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Abstract
Background There is evidence that post-training exposure to nicotine, cocaine, and their conditioned stimuli (CS), enhance 
memory consolidation in rats. The present study assessed the effects of blocking noradrenergic and dopaminergic receptors 
on nicotine and cocaine unconditioned and conditioned memory modulation.
Methods Males Sprague–Dawley rats tested on the spontaneous object recognition task received post-sample exposure to 
0.4 mg/kg nicotine, 20 mg/kg cocaine, or their CSs, in combination with 5–10 mg/kg propranolol (PRO; beta-adrenergic 
antagonist) or 0.2–0.6 mg/kg pimozide (PIM; dopamine D2 receptor antagonist). The CSs were established by confining 
rats in a chamber (the CS +) after injections of 0.4 mg/kg nicotine, or 20 mg/kg cocaine, for 2 h and in another chamber (the 
CS −) after injections of vehicle, repeated over 10 days (5 drug/CS + and 5 vehicle/CS − pairings in total). Object memory 
was tested 72 h post sample in drug-free animals.
Results Co-administration of PRO or PIM blocked the memory-enhancing effects of post-training injections of nicotine, 
cocaine, and, importantly, exposure to their CSs.
Conclusions These data suggest that nicotine, cocaine as well as their conditioned stimuli share actions on overlapping 
noradrenergic and dopaminergic systems to modulate memory consolidation.
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Introduction

There is evidence that post-training administration of nico-
tine and cocaine enhance memory consolidation; a neural 
process of memory stabilization (McGaugh 2000; Melicher-
cik et al. 2012; Rkieh et al. 2014; White 2002). Recently, we 
also reported that conditioned stimuli (CSs) paired with the 
effects of nicotine and cocaine have very similar effects on 
memory consolidation. Thus, using the spontaneous object 
recognition task (OR), rats that were exposed to contextual 
nicotine or cocaine CSs following the sample phase of OR 
displayed enhanced object memory when tested 72 h later 
(Wolter et al. 2019). It is well known that drug-paired CSs 

generate emotional, cognitive, and physiological responses 
which promote drug-seeking and -taking behaviors (Dero-
che-Gamonet et al. 2003; Tessari et al. 2007). For exam-
ple, drug-free exposure to these CSs can enhance operant 
responding (Rescorla and Solomon 1975; Tunstall and 
Kearns 2017), attract animals to drug-associated contexts 
in place conditioning (for review, see Tzschentke 1998), 
and mimic other behavioral responses such as conditioned 
locomotion (Baidoo et al. 2020; Brown et al. 1992; Wolter 
et al. 2019, 2020). The current question of interest is whether 
drug CSs activate the same neurochemical systems of mem-
ory modulation that are directly stimulated by the drugs 
themselves.

One of these is the noradrenergic (NA) system. It is well 
known that emotional experiences are better remembered 
(Cahill et al. 1994; Kobayashi and Yasoshima 2001), and 
there is extensive experimental evidence in various species 
that fear, emotional arousal, and epinephrine enhance mem-
ory consolidation (Holahan and White 2002, 2004; Liang 
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et al. 1990; McGaugh 2013) and that their effects can be 
reversed by propranolol (PRO), a beta-adrenergic antago-
nist (Cahill et al. 2000; McGaugh 2013; Roozendaal et al. 
2008; Wolter et al. 2020). Moreover, nicotine and cocaine 
elevate levels of NA in several regions involved in memory 
functions such as the hippocampus, amygdala, striatum, and 
the nucleus accumbens (Arqueros et al. 1978; Brazell et al. 
1991; Florin et al. 1994; Fu et al. 2003; Mitchell et al. 1989; 
Verheij et al. 2014). Although the neurochemical systems 
activated by nicotine or cocaine CSs during memory con-
solidation have not been systemically explored yet, there is 
evidence that the basolateral amygdala (BLA) is required for 
the establishment and expression of responses to drug CSs 
(Hsu et al. 2002) and that BLA NA mediates the facilitation 
of memory consolidation by fear CSs (Goode et al. 2016; 
Holahan and White 2002, 2004).

