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Abstract
Rationale A growing body of research suggests that substance use disorder (SUD) may be characterized as disorders of decision
making. However, drug choice studies assessing drug-associated decision making often lack more complex and dynamic
conditions that better approximate contexts outside the laboratory and may lead to incomplete conclusions regarding the nature
of drug-associated value.
Objectives The current study assessed isomorphic (choice between identical food options) and allomorphic (choice between
remifentanil [REMI] and food) choice across dynamically changing reward probabilities, magnitudes, and differentially reward-
predictive stimuli in male rats to better understand determinants of drug value. Choice data were analyzed at aggregate and
choice-by-choice levels using quantitative matching and reinforcement learning (RL) models, respectively.
Results Reductions in reward probability or magnitude independently reduced preferences for food and REMI commodities.
Inclusion of reward-predictive cues significantly increased preference for food and REMI rewards. Model comparisons revealed
that reward-predictive stimuli significantly altered the economic substitutability of food and REMI rewards at both levels of
analysis. Furthermore, model comparisons supported the reformulation of reward value updating in RLmodels from independent
terms to a shared, relative term, more akin to matching models.
Conclusions The results indicate that value-based quantitative choice models can accurately capture choice determinants within
complex decision-making contexts and corroborate drug choice as a multidimensional valuation process. Collectively, the
present study indicates commonalities in decision-making for drug and non-drug rewards, validates the use of economic-
based SUD therapies (e.g., contingency management), and implicates the neurobehavioral processes underlying drug-
associated decision-making as a potential avenue for future SUD treatment.
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Introduction

Growing evidence suggests substance use disorder (SUD),
including opioid use disorder, consists, at least in part, of
disordered decision-making mechanisms (Ahmed 2005;
Beckmann et al. 2019; Davis et al. 2016; Heather 2017;
Hogarth 2020; Hogarth and Field 2020; Moeller and Stoops
2015). Thus, this growing evidence implicates decision-

making processes as potential therapeutic targets for SUD.
Relatedly, to study the neurobehavioral mechanisms of deci-
sion-making, choice experiments have long been the standard
protocol. Recent studies have attempted to improve the valid-
ity of choice experiments as models of real-world decision
making via the implementation of dynamic decision-making
procedures (Corrado et al. 2009). Within these dynamic con-
texts, the contingencies associated with each choice option
change unpredictably and require the constant engagement
of decision-making processes over a large number of choice
opportunities. The rich datasets produced by dynamic proce-
dures then afford formalization of decision-making processes
through quantitative choice modeling. For instance, the rela-
tions between reward-associated brain signals to specific pre-
dictions of reinforcement learning (RL; Glimcher 2011) and
matching models of choice (Sugrue et al. 2004) are now
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prominent relationships founded upon quantitative modeling
of choice dynamics, highlighting the benefits of a modeling
approach in choice studies. Importantly, these results provided
evidence for the existence of a biological architecture that may
construct choice preferences consistent with quantitative
choice models that are based primarily on behavioral data.

Despite the heavy use of dynamic choice procedures
coupled with formal quantitative modeling in decision sci-
ences, these methodologies are largely absent in the SUD
literature, including studies of drug choice. Yet, given the
successful history of the approach in improving our under-
standing of decision-making, the application of such method-
ology may help inform mechanisms of drug preference while
also improving the translational value of preclinical drug
choice studies (Ahmed 2010; Banks et al. 2015). For instance,
quantitative modeling of choice data can help index the effects
of drug exposure to specific facets of decision-making. As an
example, Eq. 1 shows a proportional form of generalized
matching that describes choices between commodities vary-
ing in both probability (or rate) and amount (or magnitude).

BA

BA þ BB
¼ 1

1þ RA
RB

� �SR
* MA

MB

� �SM
ð1Þ

In Eq. 1, choices for a commodity, such as an opioid drug
reward like remifentanil (REMI; BA), are determined by the
ratio of REMI reward probability (R) and magnitude (M) rel-
ative to other available commodities, such as food (BB). Each
reinforcer dimension is then scaled with sensitivity parameters
(SR, SM) that determine how quickly choices redistribute as the
ratios change. Thus, by using models like Eq. 1, the effect of
REMI on sensitivities to specific reinforcer dimensions can be
isolated.

RL models can also help isolate specific facets of decision-
making, but do so at a choice-by-choice resolution that con-
structs the decision process according to reward prediction
errors as shown below (RPE; Glimcher 2011; Sutton and
Barto 1998).

