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Abstract
Rationale Adverse psychosocial factors during early childhood or adolescence compromise neural structure and brain func-
tion, inducing susceptibility for many psychiatric disorders such as substance use disorder. Nevertheless, the mechanisms 
underlying early life stress-induced addiction vulnerability is still unclear, especially for opioids.
Objectives To address this, we used a mouse heroin self-administration model to examine how chronic early social isola-
tion (ESI) stress (5 weeks, beginning at weaning) affects the behavioral and neural responses to heroin during adulthood.
Results We found that ESI stress did not alter the acquisition for sucrose or heroin self-administration, nor change the moti-
vation for sucrose on a progressive ratio schedule. However, ESI stress induced an upward shift of heroin dose-response 
curve in female mice and increased motivation and seeking for heroin in both sexes. Furthermore, we examined the neuronal 
activity (measured by c-Fos expression) within the key brain regions of the mesocorticolimbic system, including the prelim-
bic cortex (PrL), infralimbic cortex (IL), nucleus accumbens (NAc) core and shell, caudate putamen, and ventral tegmental 
area (VTA). We found that ESI stress dampened c-Fos expression in the PrL, IL, and VTA after 14-day forced abstinence, 
while augmented the neuronal responses to heroin-predictive context and cue in the IL and NAc core. Moreover, ESI stress 
disrupted the association between c-Fos expression and attempted infusions during heroin-seeking test in the PrL.
Conclusions These data indicate that ESI stress leads to increased seeking and motivation for heroin, and this may be associ-
ated with distinct changes in neuronal activities in different subregions of the mesocorticolimbic system.

Keywords Heroin self-administration · Dose-response · Heroin seeking · Social isolation · Stress · c-Fos · Prefrontal 
cortex · Nucleus accumbens · Ventral tegmental area · Sex difference

Introduction

Substance use disorder is characterized by compulsive drug tak-
ing and enduring vulnerability to relapse. Stress is a well-known 
risk factor for both vulnerability and development of addiction 
(Sinha 2008). Chronic stress induces persistent homeostatic 
dysregulation to cause maladaptive behaviors such as addiction.

Adolescence or early adulthood is a critical period during 
which the brain is vulnerable to irreversible synaptic remod-
eling disruptions (Lupien et al. 2009; Paus et al. 2008). 

Stress or life adversities during this time induce enduring 
alterations in neural plasticity that leads to long-term behav-
ioral maladaptations. Negative life events during early life, 
such as isolation and low parental or social support, have all 
been associated with increased risk of drug use and abuse 
(Barrett and Turner 2006; Chassin et al. 1988; Costa et al. 
1999; Newcomb and Bentler 1988; Newcomb and Harlow 
1986; Sher et al. 1997; Wills and Cleary 1996; Wills et al.  
1992). Additionally, social isolation stress during adolescence 
induces highly comorbid behavioral alterations (e.g., aggression 
(Mikics et al. 2018), anxiety (Caruso et al. 2018), social with-
drawal (Liu et al. 2012)) related to anxiety disorders, depres-
sion, and schizophrenia, which are all risk factors for substance 
use disorders (Gregg et al. 2007; Krystal et al. 2006; Smith and 
Book 2008). Thus, early social isolation (ESI) stress model has 
been widely used in preclinical studies for psychiatric disorders.

Preclinical studies using a self-administration (SA) model 
for substance use disorder show that ESI stress enhances the 
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initiation of SA for psychostimulants and opioids (Bozarth 
et al. 1989; Marks-Kaufman and Lewis 1984), while others 
show no effect (Boyle et al. 1991; Schenk et al. 1988) or 
decreased effect (Howes et al. 2000; Phillips et al. 1994) 
(reviewed in Lu et al. (2003) and Walker et al. (2019)). 
Meanwhile, ESI increases seeking or extinction resistance 
for drugs including cocaine (Fosnocht et al. 2019), amphet-
amine (Whitaker et al. 2013), and alcohol (Cortes-Patino 
et al. 2016) in different behavioral procedures. Yet, how 
ESI stress alters opioid seeking is still unknown. Therefore, 
the aim of the current study is to examine the impact of 
early life social isolation stress on drug-taking and drug-
seeking behaviors using a heroin self-administration model. 
Compared to the extinction-reinstatement procedure, forced 
abstinence followed by cue-induced seeking better repre-
sents the human scenario, where relapse typically occurs 
after a drug-free withdrawal period rather than extinction 
training (Fuchs et al. 2008). As this model has been com-
monly used in studies of heroin-seeking behaviors in rodents 
(Reiner et al. 2019; Ren et al. 2009), a forced abstinence 
followed by cue-induced seeking procedure was chosen in 
the current study.

Here, we established that ESI stress does not alter the 
acquisition for sucrose or heroin self-administration, nor 
change the motivation for sucrose. However, ESI stress 
causes an upward shift of heroin dose-response curve in 
female mice and increases motivation for heroin and heroin 
seeking in both male and female mice. Then, using c-Fos as 
a proxy of neuronal activity (Bullitt 1990; Cruz et al. 2015), 
we examined neuronal activity patterns within the mesocor-
ticolimbic reward pathway during abstinence and right after 
heroin-seeking test in control and ESI mice. Furthermore, 
we examined the correlation between c-Fos immunoactivity 
and heroin-seeking behavior. Our results indicate that ESI 
stress induces unique neuronal activity alterations that are 
associated with increased heroin seeking.