Dopamine (DA) is also likely to be involved in condi-
tioned modulation of memory consolidation. A number 
of studies have found that both D1-like (D1 and D5) and 
D2-like (D2, D3, and D4) receptors (Mishra et al. 2018) 
modulate memory encoding and consolidation (Castellano 
et al. 1994; de Lima et al. 2011; Keshavarzian et al. 2018; 
Rossato et al. 2013; Yamasaki and Takeuchi 2017). Further-
more, stimuli known to enhance DA, such as exposure to 
novelty, optogenetic stimulation of ventral tegmental area 
(VTA) DA neurons, and infusions of DA agonists into the 
amygdala and medial pre-frontal cortex, all enhance memory 
consolidation (Duszkiewicz et al. 2019; Kim et al. 2012; 
Lisman and Grace 2005; Rossato et al. 2013; Tang et al. 
2020). Finally, both nicotine and cocaine enhance DA levels 
in limbic structures involved in memory formation, although 
via different mechanisms (Bocklisch et al. 2013; Dani and 
Bertrand 2007; Hadjiconstantinou and Neff 2011; Rossi 
et al. 2005).

Therefore, the current study explored the roles of NA and 
DA receptors in the unconditioned and conditioned effects of 
cocaine and nicotine on consolidation of object recognition 
(OR) memory. OR is based on the natural tendency of rats to 
explore novel objects (Ennaceur and Delacour 1988; Winters 
et al. 2004), and it was selected because of our previous dem-
onstration that object memory 72 h after sample exposure 
is significantly improved by post-training administration of 
cocaine (Rkieh et al. 2014) and other drugs (Baidoo et al. 
2020; Wolter et al. 2019, 2020). PRO was selected because 
the beta-noradrenergic receptors have been implicated in 
memory consolidation by various laboratories (Cahill et al. 
1994, 2000; Villain et al. 2016; Wolter et al. 2020). Also, 
our group has demonstrated that PRO blocked the enhance-
ment of object memory consolidation induced by exposure 
to a heroin-paired CS (Wolter et al., 2020). Finally, we began 
our investigation of DA receptors involvement with the D2 
receptor antagonist pimozide (PIM) because D2-like recep-
tors have been implicated in the reinforcing effects of drugs 

on behavior, conditioned drug responses, and drug’s effects on 
learning and memory (Beninger and Phillips 1980; Castellano 
et al. 1994; Horvitz and Ettenberg 1991; Introini-Collison and 
Baratti 1986; White and Major 1978).

Materials and Methods

Subjects

A total of 113 male Sprague–Dawley rats (Charles 
River, Quebec, Canada) weighing between 225 and 
250  g at the beginning of the experiments were indi-
vidually housed in standard rat cages (polycarbonate; 
50.5 cm × 48.5 cm × 20 cm) with standard environmental 
enrichment, and were maintained on a reverse light–dark 
schedule (lights off at 07:00; on at 19:00). All testing and 
injections were performed during their dark period. Rats had 
access to ~ 25 g per day of standard rat chow, and water was 
available ad libitum in home cages. All procedures adhered 
to the guidelines of the Canadian Council on Animal Care 
and were approved by the University of Guelph Animal Care 
Committee.

Apparatus

Conditioning chambers

The chambers (30 cm × 40 cm × 26 cm) used for contextual 
CS conditioning were made of semi-transparent Plexiglas 
(University of Guelph, ON, Canada), differed in visual (half 
of the chambers had vertical black and white stripes and the 
other half had a checkered pattern) and tactual (half of the 
chambers included a ceramic tile on the floor) cues, and were 
covered by black wire mesh to enable automatic video track-
ing (EthoVision v11.5; Noldus, The Netherlands).

Spontaneous object recognition (OR) task

This memory task is based on the natural tendency of rats to 
explore novel objects (Ennaceur and Delacour 1988; Winters 
et al. 2004) and was selected because of our previous demon-
stration that recognition of objects 72 h after sample exposure 
is improved by post-sample cocaine, nicotine, or exposure 
to cocaine- or nicotine-contextual CSs (Wolter et al. 2019). 
The Y-apparatus used for OR has been described previously 
by Winters et al. (2004). The objects used were of varying 
sizes, tactile qualities, visual qualities, shape, and height. On 
each object recognition trial, the rats experienced a new set 
of never-before-seen objects.
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Procedures

Experiment 1

A group of 12 rats was used to assess the effect of immedi-
ate post-training 0.4 mg/kg nicotine and co-administration  
with 0, 5 or 10 mg/kg PRO. The rats were first habituated 
to the Y-apparatus for 5 min on two consecutive days 24 h 
prior to testing. Each OR trial consisted of two phases: a 
sample phase and a choice phase, separated by a 72-h reten-
tion interval. This retention interval was chosen as a “sub-
optimal” condition in which drug-naïve rats do not express a 
memory (Melichercik et al. 2012; Rkieh et al. 2014; Wolter 
et al. 2019, 2020).