δt ¼ λt
A−V

t
A ð2Þ

Vtþ1
A ¼ Vt

A þ αδt ð3Þ

Using the recent reinforcement history of a commodity, RL
models construct an expected value for a choice alternative
(Vt

A ) to guide decisions. On each choice, the difference be-
tween the expected value and the realized outcome (λA) is
computed as an RPE. The future value for a commodity

(Vtþ1
A ) is then updated according to the RPE (δ) crossed with

the learning rate parameter, α, which scales how quickly ex-
pected value is updated. Choices for REMI are then predicted
to ebb and flow according to relative increases or decreases in
the estimated REMI subjective value (see Eq. 6, below). Thus,
similar to matching, RL models can help isolate specific

effects of REMI through changes in how the magnitude of a
reward affects preference (λ) or in the relative weight reward
receipt has on subjective value updating for a choice alterna-
tive (α).

The application of quantitative choice models to the study
of drug choice may also help inform formulation of those
models and provide potential insight into decision processes
more generally. For instance, non-drug studies of choice are
commonly designed as choice between isomorphic commod-
ities (i.e., the same, such as food-food; e.g., Lau and Glimcher
2008), whereas drug choice studies are often allomorphic (i.e.,
between qualitatively different commodities, like drug/food;
e.g., Beckmann et al. 2019). Additionally, drug choice studies
commonly employ reward-predictive stimuli (Banks and
Negus 2012; Banks and Negus 2017) for drug alternatives
that are often absent in isomorphic non-drug choice studies.
As such, it remains an open question how to best incorporate
allomorphic choice alternatives and the influence of reward-
paired stimuli within the context of decision-making models.

One means of quantifying both allomorphic choice and the
effects of reward-paired stimuli is through an estimate of sub-
stitution for choice alternatives (Beckmann et al. 2019; Green
and Freed 1993; Rachlin et al. 1976). Economic substitution
commonly refers to the ability of one choice alternative to
serve as a (partial) replacement for another alternative as costs
vary (e.g., switching to tea if coffee became too expensive).
Specific formalizations of both matching (Beckmann et al.
2019) and RL models can quantitatively assess the substitut-
ability of two alternatives by replacing the magnitude of one
alternative (such as MB in Eq. 1) with a free parameter (Ex)
that captures the subjective reward magnitude for that alterna-
tive relative to other options. For example, under specific
REMI-food allomorphic choice conditions, an Ex value of
0.3 would indicate a single food pellet is equivalent to
0.3 μg infusion of REMI. As such, using a free parameter to
index the subjective reward magnitude of a commodity can
afford one the ability to quantitatively scale conditions that
may be qualitatively different, be it through differential reward
options or the differential presence of reward-paired cues.

However, use of a parameter to capture subjective reward
magnitude in RL models would require reformulation of the
traditionally used Eq. 2 from independent subjective value

updating to that of a relative ratio (e.g., λ
t
A

λt
B
), akin to matching

in Eq. 1. RL traditionally assumes that subjective value
updating for concurrently available alternatives operates inde-
pendently (i.e., λA does not depend on the value of λB).
Conversely, the use of a ratio term makes the explicit hypoth-
esis that subjective reward value is better expressed as relative
to concurrently available alternatives (denoted as the relative
value hypothesis). Importantly, these competing hypotheses
can be tested through comparing quantitative models with
and without the use of the relative ratio updating term to
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determine which process is most likely (Wilson and Collins
2019).

Thus, the current study was designed to formulate a dy-
namic drug choice procedure coupled with quantitative choice
modeling to assess the determinants of opioid choice dynam-
ics. Specifically, rats chose between both isomorphic non-
drug (food/food) and allomorphic REMI/food commodities
within a novel dynamic opioid choice procedure. REMI was
chosen because it has comparable reinforcing efficacy to other
abused opioids, like fentanyl and heroin (Ko et al. 2002);
however, its fast action helps to minimize any direct effects
on choice. Across choice blocks, the commodities varied in
the presence/absence of reward-predictive cues as well as their
relative reward probabilities and magnitudes in an unpredict-
able manner. Choice data were then analyzed using both
matching and RL choice models. It was hypothesized that
(1) matching and RL models would be able to successfully
formalize the effects of three reward dimensions (probability,
magnitude, and associated cues) on both opioid and non-
opioid choice; (2) the determinants leading to choice would
be similar for both drug and non-drug commodities concor-
dant with evidence that decision-making mechanisms are im-
portant for understanding substance abuse; and (3) relative
value updating would provide better model fits over indepen-
dent updating in RL models (i.e., the relative value
hypothesis).