Materials and methods

Animals

The current study used both male and female C57BL/6J 
mice that were purchased from Jackson lab and maintained 
in the lab (stock number 000664, Bar Harbor, ME, USA). 
Animals were housed under the temperature and humidity 
controlled by animal care facility with 12-h light/dark cycle 
(lights on at 11:00 A.M. and light off at 11:00 P.M.). All the 
procedures are approved by the Institutional Animal Care 
and Use Committee, University of Kansas. All animals were 
maintained according to the National Institutes of Health 
guidelines in Association for Assessment and Accreditation 
of Laboratory Animal Care accredited facilities

Early social isolation stress

Based on previous publications (Cortes-Patino et al. 2016; 
Yamamuro et al. 2018), early social isolation (ESI) stress 
was carried out after weaning from postnatal day 21 (P21) 
to P56 (about 5 weeks). During this time, ESI mice were 
single housed, and control mice were group housed (4–5 
mice per cage). Other housing conditions were the same to 
avoid environmental enrichment-induced effects.

Drug

Heroin hydrochloride, generously gifted from the NIDA 
drug supply program, was dissolved in 0.9% sterile saline. 
Heroin solutions were prepared on a weekly basis (0.1 mg/
mL). Pump durations were adjusted according to the ani-
mals’ body weights on a daily basis to ensure delivery of the 
correct dose of drug for each animal.

Self‑administration test chambers

The experimental chambers have been described elsewhere 
(Gancarz et al. 2015; Wang et al. 2017; Wang et al. 2016) 
with modifications. Briefly, 16 standard Med Associates 
Inc. (St. Albans, VT) chambers containing two nose-poke 
holes each with infrared monitoring were used. Two stimu-
lus lights were mounted within each nose-poke hole, with a 
house light in the center back wall of the test chamber. All 
chambers are housed in sound-attenuating boxes and con-
trolled through a Med Associates interface.

Sucrose self‑administration

At 8 weeks of age, animals were first trained to self-admin-
ister sucrose solution (10%). Responses in the active nose-
poke holes resulted in the illumination of a discrete cue light 
(stimulus light, 5s) with the administration of sucrose, fol-
lowed by 15-s time-out period with the chamber light off and 
no programmed consequences. Mice were trained for 8 days 
on a fixed ratio (FR) 1 schedule of reinforcement, which was 
increased daily to FR5 and maintained at this FR for the 
reminder of self-administration protocol. The mice were lim-
ited to a maximum of 100 infusions during the daily 90-min 
operant session. The following criteria for acquisition of 
operant responding were adopted from publications (Martin-
Garcia et al. 2011; Soria et al. 2008; Wilkerson et al. 2017): 
mice will be included if they maintain stable responding 
with (1) less than 30% deviation from the mean of the total 
number of infusions earned in three consecutive sessions, (2) 
at least 65% responding on the reinforced nose-poke, and (3) 
a minimum of 5 reinforcers per session. Following 8 days of 
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sucrose training, mice were tested for 1 day on a progressive 
ratio (PR) schedule, where the response requirement for each 
sucrose infusion increased until the mouse did not fulfill 
the requirement and the session ended if the animal took 
longer than 60 min to meet the requirement. The response 
requirement was defined as R(i) = [5e0.2i−5], rounded to 
the nearest integer (Gancarz et al. 2012; Martin et al. 2018; 
Richardson and Roberts 1996). The total numbers of infu-
sions and active responses as well as the final ratio in effect 
(i.e., breakpoint) were recorded and analyzed.

Jugular catheterization surgery

After sucrose self-administration, mice were anesthetized 
with 100 mg/kg ketamine and 5 mg/kg xylazine and then 
implanted with chronic indwelling jugular catheters as previ-
ously described (Wang et al. 2017; Wang et al. 2016) with 
modifications. Catheter was inserted into the right jugular 
vein and sutured up in place. The catheter was threaded sub-
cutaneously over the shoulder blade and was connected to 
the harness (Instech, Plymouth Meeting, PA, USA). Fol-
lowing surgery, catheters were flushed daily with 0.05 ml 
of heparinized saline to preserve catheter patency. Before 
behavioral testing, each animal received an i.v. infusion 
of ketamine hydrochloride (1 mg/ml in 0.05 ml), and the 
behavioral response was observed to verify catheter patency. 
Decrease of muscle tone served as behavioral indicators of 
patency. During heroin self-administration, increased loco-
motor activity was used as an indicator for patency (Engeln 
et al. 2021).

Heroin self‑administration

The heroin self-administration procedures were conducted 
as previously described (Gancarz et al. 2015; Martin et al. 
2018; Wang et al. 2017; Wang et al. 2016) with modifi-
cations. Following the 7-day recovery from jugular cath-
eter surgery, mice were assigned to acquisition of heroin 
self-administration. Mice were subjected to daily 3-h self-
administration training, during which responses to the 
active alternative snout-poke hole resulted in i.v. infusions 
of heroin (0.05 mg/kg/infusion) according to a fixed ratio 
1 (FR1) schedule of reinforcement, which was increased 
daily to FR3 and maintained at this FR for the reminder of 
self-administration protocol. Infusions were accompanied 
by a 5-s illumination of the stimulus light inside the active 
snout-poke hole followed by a 15-s time-out period, during 
which time the house light was extinguished. Responses to 
the inactive hole resulted in no programmed consequences. 
The criterion for acquisition of heroin self-administration 
was similar as described above.

Dose-response

After completing acquisition training, mice were subse-
quently trained on a within-session dose-response proce-
dure, as previously described (Martin et al. 2018) with 
slight modifications. Briefly, the daily 3-h self-admin-
istration session was divided into four 45-min sessions, 
each proceeded by a 2-min time-out period. Mice were 
exposed to four doses of heroin (0.00625, 0.0125, 0.025, 
and 0.05 mg/kg/inf) for 45 min. The order of the doses 
tested was pseudorandomized such that the same doses 
were never tested in the same order during training. We 
limited each of the four self-administration sessions to 
45 min primarily to match the session duration during 
training (3 h) and to delineate drug intake at multiple doses 
of drug while minimizing drug side effects (i.e., sedation, 
stereotypy, etc.), which may be a confounding variable. 
The dose of heroin per infusion was regulated via adjust-
ing the infusion volumes (i.e., pump-on durations). Fol-
lowing each test session, the catheters were flushed with 
saline and mice were returned to the colony room. The 
average number for earned infusions throughout the 5 days 
of dose-response training was calculated.

