIs are 
used in PD patients for a myriad of non-motor symptoms, 
they have also been reported to reduce L-DOPA motor effi-
cacy when given acutely to non-human primates (Fidalgo 
et al. 2015). Although studies of 5-HT1B receptors is lim-
ited, agonists of this target including CP94253 and Eltopra-
zine, have indicated some ability to reduce LID (Carta et al. 
2007; Jackson et al. 2004; Jaunarajs et al. 2009; Zhang et al. 
2008). Indeed, 5-HT1B receptor stimulation may lessen LID 
by directly reducing striatal medium spiny neuron (MSN) 
overactivity (Jackson et al. 2004; Zhang et al., 2007; Morin 
et al. 2015; Padovan-Neto et al. 2020). Even so, it also has 
been suggested that 5-HT1B receptor agonism alone may 
have minimal effects on LID attenuation (Carta et al. 2007; 
Jackson et al. 2004).

Given the evidence for 5-HT1A and SERT as potential 
LID targets, our laboratory sought out compounds that were 
designed to act at both targets, albeit with different affinities. 
Of those available, we identified Vilazodone, Vortioxetine, 
and YL-0919 (Altwal et al. 2020; Meadows et al. 2018). 
Prior work with Vilazodone (Meadows et al. 2018) estab-
lished the potential of this multimodal approach. Here we 
extended that work by demonstrating that compounds act-
ing as both 5-HT1A receptor agonists and SERT blockers 
including Vilazodone and Vortioxetine reduced dyskinesia 
in hemiparkinsonian rats and maintained L-DOPA motor 

efficacy. Contrary to our hypothesis, YL-0919 did not show 
any effect on established LID and maintained L-DOPA 
motor improvements.

We tested Vilazodone on established LID and duplicated 
previous findings (Meadows et al. 2018; Altwal et al., 2020) 
which support its potential for clinical translatability given 
that it is already an FDA approved drug for depression. Cur-
rently, Amantadine is the only FDA approved drug for LID 
treatment; however, it is limited, particularly in later stages 
of disease by a range of aversive side effects including hal-
lucinations, psychosis, or worsening of existing cognitive 
impairment/dementia (Crosby et al. 2003; Dashtipour et al. 
2019). Vilazodone is postulated to dampen 5-HT neuron-
derived DA release during 5-HT1A autoreceptor activation 
in DRN neurons that project to the striatum. While this is the 
main mechanism thought to lead to reductions in dyskinesia, 
5-HT1A heteroreceptor activation located post-synaptically 
in the cortex or presynaptically in the striatum may also 
reduce overstimulation of the corticostriatal glutamatergic 
projections (Antonelli et al. 2005; Carta et al. 2007; Bishop 
et al. 2009; Dupre et al. 2007; Ostock et al. 2011; Suh et al. 
2012; Yamada et al. 1988).

Our findings demonstrated that Vilazodone dose-depend-
ently reduced ALO AIMs scores over time across all doses 
tested (Fig. 2A). Fortunately, unlike other 5-HT1A agonists, 
intrinsic side effects such as 5-HT syndrome have not been 
reported with Vilazodone; in fact, Vilazodone has been 
shown to reverse 5-HT syndrome induced by the selective 
5-HT1A agonist 8-OH-DPAT (Page et al., 2002; Lindenbach 
et al. 2015; Fisher et al. 2020). Similar to our prior work, 
few additional motor benefits were seen when exceeding 
the 10mg/kg dose (Meadows et al. 2018). To add to this 
point, Vilazodone at the 10 mg/kg dose has been shown to 
have 100% occupancy at SERT sites in the hippocampus and 
cortex of rats (Hughes et al. 2005). As such, further studies 
should seek to expand the lower range of Vilazodone dose 
efficacy in LID attenuation.