Methods

Subjects Twenty-eight male Sprague-Dawley rats (Harlan
Inc.; Indianapolis, IN, USA) were used for the experiment as
data were collected prior to the NIH sex-as-a-biological-
variable mandate. Rats were individually housed on a
12:12-h light:dark cycle (lights on at 7:00 a.m.), had free ac-
cess to water, and were restricted to approximately 90% of
free-feeding body weight. All research was approved by the
University of Kentucky Institutional Animal Care and Use
Committee (Protocol #2011-0885).

Apparatus Experiments were conducted in Med Associates
(St. Albans, VT) conditioning chambers (see supplementary
information [SI] for further information).

Initial training Prior to the experiment proper, rats were
trained to retrieve food from a central magazine and respond
to a nosepoke receptacle for a palatable pellet (see SI).
Following initial training, sessions began with the illumina-
tion of a house light requiring an orienting response to the
central magazine on the front panel. After orienting, either
the left or right nosepoke pseudorandomly illuminated on
the rear panel. A response to the nosepoke offset the receptacle
simultaneously with the presentation of a lever stimulus on the

front panel for 10 s. The spatial counterbalancing of the
nosepoke-lever combinations was consistent to one side of
the chamber from the perspective of the animal. For example,
a response to the left nosepoke on the rear panel produced the
right lever on the front panel and vice versa for the other
alternative. After 10 s, the cue offset (requiring no response)
and reward was delivered to the magazine; this delay was
constant for all manipulations.

Isomorphic decision-making procedure The probabilistic
choice procedure (Lau and Glimcher 2005; Rutledge et al.
2009) was similar to initial training except completion of the
orienting response illuminated both nosepokes, allowing for
choice between options. Four 30-trial blocks (120 trials total)
were pseudorandomly determined with varying reward prob-
abilities. Sessions ended when all trials were completed and
full completion was required to be included in the dataset. The
possible reward rates, expressed as Option A:B, were 6:1, 2:1,
1:2, and 1:6 (see Fig. 1c for reward probabilities) with both
options delivering one food pellet upon payout. The relative
reward rate was randomly determined for the first block, and
subsequent blocks were selected so that the alternative of
greater relative rates switched. For instance, if the first block
was the 6:1 condition, the second block was required to be
either the 1:2 or 1:6 condition. On each trial, reward availabil-
ity was independently calculated for both options and, once
programed for delivery, remained until collected.

Rats were also split into the Signaled and Unsignaled
groups to test the efficacy of different cue functions. For the
Unsignaled group, choice of either option presented the asso-
ciated lever stimulus for 10 s followed by probabilistic reward
delivery according to the current reward probabilities.
Importantly, the lever stimuli served only as cues and required
no response. For the Signaled group, choice of Option B was
identical to the Unsignaled Group. However, choice of Option
A produced a lever stimulus only when reward followed,
while a separate white jewel light above the lever illuminated
for an upcoming loss. Thus, the only difference across groups
was whether the lever-cue associated with Option A was pre-
dictive or probabilistically associated with forthcoming re-
ward (i.e., predictively signaled vs. unsignaled, respectively).
All rats completed the initial isomorphic procedure until
choice behavior displayed significant sensitivity to the chang-
ing relative reward rates (see SI).

Allomorphic decision-making procedure Following the iso-
morphic procedure, sixteen (eight per group) rats underwent
surgery for implantation of a chronic, indwelling catheter to
allow for drug self-administration training (see SI). Through
training, Option A for both groups became associated with a 3
μg/kg infusion of remifentanil (REMI), an opioid μ receptor
agonist (Crespo et al. 2005; Glass et al. 1993), gifted from the
National Institute on Drug Abuse (Bethesda, MD, USA).
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Option B continued to deliver one food pellet. The allomor-
phic experimental procedure was otherwise identical to the
isomorphic condition.

Reward magnitude manipulations Rats in the isomorphic and
allomorphic choice contexts initially chose between either one
food pellet or a 3 μg/kg REMI infusion versus one food pellet
at varying probabilities. Subsequently, the magnitude of
Option A was increased. For the isomorphic condition,
Option A rewarded two and then three food pellets while
REMI doses were counterbalanced to either 10 or 1 μg/kg
infusions across sessions. Dose was manipulated by changing
the pump delivery time (1.77 s/3 μg/kg infusion) and com-
pleted simultaneously with the offset of the lever associated
with Option A. Each reward magnitude was trained for a
maximum of 10 sessions, and training was limited to a 7-
session minimum if rats showed significant sensitivity to the
changing probabilities prior to the 10-session maximum.