During the sample phase, two identical novel objects were 
placed into the Y-apparatus at the end of each arm. The rats 
were placed in the start box, and the guillotine door was 
opened. Exploration during the sample phase was restricted 
to 25 s of total exploration (sum of exploration times of 
both objects) or if 180 s had elapsed, whichever came first. 
If animals failed to explore objects during the sample phase, 
they were removed from the experiment. Object exploration 
was defined as directing the nose to the object at < 2 cm and/
or touching the object with the nose. The rats were imme-
diately injected after the conclusion of the sample phase 
with vehicle, 0.4 mg/kg nicotine or nicotine combined with 
5 or 10 mg/kg PRO. All animals were tested at each dose 
of nicotine and PRO co-administration, and the order of 
doses was counterbalanced using a Latin Square Design. 
Following the 72-h retention interval, the rats experienced 
the choice phase; the Y-apparatus contained a copy of the 
original sample object in one arm and a novel object in the 
other. The choice pairs, the novel side, as well as the desig-
nated sample and novel objects were counterbalanced. Here, 
it should be noted that a “delay” control group exposed to 
nicotine, cocaine, or their CSs 6 h after the sample phase was 
not included because these data have already been published 
in Wolter et al. (2019).

A separate group of 16 rats was used to assess the effect 
of 10 mg/kg PRO on post-training exposure to compart-
ments previously paired with 0.4 mg/kg nicotine in the 
CS + . All rats were habituated to two conditioning cham-
bers (vehicle in the CS − and 0.4 mg/kg nicotine in the CS +) 
for 30 min, 24 h prior to the beginning of conditioning. At 
the beginning of conditioning, rats received either vehicle 
or 0.4 mg/kg nicotine and were immediately placed in the 
CS − or CS + chamber for 2 h, respectively. The chambers 
of the apparatus used as CS − and CS + were counterbal-
anced across rats. All rats received a total of 5 condition-
ing sessions in the CS − and 5 conditioning sessions in the 
CS + , alternating over 10 successive days. The rats were 
also habituated to the Y-apparatus on days 9 and 10 of con-
ditioning and were exposed to the sample phase prior to the 

first test of conditioned locomotion on day 11. Conditioned 
locomotion was assessed on four separate tests. The first 
test occurred the day after the last conditioning session and 
half of the animals were placed in the CS − and the other 
half in the CS + . The second test occurred 72 h later and 
the same animals were tested in the alternate chamber. The 
final two tests followed the same testing conditions, but the 
rats were injected with 10 mg/kg PRO prior to exposure to 
the CS − and the CS + .

Experiment 2

A group of eight rats was used to assess the effect of imme-
diate post-training 0.4 mg/kg nicotine and co-administration 
with 0, 0.2 or 0.6 mg/kg PIM on object recognition memory. 
The OR experimental procedures used in this experiment 
were the same as in experiment 1. Another group of 12 rats 
was included in this experiment to assess the effect of imme-
diate post-training 0.2 mg/kg PIM on OR memory using a 
24-h retention interval. A 24-h retention interval has been 
established as a sufficiently short interval at which normal 
rats perform OR successfully when tested in a Y-apparatus 
(Winters et al. 2004, 2008; Wolter et al. 2020). Therefore, 
this group was included as a control to verify whether post-
training PIM could block object memory. An assessment 
of PRO alone using a 24-h delay was not included in this 
study because it was tested by Wolter et al. (2020) and was 
not found to impact OR memory.

A separate group of 12 rats was used to assess the effect 
of immediate 0.2 mg/kg PIM on post-training exposure to 
the CS + paired with 0.4 mg/kg nicotine, as described in 
experiment 1.

Experiment 3

A group of 12 rats was used to assess the effect of immedi-
ate post-training 20 mg/kg cocaine and co-administration 
with 0, 5 or 10 mg/kg PRO. The OR experimental proce-
dures used in this experiment were the same as in experi-
ment 1. A separate group of 12 rats was used to assess 
the effect of immediate 10 mg/kg PRO on post-training 
exposure to the CS + paired with 20 mg/kg cocaine as in 
experiment 1.

Experiment 4

A group of 17 rats was used to assess the effect of immediate 
post-training 20 mg/kg cocaine and co-administration with 
0, 0.2 and 0.6 mg/kg PIM using a 72-h retention interval. 
The OR experimental procedures used in this experiment 
were the same as in experiment 1.
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A separate group of 12 rats was used to assess the effect 
of immediate 0.2 mg/kg PIM on post-training exposure to 
the CS + paired with 20 mg/kg cocaine as in experiment 1.