Progressive ratio

After completing dose-response training, mice underwent 
3 days of re-acquisition of heroin self-administration as 
described above. After re-acquiring stable infusions, mice 
were tested for 3 days on a progressive ratio schedule, where 
the response requirement for each infusion increased until 
the mouse did not fulfill the requirement and the session 
ended if the animal took longer than 60 min to meet the 
requirement. The definition of response requirement is the 
same as described above.

Heroin-seeking test

After progressive ratio test, animals went through forced 
abstinence for 14 days (a time period showed high extinction 
responding for heroin (Shalev et al. 2001)), mimicking the 
real-life situation in which environmental cues precipitate 
relapse behavior following an extended period of abstinence. 
Then, mice were placed back in the same chambers for a 
1-h context- and discrete cue-induced seeking test (there-
after named as heroin-seeking test). During heroin-seeking 
test, the active responses produced discrete cues previously 
paired with drug delivery and heroin is not available. There-
fore, this active response-produced event during heroin-
seeking test was termed as attempted infusions. The timeline 
for experimental protocol is illustrated in Fig. 1A.
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Tissue collection and immunostaining

To examine the effect of ESI stress on heroin responses 
in the brain, we performed immunofluorescent staining 
for c-Fos as previously described with some modifications 
(Cruz et al. 2015; Wang et al. 2017; Wang et al. 2015). 
Four mice per group were sacrificed after 14 days of forced 
abstinence, and five mice per group were sacrificed right 
after the heroin-seeking test. Mice were sacrificed via tran-
scardial perfusion of PBS followed by 4% formaldehyde. 
Whole brains were immediately removed and post-fixed at 
4 °C for 24 h and then immersed in 30% sucrose in 0.01 M 
PBS (pH 7.4) at 4 °C. Coronal sections encompassing 
the prelimbic area (PrL), infralimbic area (IL), nucleus 
accumbens core (NAcc) and shell (NAcSh), caudate puta-
men (CPU), and ventral tegmental area (VTA) were cut at 
a thickness of 40 μm using a vibratome (Leica VT1000s, 
Buffalo Grove, IL, USA).

For immunostaining, brain sections were rinsed in 0.01 
M PBS (pH 7.4) for 3 times then blocked in 3% normal 
donkey serum with 0.3% Triton-X for 2 h at room tempera-
ture. Sections were then incubated in c-Fos (1:500, Abcam, 
ab190289, Cambridge, MA, USA) primary antibody over-
night at 4 °C. On the second day, sections were incubated 
with Alexa Fluor 488-conjugated secondary antibody at 
1:800 (Thermo Fisher, Waltham, MA, USA) for 2 h at room 
temperature. Then, slides were mounted with DAPI-contain-
ing mounting media (Vector lab, Burlingame, CA, USA).

Cell counting

C-Fos immunoactivity was assessed via imaging on a Leica 
BM4000 microscope under 20× magnification. c-Fos-immu-
nolabeling was bilaterally quantified from at least 3–4 sec-
tions per mouse and averaged to determine the profile of 
each brain region. The experimenter quantifying was blind 

Fig. 1  Experimental design. 
(A) Timeline for the experimen-
tal design. HER, heroin; PR, 
progressive ratio. (B) Schematic 
representations of brain regions 
analyzed for c-Fos expression. 
Red color indicates the areas 
where cells were counted. Num-
bers in the lower-left corner 
of each brain section represent 
the distance from bregma. PrL, 
prelimbic cortex; IL, infralimbic 
cortex
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to group assignments. c-Fos images were quantified using 
ImageJ software. The numbers of Fos-positive nuclei in 
regions of interest were counted with a point counter tool. 
This tool simultaneously marked and counted each cell so 
that no cells could be counted twice. The levels chosen cor-
responded to the following distances from bregma (based 
on Paxinos and Watson (Paxinos et al. 1980), Fig. 1B): PrL 
and IL, +2.2 mm; NAcc and NAcSh, +1.4 mm; CPU, −0.6 
mm; VTA, −3.0 mm.

Statistical analysis

Multi-factor repeated ANOVA was performed on the num-
ber of infusions and nose-poke responses during acquisi-
tion for sucrose or heroin self-administration, as well as the 
number of infusions in heroin dose-response curve. All the 
other comparisons of dependent variables were analyzed by 
two-way ANOVA. Post hoc analysis was performed by Tuk-
ey’s comparisons. The correlation between c-fos numbers 
and heroin-seeking behavior was assessed using Pearson’s 
correlation analysis. All data were analyzed using SPSS 
software (IBM Corp., Armonk, NY, USA) or Graphpad 
(GraphPad Software, San Diego, CA), and are represented 
as the mean ± SEM, with P < 0.05 indicating significance. 
Statistical details are provided in Supplementary table 1.