Data analysis Aggregate choice data were calculated as the
proportion of choices for Option A as a function of the relative
reward rates for Option A over the last 5 days of training for
each magnitude condition. Choice data were analyzed using
Eq. 1 with the nonlinear mixed effects (NLME) package in R
(Pinheiro et al. 2016; Young et al. 2009). However, the reward
magnitude for Option B (MB) was replaced by the scaling
constant, Ex. Ex acts as an exchange rate for the subjective

reward magnitude of Option B relative to Option A in units of
sucrose pellets or REMI μg/kg infusions for the isomorphic
and allomorphic conditions, respectively. For instance, when
the reward magnitude of Option A is one pellet, an Ex value of
1 suggests the two options were perfectly substitutable.
Subject was entered as a nominal random factor, Group as a
nominal between-subject fixed factor using dummy coding,
and free parameters (SR, SM, and Ex) were fit to the data. All
parameter estimates that are negative in the raw form are
shown as absolute values to aid interpretation.

To test the matching assumption of relative valuation at the
molecular level, multiple RL models were assessed through
model comparison techniques using Akaike Information
Criterion (AIC; see SI) on the same set of data. Valuation of
Options A and B was first assessed in the Base RL model as
shown in Eqs. 2 and 3. Valuation of each commodity was then
subsequently made relative in the Scaled Single-Learning
model according to Eqs. 4 and 5

δtA ¼ λt
A=λ

t
B

� �SM−Vt
A

� �
ð4Þ

δtB ¼ λt
B=λ

t
A

� �SM−Vt
B

� �
ð5Þ

where the reward magnitude for both commodities is
expressed as a ratio raised to a sensitivity to relativemagnitude
parameter similar to Eq. 1. The magnitude of Option B (λB)
was set as the exchange rate obtained from the aggregate

Fig. 1 Sequence of events for the
Signaled (a) and Unsignaled (b)
groups. Subsequent
manipulations increased the
reward magnitude of Option A to
two and then three pellets or, in
the allomorphic context, from a
three to 1 to 10 μg/kg dose of
remifentanil in a counterbalanced
order. Asterisk “*” indicates that
all stimuli offset following the
event. c The probabilities of
events and the relative reward
rates (defined as the reward prob-
ability for Option A/Option B) for
Option A and B
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analysis for each group. Value updating then occurred accord-
ing to Eq. 3

Vtþ1
A ¼ Vt

A þ αδtA

where the value for a commodity (V) on the next trial (t) was
summated with the RPE from Eqs. 4–5 and scaled according
to the learning rate,α. Finally, choices (Ch) for Option Awere
probabilistically determined according to the softmax Eq. 6.

pChtA ¼ 1

1þ exp − β Vt
A−V

t
B

� �� �þ cA Cht−1A

� �þ cB Cht−1B

� �� �

ð6Þ

In Eq. 6, the probability of choosing Option A is deter-
mined by the relative difference in model-derived value scaled
according to the inverse temperature parameter, β, and sum-
mated with two perseveration parameters (cA and cB). The
perseveration parameters weigh the tendency to repeat or al-
ternate from the previous choice independently of model-
derived reward value. Values of 1 and 0 were assigned when
Option A was previously chosen or disregarded, respectively,
and −1 and 0 for Option B. Subsequent models also assessed
inclusion of additional α parameters that depended upon the
chosen Option [A versus B; αA, αB; Scaled Dual-
Learning(Option)] or choice outcome [win vs. loss; αWin,
αLoss; Scaled Dual-Learning(Outcome)]. RL models were fit
to individual rats using the fmincon optimization algorithm in
MATLAB using maximum likelihood estimation (see SI).
Initial parameter values were drawn from 100 sets of uniform-
ly distributed values constrained on the following intervals: α
∈[0, 1] , β ∈[0, 10], c ∈[− 1, 1], and SM ∈[0, 5]. Potential
parameter differences were assessed using a series of pairwise
Wilcoxon signed ranks or rank sign tests with Hochberg error
corrections (Hochberg 1988) due to the use of parameter
constraints.