A relatively novel drug, YL-0919, with purported partial 
agonism at 5-HT1A receptor and SERT inhibition, was also 
investigated in this study. While YL-0919 has been effective 
in pre-clinical models of depression and clinical depression 
(Chen et al. 2013; Ran et al. 2018; Zhang et al. 2017), we are 
the first lab to test it in a hemiparkinsonian rodent model of 
LID. Similar to Vilazodone, dose selection of 0.625–2.5mg/
kg for YL-0919 was based on experiments establishing bio-
activity on rodent depression assays (Owen 2011; Meadows 
et al. 2018; Ran et al. 2018; Zhang et al. 2017). Despite 
YL-0919’s reported pharmacological similarity to Vilazo-
done, ALO AIMs were not affected at any dose. Neither was 
motor performance on L-DOPA when evaluated on FAS.

While the differences between Vilazodone and YL-0919 
were surprising, the recent discovery of YL-0919’s activ-
ity at the 5-HT6 receptor may have contributed to the lack 
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of treatment effects in LID. The 5-HT6 heteroreceptor is 
an excitatory Gs protein-coupled receptor that positively 
stimulates the adenylate cyclase-cAMP-PKA cascade 
(Ohno et al. 2015). It is abundantly located in the striatum 
and is thought to influence extrapyramidal motor function 
(Ohno et al. 2015). In fact, a study of graft-induced dyski-
nesia, a condition that sometimes occurs following striatal 
DA cell transplantation, demonstrated that 5-HT6 receptor 
activation was a potential causal factor (Aldrin-Kirk et al. 
2016). Another study showed that 5-HT6 receptor stimu-
lation in the frontal cortex can modulate 5-HT terminal 
release in neurons within 5-HT cell bodies (Gérard et al. 
1996; Gérard et al. 1997; Ward et al. 1995; Zhang et al., 
2011, Brouard et al. 2015). In our study, increased 5-HT 
firing and terminal activity via YL-0919-induced 5-HT6 
receptor stimulation may have activated prolonged 5-HT-
derived DA release and promoted hyperkinetic effects.

Another explanation for differences in dyskinesia 
expression following administration of YL-0919 or Vila-
zodone may be due to actions on local drug targets on 
SERT. Chronic L-DOPA treatment significantly increases 
SERT expression (Conti et al. 2016; Roussaki et al., 2015; 
Rylander et  al. 2010), and SSRIs have been shown to 
reduce LID (Bishop et al. 2012; Conti et al. 2014; Huot 
et al. 2015). Although the mechanism(s) by which SERT 
inhibition reduces LID are not entirely understood, some 
have suggested that blocking SERT increases peri-synaptic 
5-HT and indirect activation of 5-HT1A autoreceptors that 
regulate 5-HT neurons to inhibit raphe-striatal L-DOPA-
derived DA release (Conti et al. 2014, 2016; Kanari et al. 
2006). Notably, opposite effects are observed if SSRIs 
are locally administered into the striatum, which SERT 
blockade can prevent DA uptake into 5-HT terminals 
thereby perpetuating local DA signaling and LID (Kanari 
et al. 2006; Larsen et al. 2011). From this understanding, 
YL-0919 may possibly act preferentially on striatal SERT 
and counteract its antidyskinetic 5-HT1A receptor actions. 
There is some evidence of differential SERT actions across 
SSRIs. For example, compared to other SSRIs (Fluvox-
amine and Paroxetine), Sertraline was the only SSRI to 
increase DA in the striatum (Bishop et al 2012; Kitaichi 
et al. 2010). Further analyses using microdialysis would 
be able to elucidate the scope of DA release in the striatum 
during YL-0919 treatment.

Similar to Vilazodone, Vortioxetine is a recently FDA-
approved drug for the treatment of major depression and has 
multimodal effects within the 5-HT system. In alignment 
with many SSRIs, Vortioxetine has a strong antidepressant 
profile. Previous doses of Vortioxetine showing antidepres-
sant effects in rodent models ranged from 2.5 to 10mg/kg 
(Mørk et al. 2012). This effective pharmacological range was 
used in this study and produced a significant dose-dependent 
reduction on ALO AIMs and like Vilazodone, maintained 

L-DOPA efficacy for reversing lesion-induced motor deficits 
(Fig. 4). Until recently, it had not been tested on pre-clinical 
LID models.