Results

ESI stress does not alter sucrose acquisition 
and the motivation for sucrose

To find out whether ESI stress alters the behavioral 
responses to sucrose, male and female mice underwent 
sucrose self-administration and followed by progressive 
ratio test. Using multi-factor repeated ANOVA analysis, we 
did not find any significant main effect for stress in sucrose 
infusions (Fig. 2A, F1,45 (stress) = 3.178, P = 0.081), total 
active responses (Fig. 2B, F1,45 (stress) = 1.577, P = 0.216), 
and total inactive responses (Fig. 2C, F1,45 (stress) = 1.921, P 
= 0.173) during the fixed ratio self-administration phase, 
suggesting that ESI stress does not alter sucrose acquisi-
tion. Furthermore, we found that the infusions (Fig. 2D, 
F1,45 (stress) = 0.019, P = 0.89) and total active responses 
(Fig. 2E, F1,45 (stress) = 0.006, P = 0.936) for sucrose on 
a progressive ratio schedule showed no difference across 
groups. Additionally, ESI did not change the progressive 
ratio breakpoint for sucrose (Fig. S1, F1,45 (stress) = 0.305, 
P = 0.583; F1,45 (sex) = 0.039, P = 0.843; F1,45 (interaction) = 
0.031, P = 0.861). These data indicate that the motivation 
for sucrose was similar among the tested groups.

ESI stress induces an upward shift of heroin 
dose‑response curve in females and increases 
heroin motivation and potentiates heroin seeking 
in both sexes

Heroin self-administration acquisition

To examine whether ESI stress affects heroin addiction-
like behaviors, male and female mice underwent heroin 
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self-administration at the dose of 0.05 mg/kg/infusion. 
Multi-factor repeated ANOVA did not reveal any significant 
main effect for stress in the number of infusions (Fig. 3A, 
F1,45 (stress) = 2.525, P = 0.12) and total active responses 
per session across days of training (Fig. 3B, F1,45 (stress) = 
1.147, P = 0.29), suggesting that ESI stress does not affect 
heroin acquisition. Moreover, the total active responses 
were increased over the course of the 9 training sessions 
(Fig. 3B, F8,360 (session) = 9.617, P < 0.0001), implying the 

overall increased acquisition of operant responding for her-
oin. Additionally, ESI stress did not change the total inac-
tive responses (Fig. 3C, F1,45 (stress) = 0.286, P = 0.595). 
Furthermore, a similar number of mice in each group failed 
to meet acquisition criteria for heroin operant condition-
ing across 9 sessions, and a log-rank analysis comparing 
survival distributions of groups to meeting criteria did not 
show any significant difference (Fig. 3D). Interestingly, 
there was a significant main effect for session or for the 
interaction of stress, sex, and session in infusion numbers 
across the 9 training sessions (Fig. 3A, F8,360 (session) = 8.915, 
P = 0.0001; F8,360 (interaction) = 3.1, P = 0.002). Post hoc 
analysis indicated that the infusion numbers for session 1 
were significantly higher than those for sessions 5–9 (P < 
0.001), and the infusion numbers for sessions 5–9 were nota-
bly higher than those for session 4 (P < 0.001). This high 
responding for heroin at the beginning of acquisition phase 
may be due to the influence of sucrose extinction, as these 
mice were trained to respond for sucrose prior to heroin 
self-administration.

Heroin dose-response

As ESI stress increases the vulnerability for the develop-
ment of addiction and relapse, we next sought to examine 
the role of ESI stress in regulation of other addiction-like 
behaviors. We first turned to a within-session dose-response 
paradigm, which can measure sensitivity to drug (in case 
of horizontal shift) or predict drug vulnerability (in case of 
vertical shift) (Martin et al. 1996; Piazza et al. 2000). Multi-
factor ANOVA analysis revealed a significant main effect for 
heroin dose (Fig. 4A, F3,135 (dose) = 111.875, P < 0.0001), 
indicating that the number of infusions is dependent on 
heroin doses. A Tukey’s post hoc analysis showed that there 
were significant differences in the number of earned infu-
sions between any two selected doses (P < 0.001). In addi-
tion, there was a significant main effect for stress (Fig. 4A, 
F1,45 (stress) = 10.864, P = 0.002) and sex (Fig. 4A, F1,45 (sex) 
= 8.285, P = 0.006). A Tukey’s post hoc analysis revealed 
that ESI stress increased the earned infusions at the dose of 
0.025 mg/kg/infusion (Fig. 4A, P < 0.05), demonstrating 
increased drug vulnerability in ESI female mice.

Heroin progressive ratio

Next, we moved on to determine whether ESI stress alters 
the motivation for heroin. To this end, animals were tested 
in a progressive ratio schedule of reinforcement, which is 
considered a model for measuring reinforcing efficacy and 
motivation for obtaining a reinforcer (Hodos 1961; Richard-
son and Roberts 1996). Two-way ANOVA analysis showed 
a significant main effect for stress in the number of infu-
sions (Fig. 4B, F1,45 (stress) = 105.1, P < 0.0001) and in active 
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responses during the progressive ratio schedule (Fig. 4C, 
F1,45 (stress) = 15.61, P = 0.0003). A Tukey’s post hoc analysis 
determined that ESI stress increased the number of infusions 
(Fig. 4B, P < 0.001) and active responses (Fig. 4C, P < 
0.05) in both male and female mice. Additionally, there was 
no significant difference in inactive responses (Fig. S2A), 
suggesting that the increased operant responding for heroin 
is not due to overall increased nose-poking behavior. We also 
found that ESI stress increased the progressive ratio break-
point for heroin (Fig. S2B, F1,45 (stress) = 15.48, P = 0.0003; 
F1,45 (sex) = 0.226, P = 0.6369; F1,45 (interaction) = 0.5558, P = 
0.4598) in both male (P < 0.01) and female (P < 0.05) mice. 
These data indicate that ESI stress increases the motivation 
for heroin.