Results

Isomorphic choice Figure 2a–b shows the average proportion
choices for Option A as a function of the relative reward rates
for Option A in the Signaled and Unsignaled group, respec-
tively. Also shown in Fig. 2 are the fits from matching analy-
ses illustrating a successful capturing of choice data. Results
from the NLMEmatching analysis (Fig. 2c) revealed that both
the Signaled [SR = 0.33; SM = 0.62] and Unsignaled [SR =
0.29; SM = 1.06] groups significantly altered their preferences
for OptionA as the relative reward rates [F(1, 127) = 213.26, p
< .001] and magnitudes [F(1, 127) = 194.10, p < .001] varied.
Stated differently, Option A was more likely to be chosen
when reward rates and magnitudes favored Option A and
decreased when either dimension became less favorable in

an independent manner. Additionally, choices for Option A
in the Unsignaled group increased significantly more as its
reward magnitude increased [F(1, 127) = 13.90, p < .001]
and Option B for the Unsignaled group had a higher exchange
rate [F(1, 127) = 10.13, p = .002; Ex = 1.08] relative to the
Signaled group [Ex = 0.54]. Expressed in units of sucrose
pellets, the exchange rate parameters suggest that an
unsignaled food pellet was, as expected, a near perfect substi-
tute for an unsignaled pellet with little bias for either choice
option (1 unsignaled pellet was equal to 1.08 unsignaled pel-
lets). Alternatively, an unsignaled food pellet did not substi-
tute as well for a perfectly signaled food pellet (1 perfectly
signaled pellet was equal to 0.54 unsignaled pellets). Thus, the
subjective reward magnitude for a perfectly signaled pellet
was greater than an unsignaled pellet.

RL models successfully parameterized choices (Fig. 2d;
Δ\AIC = − 651 from a model predicting chance alone), and
model comparisons corroborated the assumptions of the
matching equation for both groups. That is, the reformulation
of RL value updating to make each commodity value relative
(Eqs. 4 and 5) using the matching-derived exchange rates
resulted in substantially improved model fits relative to a base
(absolute-value updating) RL model [ΔAIC = − 220; see SI].
Further model comparisons revealed adding additional learn-
ing rates dependent upon choice outcomes (win versus loss)
and option-dependent perseveration parameters (Eq. 6) pro-
duced the best AIC values (see SI). Parameter estimates from
the best fitting model are shown in Fig. 2e. The Signaled
group had significantly greater value updating for loss out-
comes than the Unsignaled group [Z = 2.20, p = .028].
Additionally, inclusion of the matching-derived exchange
rates accounted for a group effect a priori, as supported by
model AIC improvements.

Allomorphic choice Allomorphic results generally mirrored
those from the isomorphic condition. Shown in Fig. 3, the
matching NLME model successfully formalized drug choice
data and revealed both the Signaled [SR = 0.29; SM = 1.12] and
Unsignaled [SR = 0.21; SM = 1.10] groups were comparably
sensitive to changes in relative reward rates [F(1, 171) =
19.80, p < .001] and magnitudes [F(1, 171) = 147.38, p <
.001] between REMI and food. Although the two groups were
not different in sensitivity to changing reward rates or magni-
tudes, like the isomorphic decision context, the Unsignaled
group again had a higher exchange rate [Ex = 5.86; F(1,
171) = 11.90, p = .001] than the Signaled group [Ex = 3.16].
The exchange rate parameters suggest that an unsignaled food
pellet was a better substitute for an unsignaled REMI infusion
(1 pellet was equal to a 5.86 μg/mg unsignaled infusion) than
for a signaled REMI infusion (1 pellet was equal to a 3.16
μg/kg signaled infusion). Similar to the isomorphic condition,
a signaled REMI infusion had greater subjective reward mag-
nitude as indicated by the unsignaled pellet having a lower Ex
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value (i.e., was a worse substitute) relative to the ability of an
unsignaled pellet to substitute for an unsignaled REMI
infusion.

RL models also successfully parameterized allomorphic
drug-associated decision-making (Fig. 3d; ΔAIC = − 640 from
a chance model) and corroborated matching model assumptions.
Reformulating RL value-updating equations as relative to each
commodity in combination with the matching-derived exchange
rates (Eqs. 4 and 5) produced substantially improved AIC values
relative to a base RL model [ΔAIC = − 348.73; see SI].
Subsequently adding additional learning rate parameters depen-
dent upon choice outcome (win versus loss) and option-
dependent perseveration parameters also produced the best over-
all AIC values. Parameter estimates from the best fitting model
are shown in Fig. 3e. RL parameters showed no group effects,
butα values for wins were significantly higher than losses across
both options and groups [Z = 3.10, p = .002], and the inclusion of
matching-derived exchange values accounted for a group effect
a priori, as supported by AIC values.