Drugs

All drugs were injected intraperitoneally (IP). Vehicle (ster-
ile 0.9% saline or 6 mg/ml tartaric acid) was administered 
at 1 ml/kg. Nicotine hydrogen tartrate salt at 0.4 mg/kg 
(Sigma) and cocaine hydrochloride at 20 mg/kg (Dumex, 
Toronto, ON, Canada) were dissolved in sterile 0.9% physi-
ological saline. The doses of these two drugs were selected 
because of their known stimulatory properties (Zavala et al. 
2008) and their facilitatory effects on object recognition 
memory consolidation (Melichercik et al. 2012; Rkieh et al. 
2014). Propranolol hydrochloride (PRO) at 5 and 10 mg/kg 
(Sigma Aldrich) was dissolved in 0.9% physiological saline. 
The range of doses of PRO were selected on the basis of 
previous memory consolidation studies (Cahill et al. 1994; 
Lee and Ma 1995; McGaugh 2004). Pimozide (PIM) at 0.2 
and 0.6 mg/kg was dissolved in 6 mg/ml tartaric acid and 
injected at a volume of 1 ml/kg. This range of doses was 
selected on the basis of place conditioning and memory 
consolidation studies (Blackburn et al. 1987; Ichihara et al. 
1989; White and Major 1978).

Data analysis

The discrimination ratio (DR) is a ratio of object prefer-
ence, where a score of 0 means the rat shows no preference 
between the two objects, a positive score indicates prefer-
ence of the novel object, and a negative score indicates pref-
erence for the familiar object (Eq. (1)):

A sample DR was also calculated for the sample phase 
(Eq. (2)):

to rule out exploration preferences in the Y-apparatus. Total 
object exploration was used as a control to rule out non-spe-
cific drug effects on object exploration. The choice DR and 
total object exploration in each phase were analyzed using 
a repeated measures one-way ANOVA and Student–New-
man–Keuls post hoc analyses to probe for significant main 
effects within choice DRs for the acute cocaine and nicotine 
experiments. Paired sample t tests were performed to assess 
the choice DRs within the nicotine and cocaine contextual 

(1)Choice DR =
1minnovel exploration time − 1minfamiliar exploration time

(total novel exploration time + total familiar exploration time)

(2)

CS experiments. In addition, paired-sample t tests were 
used to compare sample and choice DRs in each condition 
of an experiment, a DR of 0 in the sample phase is expected 
when two identical objects are equally novel. Hence, a sig-
nificant difference between the sample and choice phase 
DR indicates discrimination between the familiar and novel 
objects in the choice phase and is interpreted as an intact 
memory. All statistical analyses were performed using 
SigmaPlot (v.12.5; Systat Software), with an � = 0.05. A 
minimum exploration time was not employed in these cal-
culations. The exact values of non-significant analyses are 
not reported.

Results

Experiment 1

Both 5 and 10 mg/kg PRO blocked the memory-enhancing 
effect of 0.4 mg/kg nicotine on object recognition memory. 
Figure 1A represents mean (SEM) DR calculated during 
the sample and choice phases of OR following immediate 
post-sample injections of 0.4 mg/kg nicotine co-adminis-
tered with 0, 5, or 10 mg/kg PRO. The ANOVA was sig-
nificant [F(2,35) = 5.09, P < 0.05] and post hoc compari-
sons indicated that when rats were injected with 0.4 mg/
kg nicotine and 0 mg/kg PRO, their choice DRs were sig-
nificantly higher than when nicotine was co-administered 
with 5 or 10 mg/kg PRO. This finding was confirmed by 
the planned comparisons between sample and choice DRs, 
which were significant only when rats received 0 mg/kg PRO 
[t(11) = 3.45, P < 0.01]. The analysis of total object explora-
tion was non-significant (see Table 1).

PRO at 10 mg/kg also blocked the effects of the CS + pre-
viously paired with 0.4 mg/kg nicotine on object recognition 
memory. Figure 1B represents mean (SEM) discrimination 
ratio calculated during the sample and choice phase of OR 
following post-sample confinement to the nicotine CS + . 
The t test on choice DRs was significant [t(15) =  − 3.95, 
P < 0.01] indicating that the mean choice DR was higher 
when the rats were injected with 0  mg/kg PRO than 
when they were injected with 10  mg/kg PRO. Planned 

Sample DR =
(exploration in arm containing novel object at choice) − (exploration in the arm containing the familiar object at choice)

(total exploration in novel and familiar arms)
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comparisons between the sample and choice phase DRs 
were significant [t(15) =  − 3.00, P < 0.01] only when rats 
were injected with 0 mg/kg PRO. The analysis of total object 
exploration was non-significant (see Table 1).