Heroin seeking

To examine whether ESI stress affects heroin-seeking behav-
ior, mice went through a context- and cue-induced heroin 
seeking test. Using two-way ANOVA analysis, we found 
a significant main effect for stress in attempted infusions 
(Fig. 4D, F1,29 (stress) = 38.6, P < 0.0001), as well as in total 
active responses (Fig. 4E, F1,29 (stress) = 21.9, P < 0.0001). 
A Tukey’s post hoc analysis discovered that ESI stress 
increased the attempted infusions (Fig. 4D) and total active 
responses (Fig. 4E) in both males (P < 0.01) and females 
(attempted infusions: P < 0.001, total active response: P < 
0.05). Importantly, ESI stress did not change the inactive 
responses (Fig. S3) across groups.

ESI stress dampens c‑Fos expression in PrL, IL, 
and VTA after heroin abstinence

To better understand the neurobiological mechanisms 
underlying the ESI-dependent behavioral responses to 
heroin, we used c-Fos expression as a representative 
marker for neuronal activity to examine the neuronal activ-
ity changes in several brain regions within the mesocorti-
colimbic system. Some mice were sacrificed after 14 days 
of forced abstinence for c-Fos immunostaining (Fig. 5, 
Fig. S4). Two-way ANOVA analysis revealed a signifi-
cant main effect for stress in the PrL (Fig. 5A, F1,12 (stress) 
= 62.88, P < 0.0001), IL (Fig. 5B, F1,12 (stress) = 62.82, 
P < 0.0001), and VTA (Fig. 5F, F1,12 (stress) = 4.996, P 
= 0.045). A Tukey’s post hoc analysis showed that the 
number of c-Fos-positive cells in the PrL (Fig. 5A) and IL 
(Fig. 5B) from ESI mice was significantly lower compar-
ing to GH mice in both sexes (males: P < 0.01; females: P 
< 0.001). Interestingly, there was a significant main effect 
for sex or for the interaction of stress and sex in NAcc 
(Fig. 5D, F1,12 (sex) = 8.858, P =0.01; F1,12 (interaction) = 9.55, 
P = 0.009), with post hoc analysis showing reduced c-Fos 
expression specifically in ESI female mice comparing 
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to GH females (P < 0.05). Although there was a signifi-
cant main effect for interaction in CPU (F1,12 (interaction) = 
9.781, P =0.009), no significant difference between any 
two groups was revealed by post hoc analysis. Addition-
ally, there was no statistical difference in the main effect 
for neither stress nor sex in CPU and NAcSh.

ESI stress enhances the c‑Fos activation in IL 
and NAcc after heroin‑seeking test

Some animals were sacrificed right after the 1-h heroin-
seeking test (Fig. 6, Fig. S5). Two-way ANOVA analysis 
showed a significant main effect for stress in the IL (Fig. 6B, 

Fig. 5  c-Fos immunoactivity is 
reduced in early social-isolated 
mice after forced abstinence 
from heroin self-administration. 
(A–F) Number of c-Fos-posi-
tive cells in the following brain 
regions after 14 days of forced 
abstinence from heroin self-
administration: prelimbic cortex 
(PrL), infralimbic cortex (IL), 
nucleus accumbens core (NAcc) 
and shell (NAcSh), caudate 
putamen (CPU), and ventral 
tegmental area (VTA). Data are 
expressed as mean ± SEM, *P 
< 0.05, **P < 0.01, ***P < 
0.001, n = 4 mice/group. GH, 
group house; ESI, early social 
isolation
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F1,16 (stress) = 5.144, P = 0.0375) and NAcc (Fig. 6D, F 
1,16 (stress) = 20.72, P = 0.0003). A Tukey’s post hoc analysis 
showed that c-Fos expression right after heroin-seeking test 
in NAcc (Fig. 6D) was increased in ESI female mice (P < 
0.01), and showed a trend toward increase in ESI male mice 
(P = 0.06).

To assess the effect of heroin-predictive context and cue 
re-exposure on c-Fos expression in different brain regions, 
we analyzed the number of c-fos-positive cells regardless 
of the sex conditions (Table 1), as there was no sex differ-
ence in heroin-seeking behavior (Fig. 4C). Using two-way 
ANOVA analysis, we found a significant main effect for 
context and cue re-exposure in the PrL (F1,32 (context and cue) 
= 70.11, P < 0.0001), IL (F1,32 (context and cue) = 22.95, P < 
0.0001), NAcc (F1,32 (context and cue) = 73.63, P < 0.0001), 
and NAcSh (F1,32 (context and cue) = 76.63, P < 0.0001). Addi-
tionally, there was a significant main effect for stress in the 
PrL (F1,32 (stress) = 6.87, P = 0.013), IL (F1,32 (stress) = 7.39, 
P = 0.011), NAcc (F1,32 (stress) = 6.2, P = 0.019), and VTA 
(F1,32 (stress) = 4.46, P = 0.043), which was consistent with 
previous results (Figs. 5 and 6). A Tukey’s post hoc analysis 
indicated that re-exposure to heroin-associated context and 
cue resulted in a significant increase of c-Fos expression in 
the PrL (P < 0.05) and NAcc (P < 0.01) from both GH and 
ESI mice, and enhanced c-fos immunoactivity in the IL (P 
< 0.001) and NAcSh (P < 0.001) from ESI mice.

ESI stress decouples the correlation between PrL 
c‑Fos expression and heroin‑seeking behavior

To examine the degree of association between the neuronal 
activity (i.e., c-Fos immunoactivity) and heroin-seeking 
behavior, we calculated Pearson’s correlation coefficient 
(r) between the number of c-fos-positive cells and the 
attempted infusions during heroin-seeking test. We found a 
significant positive correlation between the number of PrL 

c-Fos-positive cells and the number of attempted infusions 
(r = 0.64, P = 0.048) from GH mice, whilst in ESI mice, this 
positive correlation was disrupted (Fig. 7A, r = −0.34, P = 
0.34). Of note, we found overall significant positive correla-
tions between the c-Fos numbers and attempted infusions 
during heroin-seeking test in the IL (r = 0.47, P =0.03) and 
NAcc (r = 0.83, P < 0.0001) without considering stress and 
sex variables (Table 2). Taken together, these data suggest 
that ESI stress alters the neuronal responses (c-Fos as proxy) 
to heroin-associated context and cue in several key brain 
regions (including PrL, IL, NAcc, and VTA), and decouples 
the association between the neuronal activation and heroin-
seeking behavior in the PrL.