Discussion

The present study extends the current understanding of
drug-associated decision-making in several ways. To our
knowledge, the current report is the first to (1) docu-
ment the effects of reward probability on choices for
opioid reward, (2) use a dynamic, probabilistic choice
procedure to assess both drug and non-drug decision-
making, (3) demonstrate that cues signaling impending
reinforcement (i.e., prior to reward delivery) can modu-
late drug as well as non-drug choices (cf. Chow et al.
2017; Smith et al. 2018; Zentall 2016), (4) successfully
apply RL and matching models to opioid-associated de-
cision making, and (5) show that choice-by-choice de-
cisions were better described by relative value updating
in RL models (consistent with matching) than the tradi-
tional independent value updating assumption. Overall,
behavioral data showed a striking similarity in decision-
making mechanisms between drug and non-drug choice,

Fig. 2 Mean (± SEM) proportion
choice of Option A for the
Signaled (a) and Unsignaled (b)
groups as a function of the relative
reward rates for Option A in the
isomorphic choice context. The x-
axis is logged for improved visu-
alization. c Mean (± SEM) pa-
rameter estimates from the
matching model. d Example RL
model fit. Hatched lines denote
changes in the reward magnitude
for Option A of 1, 2, and 3 pellets
from left to right. e Median (± in-
terquartile range) parameter esti-
mates from the RL model. Note:
β values are scaled according to
the right y-axis. n = 6 for panels a,
b, c, and e for each group
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suggesting that SUDs may stem from modulations of
relative value (Heyman 2013; Hogarth 2020; Hogarth
and Field 2020).

Across both choice contexts (isomorphic and allomorphic),
Option A was the generally preferred commodity when the
relative reward rates and magnitudes favored it and decreased
as magnitudes and probabilities favored Option B. Thus, the
present work corroborates previous drug choice studies show-
ing drug-associated decision making is sensitive to various
reward-relevant dimensions known from work with non-
drug choice (e.g., Banks and Negus 2012; Beckmann et al.
2019; Moeller and Stoops 2015; Woolverton and Rowlett
1998). Although the preference shifts across magnitudes
tended to be larger in the allomorphic condition, this is likely
attributable to the scale on which REMI doses were manipu-
lated relative to food pellets (linear vs. logarithmic). Within
the isomorphic condition, increasing food reward by a greater
amount may have produced similar preference switches as the
allomorphic condition. Additionally, shifting position on one

relative reinforcer dimension (e.g., magnitude) to a sufficient
degree had the potential to exceed the effects of the other
dimension (probability). Specifically, increasing the food re-
ward magnitude of Option A to 3 pellets influenced prefer-
ences to such a degree that even a 1:6 reward ratio favoring
Option B could not induce a preference reversal. Conversely,
decreasing the REMI dose of OptionA to 1μg/kg changed the
relative choice context such that even a 6:1 reward rate favor-
ing REMI did not produce REMI preference. The above ef-
fects therefore warrant caution in making statements about
absolute commodity preferences that could stem from insuf-
ficiently altering reward-relevant dimensions (e.g., not in-
creasing relative magnitude or probability sufficiently, espe-
cially from manipulations that include only a single dose and/
or probability).

Quantitative choice models were also able to capture the
changes in choice across both contexts. That matching (Eq. 1)
could describe drug-associated decision-making corroborates
previous research using cocaine (Anderson et al. 2002;

Fig. 3 Mean (± SEM) proportion
choice of Option A for the
Signaled (a) and Unsignaled (b)
groups as a function of the relative
reward rates for Option A in the
allomorphic choice context. The
x-axis is logged for improved vi-
sualization. c Mean (± SEM) pa-
rameter estimates from the
matching model. d Example RL
model fit. Hatched lines denote
changes in the reward magnitude
for Option A of 3, 1, and 10μg/kg
from left to right. e Median (± in-
terquartile range) parameter esti-
mates from the RL model. Note:
β values are scaled according to
the right y-axis. n = 8 for panels a,
b, c, and e for each group
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Beckmann et al. 2019; Hutsell et al. 2015), but the current
study is the first to apply matching and RL to choices for
opioid reward. Additionally, the current results suggest that
value updating in RL models might be better expressed as
relative to other concurrently available commodities. In both
choice contexts, reformulating the RL reward magnitude term
as a scaled, relative term akin to matching models (Davison
andMcCarthy 1988) resulted in substantially improvedmodel
fits. The confirmation of the relative value hypothesis is im-
portant, as having the correct model architecture should im-
prove the ability to detect potential neurological correlates of
reward value (Corrado et al. 2009). For instance, many studies
are interested in determining whether all reward value reduces
to a “common currency” neuronal signal within the brain
(Levy and Glimcher 2012). The current findings suggest value
is context-dependent, and thus any measurement of reward
value would not be absolute. That said, further research
assessing relative versus absolute RL value updating in allo-
morphic decisions is needed, as this is, to our knowledge,
currently the only report to do so.