Experiment 2

Both 0.2 and 0.6 mg/kg PIM blocked the effects of 0.4 mg/
kg nicotine on object recognition memory. Figure 2A repre-
sents mean (SEM) discrimination ratio calculated during the 
sample and choice phases of OR following immediate post-
sample injections of 0.4 mg/kg nicotine co-administered 
with 0, 0.2, or 0.6 mg/kg PIM. The ANOVA of the choice 
DRs was significant [F(2,23) = 3.90, P < 0.05] and post hoc 
comparisons indicated that rats had higher choice DRs when 
they received 0 in comparison to 0.2 or 0.6 mg/kg PIM. 
Furthermore, planned comparisons between the sample and 
choice phase DRs were significant [t(7) =  − 3.16, P < 0.05] 
only when rats received 0 mg/kg PIM. The analysis of total 
object exploration was non-significant (data not shown).

PIM at 0.2 mg/kg also blocked the effect of the CS + pre-
viously paired with 0.4 mg/kg nicotine on object recognition 
memory. Figure 2B represents mean (SEM) discrimination 
ratio calculated during the sample and choice phases of 
OR following post-sample confinement into the CS + . The 
analysis was significant [t(11) = 4.93, P < 0.01] indicating 
that choice DRs were higher when rats were injected with 
0 mg/kg PIM compared to 0.2 mg/kg PIM prior to confine-
ment into the CS + . Further, planned comparisons between 
sample and choice DRs were significant [t(11) =  − 3.01, 

P < 0.05] only when rats were injected with 0 mg/kg PIM. 
The analysis of total object exploration was significant 
[t(11) = 5.43, P < 0.01] during the choice phase indicating 
that rats injected with 0.2 mg/kg PIM in the CS + explored 
objects less than when they were injected with 0 mg/kg PIM 
(see Table 1).

The acute post-sample administration of 0.2 mg/kg PIM 
did not alter 24-h DRs. The comparison between sample and 
choice DRs was significant [t(9) =  − 3.61, P < 0.01] indicat-
ing that when rats were injected with 0.2 mg/kg pimozide 
post-training and assessed after a 24-h retention interval 
(n = 12), their choice DRs (M = 0.42, SEM = 0.08) were 
higher than their sample DRs (M = 0.05, SEM = 0.14).

Experiment 3

Both 5 and 10 mg/kg PRO blocked the effect of 20 mg/kg 
cocaine on object recognition memory. Figure 3A repre-
sents mean (SEM) discrimination ratio calculated during 
the sample and choice phases of OR following immediate 
post-sample injections of 20 mg/kg cocaine co-administered 
with 0, 5, or 10 mg/kg PRO. The ANOVA was significant 
[F(2,35) = 14.01, P < 0.01] and post hoc comparisons 
further indicated that rats co-administered with 0 mg/kg 
PRO had higher choice DRs than when they were injected 
with 5 or 10 mg/kg PRO. Further, planned comparisons 
between the sample and choice phase DRs were significant 
[t(11) =  − 6.11, P < 0.01] only when rats were injected with 
0 mg/kg PRO. The analysis of total object exploration was 
non-significant (see Table 2).

Fig. 1  A Mean (SEM) discrimination ratios from the sample and 
choice phases by the same rats (n = 12) following post-sample injec-
tions of 0.4 mg/kg nicotine co-administered with 0, 5, or 10 mg/kg 
PRO. The * denotes a significant difference compared to 0  mg/kg 
PRO choice phase discrimination ratio. The # denotes a significant 
difference of the choice phase DR compared to sample DR within 

dose. B Mean (SEM) discrimination ratios from the sample and 
choice phases of OR displayed by the same rats (n = 16) following 
injections of 0  mg/kg PRO or 10  mg/kg PRO prior to confinement 
to the CS + paired with 0.4 mg/kg nicotine. The * denotes a signifi-
cant difference compared to 0 mg/kg PRO choice phase DR. The # 
denotes a significant difference compared to the sample phase DR

2621Psychopharmacology (2021) 238:2617–2628
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PRO at 10 mg/kg also blocked the effects of the CS + pre-
viously paired with 20 mg/kg cocaine on object recognition 
memory. Figure 3B represents mean (SEM) discrimination 

ratio calculated during the sample and choice phase of OR 
following post-sample confinement in the CS + . Although 
the paired-samples t test was non-significant, planned 

Table 1  Mean (SEM) 
sample and choice total 
object exploration (TOE) in 
experiments 1 and 2