Discussion

Early social isolation stress increases addiction 
vulnerability for heroin

Stress during early lifetime causes long-term behavioral 
maladaptations. Clinical studies have shown that early life 
adversities such as maltreatment, isolation, or low social 
support are associated with increased risk for the develop-
ment of substance use disorders and relapse vulnerability 
(Barrett and Turner 2006; Chassin et al. 1988; Costa et al. 
1999; Newcomb and Bentler 1988; Newcomb and Har-
low 1986; Sher et al. 1997; Wills and Cleary 1996; Wills 
et al. 1992). Preclinical studies using an early social isola-
tion (ESI) model to mimic early life stress have found that 
ESI stress enhances the initiation of self-administration for 
cocaine and opioids (Bozarth et al. 1989; Marks-Kaufman 
and Lewis 1984; Yajie et al. 2005). However, different find-
ings show that social isolation does not affect cocaine or 
amphetamine self-administration (Boyle et al. 1991; Schenk 
et al. 1988), or even impairs cocaine self-administration 

Table 1  Numbers of C-Fos 
positive cells comparison 
without and with heroin-
associated cue exposure

# p<0.05 for main effect of context and cue exposure (i.e., abstinence vs after heroin-seeking test).
^ p<0.05 for main effect of stress.
* p<0.05, ** p<0.01, *** p<0.001 post hoc analysis between without and with cue exposure (i.e., absti-
nence vs after heroin-seeking test) within GH (group house) or ESI (early social isolation) group.

Without context and cue exposure  
(abstinence) (cells/1000  mm2)

With context and cue exposure
(after heroin-seeking test)  (cells/1000  mm2)

GH ESI GH ESI

Mean SE Mean SE Mean SE Mean SE
PrL#^ 1307.871 59.661 773.725 37.196 1573.611* 80.861 1726.389* 84.351
IL#^ 1188.078 59.359 750.289 28.554 1133.333 31.803 1293.75*** 67.162
CPU 344.908 46.518 348.379 24.337 369.444 29.731 358.333 23.927
Nacc#^ 565.393 41.384 517.94 16.908 715.972** 24.898 920.139** 35.88
NAcSh# 822.336 51.456 700.233 37.964 965.278 54.307 1013.194*** 38.337
VTA^ 519.964 45.242 376.736 42.378 458.333 33.958 431.944 39.417
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(Howes et al. 2000; Phillips et al. 1994). These discrepancies 
reflect an ESI stress-induced shift of dose-response curve 
for drugs (Howes et al. 2000; Piazza et al. 2000). In the 
current study, we found that ESI stress did not change the 
acquisition of heroin self-administration at the dose of 0.05 
mg/kg/infusion (Fig. 3). Additionally, ESI stress increased 
heroin infusions at the dose 0.025 mg/kg/infusion in females 
but not males, resulting in an upward shift of heroin dose-
response curve (Fig. 4), and indicating an increased heroin 
vulnerability (Piazza et al. 2000) in ESI female mice. This 
result reflects the sex difference in the etiology of opioid 
use disorders (Anglin et al. 1987; Hser et al. 1987), and the 
sex-specific responses to social stress (Hodes et al. 2015; 
Pena et al. 2019; Walker et al. 2021). Surprisingly, we did 
not find sex difference in heroin infusions in control (GH) 
mice at any given doses; yet Towers et al. reported females 
showed increased heroin intake at 0.03 (but not 0.06) mg/
kg/infusion as compared to males (Towers et al. 2019). 

This inconsistency may be due to the different experimental 
protocols. First, Towers et al. used a between-session dose-
response paradigm for two doses (0.03 and 0.06 mg/kg/infu-
sion) without preceding heroin acquisition. Second, in our 
experimental protocol, the prior heroin exposure (0.05 mg/
kg/infusion, for 9 days) may alter the behavioral responses 
during the within-session dose-response tests.

Although ESI stress did not change heroin intake in male 
mice, it significantly augmented the motivation for heroin 
and potentiated heroin seeking in both males and females 
(Fig. 4). This is in concert with previous reports showing 
that social isolation stress increases seeking or extinction 
resistance for several drugs in different behavioral proce-
dures. For example, isolation stress increases cocaine seek-
ing in a mouse self-administration model (Fosnocht et al. 
2019) and a conditioned place preference (CPP) model 
(Ribeiro Do Couto et al. 2009); isolation stress also delays 
extinction in an amphetamine-induced CPP model (Whitaker 
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Fig. 7  The correlation between c-fos immunoreactivity and heroin-
seeking behavior. (A–F) The correlation between the number of 
attempted infusions during heroin-seeking test and the number of 
c-Fos-positive cells (right after heroin-seeking test) in the following 

brain regions: prelimbic cortex (PrL), infralimbic cortex (IL), nucleus 
accumbens core (NAcc) and shell (NAcSh), caudate putamen (CPU), 
and ventral tegmental area (VTA). GH, group house; ESI, early social 
isolation

Table 2  Correlation between 
numbers of c-Fos positive cells 
and heroin-seeking behavior

PrL IL NAcc NAcSh CPU VTA

Heroin-seeking test
(Attempted infusions)

r 0.228 0.5177 0.827 0.2263 -0.1016 -0.0213
p 0.3336 0.0194 <0.0001 0.3373 0.67 0.9289
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et al. 2013) and in a self-administered alcohol drinking 
model (Cortes-Patino et al. 2016). We also found that the 
ESI stress-augmented motivation is specific to heroin, as 
the motivation for other natural rewards such as sucrose was 
unaffected (Fig. 2), which is consistent with other reports 
(Fosnocht et al. 2019). Interestingly, studies that use differ-
ent early life stressors have found that short-term (postnatal 
days 2–9) exposure to limited bedding and nesting promotes 
resilience to opioid addiction-related phenotypes in male rats 
(Ordones Sanchez et al. 2021). These controversial results 
highlight that stress-induced behavioral adaptations are sen-
sitive to different types of stressors and stress timing, and are 
dependent on species and sex.