In contrast to Vilazodone and YL-0919, Vortioxetine has 
a more promiscuous profile, targeting the 5-HT1B and 5-HT3 
receptors with a lower affinity for the 5-HT1A and 5-HT7 
receptor in rats compared to humans (Chen et al. 2018). 
In humans, Vortioxetine’s affinity for 5-HT1A (Ki=15nM) 
significantly differs from rats (Ki = 230nM). Additionally, 
it’s a potent 5-HT3 receptor antagonist (Ki=3.7nM), a mod-
est 5-HT7 antagonist (Ki=200nM), and a partial agonist at 
5-HT1B (Ki = 33nM), suggesting possible alternative mecha-
nisms that inhibit LID development (Okada et al. 2019).

Despite its lower affinity for the 5-HT1A receptor in the 
rat brain, previous work has shown that at high doses (10mg/
kg) Vortioxetine establishes approximately 35% receptor 
occupancy (Mørk et al. 2013). The greatest reduction in 
ALO AIMs (Fig 4A) may be attributed to increased 5-HT1A 
receptor occupation at the high dose. This suggests Vorti-
oxetine tested in clinical trials may show a greater effect 
in LID reduction than what is apparent in rodent models. 
This also highlights alternative mechanisms which may indi-
rectly stimulate 5-HT1A autoreceptors in the DRN to dampen 
exogenous DA release. Moreover, previous work showed 
that subacute administration of Vortioxetine demonstrated 
a lack of intrinsic 5-HT1A activity; however, antagonism 
of the 5-HT1A receptor reduced Vortioxetine effects (Bétry 
et al. 2013). This further suggests indirect action at other 
5-HT receptors that modulate 5-HT1A receptor activation. In 
the case of SERT inhibition, 80% receptor occupancy was 
detected in rodents at a 10mg/kg dose (Mørk et al. 2013). 
This supports previous work that attributes enhanced LID 
reduction to the synergistic dual action at the 5-HT1A recep-
tor and SERT (Meadows et al. 2018; Atwal et al., 2020).

While 5-HT1A action is present with Vortioxetine admin-
istration, it is likely that action at a combination of 5-HT 
receptors contributes to overall LID reductions in rats 
observed at lower doses (2.5 and 5 mg/kg). Another pos-
sibility that may account for observed LID attenuation is 
the activation of 5-HT1B auto- and hetero- receptors on 
5-HT terminals in the striatum and PFC (Carta et al. 2007). 
5-HT1B receptors regulate terminal 5-HT release on MSNs 
and inhibit GABA release that innervates the striatum and 
globus pallidus (Ceci et al. 1994; Carta et al. 2007; Lanza 
et al. 2018). Increased 5-HT1B expression in the striatum 
has been reported in response to DA loss and L-DOPA 
administration in 6-OHDA rodent models and MPTP non-
human primate models (Jackson et al. 2004; Zhang et al., 
2007; Morin et al. 2015). 5-HT1B receptor stimulation may 
counter this overexpression by normalizing 5-HT release 
from terminals thus dampening the release of DA from 5-HT 
neurons. Future work is needed to explore the mechanism 
by which 5-HT1B agonism works, either alone or in concert 
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with other 5-HT receptors, though it ultimately offers an 
alternative mechanism for LID attenuation during Vortiox-
etine treatment.