Mean (SEM) sample and choice total object exploration (TOE) by the same rats (within-subject) injected 
with 0.4 mg/kg nicotine co-administered with 0, 5, or 10 mg/kg PRO immediately post-training
Mean (SEM) sample and choice TOE by rats (within-subject) exposed to either 0 or 10 mg/kg PRO imme-
diately prior to confinement into the CS + previously paired with 0.4 mg/kg nicotine
Mean (SEM) sample and choice TOE by rats (within-subject) injected with 0.4 mg/kg nicotine co-adminis-
tered with 0, 0.2, or 0.6 mg/kg PIM immediately
Mean (SEM) sample and choice TOE by rats (within-subject) injected with 0 or 0.2 mg/kg PIM immedi-
ately prior to confinement into the CS + previously paired with 0.4 mg/kg nicotine

Sample mean TOE 
(s) (SEM)

sig Choice mean TOE 
(s) (SEM)

sig

PRO
(mg/kg)

0.4 mg/kg Nic 0 17.75 (1.06) 16.82 (2.45)
5 19.27 (1.58) ns 16.21 (2.45) ns
10 17.75 (2.12) 16.03 (1.97)

Nic CS + 0 24.31 (0.48) 21.02 (1.84)
ns ns

10 24.87 (0.17) 20.95 (1.66)
PIM
(mg/kg)

0.4 mg/kg Nic 0 23.04 (1.50) 12.12 (1.26)
0.2 20.59 (1.87) ns 11.87 (1.91) ns
0.6 21.52 (1.64) 12.99 (1.78)

Nic CS + 0 24.22 (0.57) 20.93 (2.46)
ns P < 0.01

0.2 22.12 (1.57) 11.72 (1.61)

Fig. 2  A Mean (SEM) discrimination ratios from the sample and 
choice phases by the same rats (n = 8) following post-sample injec-
tions of 0.4 mg/kg nicotine co-administered with 0, 0.2, or 0.6 mg/
kg PIM. The # denotes a significant difference compared to sample 
DR within dose. B Mean (SEM) discrimination ratios from the sam-
ple and choice phases of OR displayed by the same rats (n = 12) fol-

lowing injections of 0 or 0.2 mg/kg PIM prior to confinement into the 
CS + paired with 0.4 mg/kg nicotine. The * denotes a significant dif-
ference compared to 0 mg/kg PIM choice phase DR. The # denotes a 
significant difference of the choice phase DR compared to the sample 
phase DR
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comparisons between the sample and choice phase DRs 
were significant [t(11) =  − 3.16, P < 0.01] only when rats 

were injected with 0 mg/kg PRO. The analysis of total object 
exploration was non-significant (see Table 2).

Fig. 3  A Mean (SEM) discrimination ratios from the sample and 
choice phases by the same rats (n = 12) following post-sample injec-
tions of 20  mg/kg cocaine co-administered with 0, 5, or 10  mg/
kg PRO. The * denotes a significant difference compared to 0  mg/
kg PRO choice phase discrimination ratio. The # denotes a sig-
nificant difference of the choice phase DR compared to sample DR 

within dose. B Mean (SEM) discrimination ratios from the sample 
and choice phases of OR displayed by the same rats (n = 12) fol-
lowing injections of 0 or 10 mg/kg PRO prior to confinement to the 
CS + paired with 20 mg/kg cocaine. The # denotes a significant differ-
ence of the choice phase DR compared to the sample phase DR

Table 2  Mean (SEM) 
sample and choice total 
object exploration (TOE) in 
experiments 3 and 4

Mean (SEM) sample and choice total object exploration (TOE) by rats (within-subject) injected with 
20 mg/kg cocaine co-administered with 0, 5, or 10 mg/kg PRO immediately post-training
Mean (SEM) sample and choice TOE by rats (within-subject) exposed to either 0 or 10 mg/kg PRO imme-
diately prior to confinement into the CS + paired with 20 mg/kg cocaine
Mean (SEM) sample and choice TOE by rats (within-subject) injected with 20 mg/kg cocaine co-adminis-
tered with 0, 0.2, or 0.6 mg/kg PIM immediately post-training
Mean (SEM) sample and choice TOE by rats (within-subject) injected with 0 or 0.2 mg/kg PIM immedi-
ately prior to confinement into the CS + paired with 20 mg/kg cocaine

Sample mean TOE 
(s) (SEM)

sig Choice mean TOE 
(s) (SEM)

sig

PRO
(mg/kg)

20 mg/kg Coc 0 22.98 (0.77) 16.07 (1.60)
5 22.21 (1.38) ns 16.66 (2.02) ns
10 23.47 (0.77) 15.23 (1.45)