It is noteworthy that in our experimental design, ESI 
female mice had higher total heroin intake during dose-
response training comparing to other groups (Fig. 4). As 
drug exposure-induced neuronal adaptations are associated 
with relapse propensity (Shaham et al. 2003), the increased 
heroin seeking in ESI female mice may be not only due 
to isolation stress-induced maladaptation, but also due to 
prior history of increased heroin exposure. Future studies are 
needed to tease apart these two different effects.

Early social isolation stress alters the neuronal 
activity during heroin abstinence

Adolescence is a critical developmental stage characterized 
by heightened sensitivity to stress. During this time, the 
maturation of brain network occurs, such as the glutamater-
gic and dopaminergic systems in the prefrontal cortex and 
mesolimbic regions (Spear 2000; Walker et al. 2019). There-
fore, chronic stress during this vulnerable period induces 
irreversible neural plasticity (Caruso et al. 2018; Hermes 
et al. 2011; Melendez et al. 2004; Yamamuro et al. 2018), 
which is associated with susceptibility for mental disorders 
including substance use disorders. For example, clinical 
imaging studies showed that children who were maltreated 
exhibited altered prefrontal cortex size/volume (Gratton and 
Sullivan 2005). Preclinical studies also show that ESI stress 
leads to prefrontal cortex dysfunction (by diminishing gluta-
matergic synaptic function (Hermes et al. 2011; Yamamuro 
et al. 2018)), as well as enhances VTA synaptic plasticity 
(by potentiating the NMDAR receptor-mediated glutamater-
gic transmission (Shepard and Nugent 2020; Whitaker et al. 
2013)). Maladaptations in these brain regions contribute to 
the susceptibility for relapse (Luscher and Malenka 2011; 
Nestler and Luscher 2019).

In our study, we found that neuronal activity (measured 
as c-Fos immunoactivity) in the prefrontal cortex (both PrL 
and IL) during forced abstinence following heroin self-
administration was decreased in ESI mice (Fig. 5). Human 
imaging studies have identified structural and functional 
deficits in the prefrontal cortex of subjects with opioid use 

disorder  (Goldstein and Volkow 2011). Preclinical studies 
also reported hypoactive pyramidal neurons in the PrL after 
long-term opioid abstinence (Anderson et al. 2020), and 
reduced neuronal activity marker zif268 expression in the 
IL after extinction training followed by heroin self-admin-
istration (Schmidt et al. 2005). Our results indicate that ESI 
stress lowers neuronal activity in the prefrontal cortex dur-
ing abstinence, which may potentiate prefrontal cortex dys-
function and contribute to increased relapse susceptibility. 
Future studies using methods with temporal resolution (such 
as in vivo electrophysiology or calcium imaging) will be 
needed to determine whether ESI stress-induced prefrontal 
cortex hypofunction during heroin abstinence is correlated 
with ESI-potentiated heroin seeking.

It is noteworthy that ESI stress also significantly 
decreased c-Fos expression in VTA regardless of sex 
(Fig. 5). It has been reported that early life stress alters the 
transcriptional modifications in VTA and induces suscep-
tibility to chronic stress (Pena et al. 2019). Additionally, 
chronic stress during early lifetime alters the morphology 
and synaptic transmission in VTA (Shepard and Nugent 
2020; Whitaker et al. 2013). These transcriptional and syn-
aptic modifications induced by early life stress may alter 
the neural activity (c-Fos expression) in VTA after heroin 
abstinence in ESI group (Fig. 5). Considering the role of 
VTA in opioid tolerance (Harvey et al. 2007; Russo et al. 
2007) and heroin seeking (Bossert et al. 2004), these ESI 
stress-induced maladaptations in VTA may contribute to  
ESI-induced heroin vulnerability.

Interestingly, we found that numbers of c-Fos-positive 
cells are selectively decreased in the NAc core in isolated 
females but not in males (Fig. 5), which is in concert with 
studies showing that early life stress exerts sex-specific 
impact in NAc (Chang et al. 2019; Ordones Sanchez et al. 
2021) and that stress induces distinct sex-dependent tran-
scriptome profiles in NAc (Hodes et al. 2015). For example, 
neonatal predator odor exposure upregulates the mu- and 
delta-opioid receptor mRNA levels in NAc from female rats 
(Chang et al. 2019); limited bedding and nesting induces 
distinct transcriptomic profiles in NAc from male and female 
rats (Ordones Sanchez et al. 2021). Moreover, studies have 
shown that social isolation stress disrupts sex-specific 
transcriptional response to cocaine in brain reward circuit 
including NAc (Walker et al. 2021). These studies together 
with our data suggest that NAc may play important roles in 
mediating the early life stress-induced sex-specific neural 
adaptations.