Vortioxetine’s multimodal pharmacological profile also 
presents another, less-explored mechanism at the 5-HT3 
receptor as a potential target to modulate 5-HT activity in 
LID. Investigation of the 5-HT3 receptor in LID is limited; 
nevertheless, previous studies that focus on Vortioxetine’s 
antidepressant outcomes attribute its pharmacological 
effects primarily to 5-HT3 antagonism and SERT inhibition 
(Bétry et al. 2013; Okada et al. 2019; Bhatt et al., 2020). 
In PD patients, Ondansetron, a selective 5-HT3 antagonist, 
co-administered with L-DOPA has been shown to have anti-
dyskinetic effects in 6-OHDA-lesioned rats (Aboulghasemi 
et al. 2018) and reduce psychosis in PD patients (Zoldan 
et al. 1995). These effects have been ascribed to 5-HT3 
receptor modulation of nigrostriatal DA  (Alex and Pehek 
2007; Porras et al. 2003). 5-HT3 is the only known 5-HT 
receptor that is not G-protein coupled and instead exists as 
an excitatory ligand-gated channel expressed post-synapti-
cally (Leiser et al. 2015). Notably, 5-HT3 receptors are not 
expressed in the DRN (Koyama et al. 2017), yet are highly 
expressed in the frontal cortex (Leiser et al. 2015). Further-
more, studies that have examined 5-HT3 receptors in the 
frontal cortex suggest that they are expressed on GABAergic 
interneurons (Puig et al. 2004). Inhibition of PFC activity 
via 5-HT3 receptor antagonism promoted regional 5-HT 
release due to GABAergic disinhibition (Okada et al. 2019). 
This regional release may suggest the use of indirect 5-HT1A 
activation to reduce LID development.

Although the anti-dyskinetic effects of Vilazodone and 
Vortioxetine were confirmed, there are a few limitations to 
this work that should be addressed. First, this study utilized 
only female rats and there are well-documented sex differ-
ences in response to 5-HT compounds (Damoiseaux, et al. 
2014; LeGates et al. 2019). While we have not tested all of 
these compounds in both sexes, prior work from our lab and 
others using Vilazodone indicate similar responses across 
sexes in rats (Meadows et al. 2018; Altwal et al. 2020; 2021). 
Whether this holds for Vortioxetine remains an open ques-
tion. Second, experiments were designed to establish dose-
responses, but not chronic efficacy. Given the known lag in 
antidepressant activity of 5-HT pharmacotherapy (Frazer 
and Benmansour 2002), future research should further 
investigate the long-term effectiveness of these compounds. 
To date, only Vilazodone has been given sub-chronically, 
demonstrating evidence of prophylactic and interventional 
anti-LID effects (Meadows et al. 2018). Lastly, the exact 
mechanisms through which these multimodal 5-HT com-
pounds exert their effects remain enigmatic. In addition to 
altering L-DOPA-derived DA presynaptically, less canonical 
mechanisms may also contribute and deserve mention. For 
example, SSRIs share a common action with the fast-acting 

antidepressant ketamine, increasing brain-derived neuro-
trophic factor (BDNF) and action at its cognate receptor Tro-
pomyosin receptor kinase B (TrkB; Saarelainen et al. 2003; 
Aleksandrova and Phillips 2021; Casarotto et al. 2021). 
Since ketamine also reduces LID (Bartlett et al. 2016; 2020), 
a convergent neurotrophic mechanism that may normalize 
aberrant neuroplasticity is an intriguing, though untested, 
possibility.

In conclusion, we found that Vilazodone and Vortioxetine 
displayed dose-dependent anti-dyskinetic effects, whereas 
YL-0919 displayed no effects, despite having a somewhat 
similar pharmacological profile. Collectively, these results 
are consistent with the notion that targeting aberrant sero-
tonergic neuroplasticity is feasible without compromising 
L-DOPA efficacy. Further translational efforts should ulti-
mately uncover the true promise of these compounds (Jenner 
2018). Indeed, recent reports of unique features of Vilazo-
done as an allosteric SERT inhibitor open novel avenues for 
drug development (Plenge et al. 2021), while our current 
work supports repositioning these FDA-approved drugs to 
serve as supplemental treatments that optimize L-DOPA 
therapy in PD patients.
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