Coc CS + 0 24.64 (0.42) 25.32 (1.94)
ns ns

10 23.89 (0.63) 23.31 (2.97)
PIM
(mg/kg)

20 mg/kg Coc 0 16.75 (1.86) 13.16 (1.41)
0.2 18.62 (1.60) ns 11.52 (1.60) ns
0.6 18.85 (1.76) 12.91 (1.14)

Coc CS + 0 19.87 (1.78) 20.67 (2.38)
ns P < 0.01

0.2 23.85 (0.57) 12.32 (1.41)
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Experiment 4

Both 0.2 and 0.6 mg/kg PIM blocked the memory-enhancing 
effect of 20 mg/kg cocaine on object recognition memory. 
Figure 4A  represents mean (SEM) discrimination ratio 
calculated during the sample and choice phases of OR 
following immediate post-sample injections of 20 mg/kg 
cocaine co-administered with 0, 0.2, or 0.6 mg/kg PIM. The 
ANOVA was significant [F(2,32) = 14.89, P < 0.01] and post 
hoc comparisons indicated that rats injected with 0 mg/kg 
PIM had higher choice DRs compared to when the same 
rats were co-administered with 0.2 or 0.6 mg/kg PIM post-
training. Furthermore, planned comparisons between sample 
and choice DRs indicated that rats had significantly higher 
[t(11) =  − 3.16, P < 0.01] choice DRs compared to sample 
when they were injected with 0 mg/kg PIM. The analysis of 
total object exploration was non-significant (see Table 2).

PIM at 0.2 mg/kg also blocked the effects of the cocaine 
CS + on object recognition memory. Figure 4B represents 
the mean (SEM) discrimination ratio calculated during 
the sample and choice phases of OR following immediate 
post-sample confinement into the CS + . The t test of choice 
DRs was significant [t(11) = 2.77, P < 0.05] indicating that 
choice DRs were higher when rats were injected with 0 mg/
kg PIM than when the same rats were injected with 0.2 mg/
kg PIM. Further, planned comparisons between the sam-
ple and choice phase DRs were significant [t(11) =  − 3.71, 
P < 0.01] indicating that when rats were injected with 0 mg/
kg PIM prior to confinement in the CS + their choice DR 
was higher than the sample DR. The analysis of total object 

exploration was significant [t(11) = 3.32, P < 0.01] during 
the choice phase indicating that rats explored objects signifi-
cantly less when they had been injected with 0.2 mg/kg PIM 
prior to confinement into the CS + (see Table 2).

Discussion

The present study assessed the effects of blocking noradr-
energic and dopaminergic receptors on nicotine and cocaine 
unconditioned and conditioned memory modulation. The 
nicotine and cocaine contextual conditioned stimuli (CS +) 
were established by confining rats for 2 h in a chamber after 
injections of 0.4 mg/kg nicotine or 20 mg/kg cocaine. The 
effects on memory consolidation were evaluated by inject-
ing rats with either nicotine or cocaine, or by exposing them 
to the drug CSs, post-sample during the object recognition 
task. It was found that co-administration of propranolol 
(PRO) and pimozide (PIM) blocked the enhancement of 
discrimination ratios induced by post-sample administra-
tion of nicotine, cocaine, or exposure to their contextual 
CSs. These data suggest that the memory-enhancing effects 
of nicotine and cocaine and their conditioned stimuli share 
actions on adrenergic and dopaminergic systems of memory 
consolidation.

The first set of experiments replicated the findings 
reported by Wolter et al. (2019) in which nicotine, cocaine, 
and exposure to their contextual CSs enhanced choice phase 
discrimination ratios in rats. Importantly, these are within-
subjects experiments which control for non-specific effects 

Fig. 4  A Mean (SEM) discrimination ratios from the sample and 
choice phases by the same rats (n = 17) following post-sample injec-
tions of 20  mg/kg cocaine co-administered with 0, 0.2, or 0.6  mg/
kg PIM. The # denotes a significant difference compared to sample 
DR within dose. B Mean (SEM) discrimination ratios from the sam-
ple and choice phases of OR displayed by the same rats (n = 12) fol-

lowing injections of 0 or 0.2 mg/kg PIM prior to confinement to the 
CS + previously paired with 20 mg/kg cocaine. The * denotes a sig-
nificant difference compared to 0 mg/kg PIM choice phase DR. The 
# denotes a significant difference of the choice phase DR compared to 
the sample phase DR
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that the drugs, or the exposure to the drug CSs, may have 
on memory. Importantly, the memory-enhancing effects of 
nicotine, cocaine, and their CSs, were all blocked by post-
sample injections of the beta-NA receptor antagonist PRO. 
This result is interpreted as a blockade of the enhancement 
of memory consolidation by cocaine, nicotine, and their con-
textual CSs, as we have previously reported that this dose of 
PRO has no effect on 24-h retention intervals (Wolter et al. 
2020). However, it should also be acknowledged that other 
studies have found different results with PRO that may be 
dependent on the dose, injection method or infusion site, 
test conditions as well as testing apparatus (open field vs. 
Y-apparatus) (Roozendaal et al. 2008; Winters et al. 2004).