If the value of a commodity is indeed relative to other
available options, then studies examining commodity value
should necessarily provide manipulatable alternatives to better
understand the value metric. For instance, some models of
reward value offer only one manipulated commodity as a
standard protocol (e.g., single-schedule substance abuse
models; Banks and Negus 2012) or assume that reward value
is modulated by a single dimension (e.g., expected value and
unit price; Hursh and Silberberg 2008). However, the present
results corroborate previous work (Beckmann et al. 2019;
Davison and McCarthy 1988; Hutsell et al. 2015; Moeller
and Stoops 2015) in demonstrating that reward value changes
depend on other concurrently available options and can be
independently modulated by several reward dimensions
(e.g., reward magnitude and probability). Other reward di-
mensions not manipulated here such as effort, delay to reward,
and even state-dependent effects like negative affect can also
influence drug choice (Canchy et al. 2020; Eldar and Niv
2015; Hogarth et al. 2015; Mitchell 2004) but can be similarly
incorporatedwithin the theoretical framework of independent-
ly operating reward dimensions combining to affect choice
(Davison and McCarthy 1988; Rachlin 1971). As further ev-
idence, additional quantitative models that assume unidimen-
sional reward spaces (e.g., expected value) were assessed
using the current dataset; these models resulted in poorer fits
of the current data relative to the assumptions of matching (see
SI). Thus, models of reward value, including drug value,
should at the very least include alternative commodities in
their experiments to properly test valuation.

The current results also demonstrate that the inclusion of
stimuli differentially predictive of reward can alter the scaling
of relative reward magnitude effects on choice. Across both
choice contexts, an unsignaled food pellet or REMI reward

was a poor substitute for a perfectly signaled (i.e., 100% of the
time) reward that led to subsequent increased preference for
Option A (i.e., the Signaled option). Such a finding is impor-
tant as it again points to a similarity in choice mechanisms
between drug and non-drug choice (cf. McDevitt et al. 2016;
Zentall 2016), and it suggests that contexts with certain ar-
rangements of reward-associated cues can greatly increase
the value of drug alternatives relative to non-drug alternatives.

RL analyses also showed that the Signaled group weighed
loss outcomes as larger than the Unsignaled group within the
isomorphic choice context, and both groups weighed wins
more heavily than losses in the allomorphic choice context.
The former result is consistent with the reduced sensitivity to
magnitude for the Signaled group at the aggregate level of
analysis. That is, the increased salience of reward occurrence
(or losses) may have overshadowed reward magnitude chang-
es and led to increased weighting of losses relative to the
Unsignaled group on a choice-by-choice basis. The reason
for wins having greater weight than losses during opioid allo-
morphic decision-making is currently unclear. One possibility
may be that REMI increases or decreases the relative salience
of wins or losses, respectively. However, wins and losses hav-
ing a differential impact on decision-making does corroborate
previous research (Glimcher et al. 2013; Marshall and
Kirkpatrick 2017; Rutledge et al. 2009), and the results high-
light the ability of quantitative models to isolate specific facets
of how the decision-making process may change across
contexts.