It is important to mention that genes like c-fos not only 
serve as markers of neuronal activation but also act as tran-
scription factors to regulate the expression of other genes. 
The reduced c-Fos expression in ESI mice in reward path-
way (Fig. 5) may potentially alter the molecular adapta-
tions induced by heroin abstinence. As abstinence-induced 
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neuroadaptations in reward pathway contribute to the incu-
bation of heroin craving (Fanous et al. 2012; Pickens et al. 
2011; Theberge et al. 2013; Theberge et al. 2012), future 
studies are needed to reveal the ESI-induced unique adapta-
tions contributing to ESI-potentiated heroin seeking.

Early social isolation stress alters the neuronal 
responses to heroin‑predictive context and cue, 
and decouples the correlation between neuronal 
activity and heroin seeking

Re-exposure to the environmental context and/or discrete 
cues that are associated with previous drug reward can 
trigger drug relapse in humans (Wikler 1973). Preclinical 
studies revealed that several key brain regions within the 
reward circuit are required for cue-induced heroin seeking, 
including the prefrontal cortex, NAc, and VTA (Bossert 
et al. 2016; Bossert et al. 2004; Bossert et al. 2011; Bossert 
et al. 2012; Rogers et al. 2008; Schmidt et al. 2005). For 
example, studies have found that neuronal activity (meas-
ured by c-Fos or zif268 immunoactivity) in the prefrontal 
cortex (Bossert et al. 2011; Bossert et al. 2012; Schmidt 
et al. 2005) and NAc (Schmidt et al. 2005) is upregulated 
after heroin-seeking test. Consistently, we also found that 
c-Fos immunoactivity in the PrL, IL, NAc core, and shell are 
all increased after context- and cue-induced heroin-seeking 
test (Table 1). We also found an overall positive correlation 
between c-Fos expression and heroin-seeking behavior in the 
IL and NAc core (Table 2). Our data together with previous 
publications suggest that neuronal activation in these brain 
areas is involved in heroin seeking.

Remarkably, the functional role of the PrL and IL in 
heroin seeking is inconsistent in literatures. Some studies 
suggest that inactivation of the PrL enhances cue-induced 
heroin reinstatement (Schmidt et al. 2005); other studies 
have found that inactivation of the PrL (Rogers et al. 2008) 
or IL (Bossert et al. 2011; Bossert et al. 2012; Rogers et al. 
2008) attenuates cue-, heroin-, or context-induced heroin 
reinstatement. In our study, we found a positive correlation 
between PrL c-Fos activation and heroin seeking in control 
mice (Fig. 7). However, ESI disrupted this positive cor-
relation, suggesting that ESI stress remodifies the role of 
PrL in heroin-seeking behavior. Additionally, we found an 
increased IL c-Fos immunoactivity after heroin-seeking test 
in ESI mice (Fig. 6), which agrees with previous studies 
showing that inactivation of the IL attenuates reinstatement 
of heroin seeking after extinction training (Bossert et al. 
2011; Bossert et al. 2012; Rogers et al. 2008). Future stud-
ies are needed to investigate the exact role of the PrL and IL 
in mediating ESI-potentiated heroin seeking.

Intriguingly, we found that ESI stress enhances c-Fos 
expression in the NAc core in male and female mice 
(Fig. 6). The NAc receives glutamatergic projections from 

the prefrontal cortex (PrL to NAc core, IL to NAc shell) and 
dopaminergic projections from the VTA, and plays critical 
roles in mediating cue-elicited drug seeking (Fuchs et al. 
2004; Ito et al. 2004). As ESI stress alters the neuronal activ-
ity during abstinence in the PrL and VTA (Fig. 5), the syn-
aptic transmission in the NAc core may be affected. These 
ESI-induced “predispositions” may alter the neuronal reac-
tivity to heroin-associated cues in the NAc core. Moreover, 
early life stress changes the NAc transcriptional response to 
cocaine (Walker et al. 2021) and heroin (Ordones Sanchez 
et al. 2021). These potentially altered synaptic transmission 
and transcriptional profiles in the NAc core may lead to the 
ESI-augmented c-Fos reactivity to heroin-associated cues. 
Although we speculate that NAc core overactivation may 
contribute to ESI-potentiated heroin seeking, the causative 
factors for ESI-potentiated heroin seeking as well as the 
underlying molecular mechanisms need further exploration.

Of note, we did not find CPU neuronal activation 
(Table  1) after heroin-seeking test as others reported 
(Schmidt et al. 2005). This inconsistency may be due to the 
distinctive experimental design (e.g., with or without extinc-
tion training, with or without a prior history of sucrose expo-
sure) and different neuronal activity markers that were used 
(c-Fos or zif268). Additionally, we did not find altered c-Fos 
expression in the VTA after heroin-seeking test (Table 1). 
Studies have shown that c-Fos activities in the VTA and 
CPU are increased after cocaine priming prior to cocaine-
seeking test (Neisewander et al. 2000) and that the VTA is 
involved in contextual cue-induced reinstatement of heroin 
seeking (Bossert et al. 2004). Future studies may be needed 
to investigate whether ESI stress alters VTA and CPU neu-
ronal reactivity profiles in heroin-primed seeking behaviors 
using both forced abstinence model and extinction-reinstate-
ment model.

Conclusion

Taken together, our data indicate that early social isolation 
stress causes an upward shift of heroin dose-response curve 
in female mice, enhances motivation for heroin (but not 
sucrose) in both males and females, and potentiates heroin 
seeking in both sexes. Meanwhile, early social isolation 
stress alters the neuronal activity during abstinence as well 
as neuronal reactivity in response to heroin-predictive cues 
in key brain reward pathway including the prefrontal cor-
tex (PrL and IL), NAc core, and VTA. Additionally, early 
social isolation stress decouples the association between 
heroin-seeking behavior and neuronal activation in PrL. 
These results provide neural mechanisms for early life stress-
induced vulnerability for opioid addiction, as well as provide 
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a clearer understanding of the neurobiological substrates of 
opioid addiction.
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