The second set of experiments explored the role of the 
dopamine D2 receptor using PIM. Similar to the results 
above, PIM blocked the enhancement of choice DRs induced 
by post-training nicotine, cocaine, and exposure to their 
contextual CSs. Interestingly, PIM also altered total object 
exploration of choice discrimination ratios in the CS + (see 
Tables 1 and 2); however, it is unlikely that this reduction 
affected memory because post-training injections of PIM did 
not alter choice DRs when evaluated with a 24-h retention 
interval, indicating that the post-training effect of PIM were 
selective to unconditioned and conditioned enhancement of 
memory consolidation.

Although our experiments did not explore the central 
site of action of PRO and PIM in modulating nicotine, 
cocaine, and their CSs on memory consolidation, there 
is substantial evidence pointing to an involvement of the 
BLA, the hippocampus (HPC), and the perirhinal cortex 
(PRh). In fact, both nicotine and cocaine self-adminis-
tration enhance NA and DA in the BLA (Di Ciano and 
Everitt 2004; Fu et al. 2003), and exposure to nicotine and 
cocaine CSs have very similar effects (Fotros et al. 2013; 
Khaled et al. 2014; Sharp 2019). Furthermore, the BLA 
is involved in memory enhancement induced by nicotine 
and cocaine (Barros et al. 2005; Cestari et al. 1996), NA 
and DA agonists and antagonists infused into the BLA 
impact memory consolidation (Castellano et  al. 1991; 
Ferry et al. 1999; Gibbs et al. 2010; Heath et al. 2015; 
McGaugh and Roozendaal 2002; Roozendaal et al. 1999, 
2002; Stern and Alberini 2013), and the BLA is involved 
in memory enhancement by emotional CSs via NA mech-
anisms (Goode et al. 2016; Holahan and White 2004). 
The HPC is known to be involved in the consolidation 
of drug-related memories (Kutlu and Gould 2016; Meli-
chercik et al. 2012) through afferents from the NA locus 
coeruleus and mesolimbic DA system (Hansen 2017; Koch 
et al. 2011; Lisman and Grace 2005; Lodge and Grace 
2008), and injections of nicotine or cocaine enhance lev-
els of NA and DA in the HPC (Fitzgerald 2013; Fotros 
et al. 2013; Kramar et al. 2014; Placzek et al. 2009; Rossi 
et al. 2005). Moreover, inactivation of the HPC impairs 

responses to drug CSs (Atkins et al. 2012; Fuchs et al. 
2005; Kutlu and Gould 2016). Finally, the PRh is required 
for the consolidation of object memories (Winters et al. 
2004) and although cholinergic and glutamatergic systems 
regulate PRh-dependent memories (Brophey and Raptis 
2003; Melichercik et al. 2012; Winters and Bussey 2005), 
modulations of its efferents from the mesolimbic system, 
locus coeruleus, and the BLA have also been reported to 
alter memory (Albasser et al. 2015; Balderas et al. 2013; 
Holmes et al. 2013; Laing and Bashir 2014).

In conclusion, this study expands upon the hypothesis 
of White (1996) and the findings of Wolter et al. (2019) 
suggesting that psychomotor stimulants such as cocaine 
and nicotine share overlapping neurochemical systems 
with their contextual CSs to enhance memory consolida-
tion. Although this study only employed two relatively non-
selective compounds at a limited range of doses, and did not 
investigate central sites of action, it does provide evidence 
to justify exploration of how visual/tactual/olfactory condi-
tioned environmental stimuli gain the ability to mimic the 
actions of pharmacological stimuli on cognitive processes. 
Furthermore, this data suggest the possibility that drug CSs 
may not only perpetuate addiction-like behaviors by caus-
ing drug-like or drug-opposite responses (Stewart et al. 
1984), but they also can have cognitive effects on memory 
that could play a role in perpetuating the maintenance addic-
tive behaviors by enhancing the consolidation of memories 
linked to drug-seeking and -taking.
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