The current results also potentially have broader implica-
tions for the treatment of SUD as a disorder of relative reward
valuation. Across tested doses, rats showed significant reduc-
tions in REMI choices as a function of reducing reward prob-
abilities and magnitudes. Matching and RL models were also
successfully able to parameterize drug-associated decision-
making similar to isomorphic food choices (see Tables S3-
4). Therefore, the collective results suggest that
decision making, even for drugs, was value-based across all
contexts. Importantly, the implications of drug-associated
decision making being ostensibly value based validates treat-
ments that alter the relative value of drugs. For instance, con-
tingency management treatments offer reward for drug absti-
nence (Davis et al. 2016), and potential psychometric mea-
sures of non-drug-associated reward have been developed
(Acuff et al. 2019). Additionally, an understanding of how
structural factors (i.e., the context of an individual) contribute
to individual drug use will likely facilitate balancing non-
drug-derived reinforcement (Lee et al. 2018). The present re-
sults also inform conceptual models of SUDs. For instance,
the value-based models herein contrast somewhat with vari-
ous SUD models suggesting drug use is compulsive or habit-
ual (Everitt and Robbins 2016; Kalivas et al. 2005; Redish
2004; Vandaele and Janak 2018). Evidence for compulsive,
habitual drug responding (even when choice-specific
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perseveration parameters were included in model analyses)
was not found in the current study. Rather, behavioral shifts
in line with the predictions of value-based quantitative choice
models were found. As such, the current study corroborates
previous notions of conceptualizing SUDs as an extension of
similar decision-making systems for non-drug rewards (Banks
and Negus 2012; Heyman 2013; Hogarth 2018; Hogarth
2020; Hogarth and Field 2020; Negus and Banks 2018;
Rachlin 2007) and also illustrates that making generalized
statements about the relative abuse liability of drugs is difficult
due to the highly context-dependent nature of drug value.

Nonetheless, one important variable left to future research
is the impact of drug use history. Previous research has shown
that increased drug use history may increase preferences for
opioid rewards, particularly during withdrawal (Lenoir et al.
2013; Negus and Banks 2018; Wade-Galuska et al. 2011).
Opioid use history remains an open research question that
can be tested thoroughly utilizing the models provided herein.
For instance, assessment of how RL or matching parameters
vary during different stages of drug use, such as withdrawal,
can help dissociate between value-based and habitual-
responding hypotheses. Large reductions in matching sensi-
tivity values or reduced alpha values in combination with
increased perseveration parameters in RLmodels may provide
evidence of decreased value-based decision-making consis-
tent with habit-like responding. Alternatively, it is also possi-
ble that during withdrawal value-based processes are modu-
lated (Hogarth 2020). For example, opioid withdrawal may
modulate exchange rates to suitably favor drug reward, in-
crease reward dimension sensitivities, or elevate drug-option
alpha values in RL models to produce what could appear as
compulsive responding (e.g., the 10 μg/kg REMI condition
herein), yet substantiate the retention of value-based decision
making. A further test of interest would be whether changes in
any parameter values persist after prolonged abstinence.

Potential limitations of the study are worth noting. First, the
current study only used male rats, which will require future
research to identify if the findings generalize to female rats.
Second, REMI, an opioid μ receptor agonist with brief rein-
forcing kinetics, was used that may have a lower abuse liabil-
ity compared to other μ agonists (Baylon et al. 2000).
However, the reinforcing efficacy of REMI has been docu-
mented as comparable to other μ receptor agonists such as
fentanyl and heroin (Ko et al. 2002), and there are documented
cases of REMI abuse (Levine and Bryson 2010). The current
study also did not manipulate drug use history to assess if
longer histories may produce more compulsive-like behavior.
Finally, all rats first underwent isomorphic food-food training
prior to REMI-food choice which may have influenced the
results; this procedure was employed to ensure the dynamic
choice task was learned prior to introducing REMI. If future
research chooses to exclude the initial food-food training, care
should be taken that any differences seen in drug conditions

are not simply due to an insufficient learning of the dynamic
procedure. Overall, dynamic drug choice procedures like
those used herein combined with quantitative choice model-
ing provide a powerful, unique avenue for testing competing
hypotheses regarding underlying processes that govern sub-
stance use disorder.

In conclusion, the present study highlights, at multiple
levels of analysis, that the quantitative assumptions of choice
as relative, multidimensional, and context dependent are sub-
stantiated in both food- and opioid-associated decision-mak-
ing. At the aggregate level, preference for a commodity was
shown to be determined by its reward rate, magnitude, and the
presence of reward-predictive cues relative to another com-
modity. Additionally, the common assumption of independent
value updating in RL models was improved when made rela-
tive to concurrent alternatives. Future research may expand
the present findings through assessing allomorphic choice of
different drugs of abuse, the influence of different pharmaco-
logical treatment strategies (Banks et al. 2015), potential risk
factors (e.g., prolonged drug use history), and identification of
underlying neural pathways. Broader implications from the
current research also point to the need for substance abuse
models to include more complex, dynamic, and multidimen-
sional procedures to better identify determinants of drug value
and its underlying mechanisms. Collectively, the present re-
sults suggest that economic variables (e.g., substitute
availability; Davis et al. 2016) should be considered potential
treatment options for SUDs, as well as important variables to
consider during the development of novel SUD therapies.
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