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Abstract
Rationale Obsessive-compulsive disorder (OCD) is characterized by repetitive behaviors exacerbated by stress. Many OCD
patients do not respond to available pharmacotherapies, but neurosurgical ablation of the anterior cingulate cortex (ACC) can
provide symptomatic relief. Although the ACC receives noradrenergic innervation and expresses adrenergic receptors (ARs), the
involvement of norepinephrine (NE) in OCD has not been investigated.
Objective To determine the effects of genetic or pharmacological disruption of NE neurotransmission on marble burying (MB)
and nestlet shredding (NS), two animal models of OCD.
Methods We assessed NE-deficient (Dbh −/−) mice and NE-competent (Dbh +/−) controls in MB and NS tasks. We also
measured the effects of anti-adrenergic drugs on NS and MB in control mice and the effects of pharmacological restoration of
central NE inDbh −/−mice. Finally, we compared c-fos induction in the locus coeruleus (LC) and ACC ofDbh −/− and control
mice following both tasks.
Results Dbh −/− mice virtually lacked MB and NS behaviors seen in control mice but did not differ in the elevated zero maze
(EZM) model of general anxiety-like behavior. Pharmacological restoration of central NE synthesis inDbh −/−mice completely
rescued NS behavior, while NS and MB were suppressed in control mice by anti-adrenergic drugs. Expression of c-fos in the
ACC was attenuated in Dbh −/− mice after MB and NS.
Conclusion These findings support a role for NE transmission to the ACC in the expression of stress-induced compulsive
behaviors and suggest further evaluation of anti-adrenergic drugs for OCD is warranted.
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Introduction

In patients with obsessive-compulsive disorder (OCD), intru-
sive thoughts drive repetitive and compulsive behaviors,
among them checking, counting, and excessive handwashing.
These obsessions are emotionally aversive and disproportion-
ately command attentional resources until the ritual that

interrupts the obsession is completed (Graybiel and Rauch
2000; Pigott et al. 1994). In OCD and other compulsive dis-
orders, symptom severity increases during periods of psycho-
logical stress (Adams et al. 2018; Lin et al. 2007; Rosso et al.
2012). Currently, the only drugs approved for the management
of OCD are serotonergic antidepressants (tricyclics and selec-
tive serotonin reuptake inhibitors; SSRIs), which are ineffec-
tive for about half of patients and unfortunately associated
with adverse side effects that limit compliance (Dominguez
1992; Mavissakalian and Michelson 1983; Pizarro et al. 2014;
van Balkom et al. 1994).

The neural circuitry and neurochemistry that drive compul-
sive behaviors have not been clearly delineated (Micallef and
Blin 2001; Stein 2000), but converging evidence from neuro-
imaging, neurosurgical, and neurobiological studies impli-
cates a corticolimbic interface structure called the anterior
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cingulate cortex (ACC) in the pathophysiology of OCD
(Alarcon et al. 1994; Brennan et al. 2013; Fitzgerald et al.
2005; McGovern and Sheth 2017). Data from human func-
tional imaging studies have frequently identified ACC hyper-
activity in OCD patients (De Ridder et al. 2017; Fitzgerald
et al. 2005; Riffkin et al. 2005; Van Laere et al. 2006). Both
functional and structural abnormalities in the ACC of patients
with OCD are correlated with disturbances in emotional reac-
tivity, attention, and cognitive control (Brennan et al. 2015;
McGovern and Sheth 2017; Pauls et al. 2014). The ACC
receives glutamatergic and neuromodulatory input from a dis-
tributed network of forebrain and hindbrain structures, and is
well positioned to regulate attention, emotions, motivation,
and action under conditions of uncertainty or change
(Margulies et al. 2007; Stevens et al. 2011; Yücel et al. 2003).

Evidence from the neurosurgical literature suggests that ~
40% of antidepressant-resistant OCD patients can achieve
lasting remission of symptoms by undergoing a surgical pro-
cedure called a cingulotomy (Brown et al. 2016; Kim et al.
2003; McGovern and Sheth 2017), in which the ACC is le-
sioned bilaterally with gamma radiation (Cosgrove and Rauch
2003; Fodstad et al. 1982). Despite the efficacy of this inter-
vention for improving the quality of life in some treatment-
resistant OCD patients, invasive surgical ablation of an impor-
tant brain region is an aggressive and irreversible treatment
strategy that should only be considered as a last resort after
pharmacological interventions have failed. Indeed,
cingulotomy is associatedwith significant long-term cognitive
and emotional side effects, including emotional apathy and
deficits in attention (Cohen et al. 1999a, b; Janer and Pardo
1991).

Because of the modest efficacy of SSRIs in alleviating
OCD symptoms, most preclinical research on OCD patho-
physiology has focused on the serotonin (5-HT) system and,
to a lesser extent, the dopaminergic and glutamatergic systems
(Billett et al. 1998; Goodman et al. 1990; Pittenger et al. 2006,
2011; Zohar et al. 2000). The development of more effective
and tolerable pharmacotherapies has been impeded by an in-
complete understanding of the neurobiological basis of OCD
and other compulsive disorders (Langen et al. 2011; Micallef
and Blin 2001; Ting and Feng 2011). Thus, there is an urgent
need to develop and characterize better preclinical models of
OCD to unravel the neurochemistry and neurocircuitry that
drive compulsive behaviors.

Some advances in understanding the neurobiology of
OCD have come from genetic and behavioral models of
the disease, which have various degrees of face, construct,
and predictive validity (Ahmari and Dougherty 2015;
Fineberg et al. 2011; Joel 2006; Ting and Feng 2011;
Witkin 2008). The nestlet shredding (NS) and marble
burying (MB) tasks are two rodent models of repetitive,
compulsive behaviors that may be useful for testing novel
pharmacotherapies for OCD (Angoa-Pérez et al. 2013; Li

et al. 2006; Wolmarans et al. 2016). In these tasks, repet-
itive behaviors (digging for MB; shredding for NS) are
elicited by cage-change stress and do not habituate even
after repeated daily exposures to marbles or nestlets
(Thomas et al. 2009; Witkin 2008).

The central norepinephrine (NE) system mediates stress
responses, attention, arousal, emotional state, and behavioral
flexibility (Aston-Jones et al. 2007; Sara 2009), all of which
are disrupted in patients with OCD (Adams et al. 2018;
Cocchi et al. 2012; Gehring et al. 2000; Kalanthroff et al.
2016; Spitznagel and Suhr 2002). The 5-HT and NE
neuromodulatory systems regulate one another (Kim et al.
2004; O'Leary et al. 2007; Pasquier et al. 1977; Pudovkina
et al. 2002; Segal 1979) and have overlapping terminal fields
in forebrain regions, such as the ACC, where 5-HT exerts an
inhibitory influence (Czyrak et al. 2003; Hajós et al. 2003;
Tanaka and North 1993) and NE exerts an excitatory influence
(Berridge et al. 1993; Gompf et al. 2010; Marzo et al. 2014;
Stone et al. 2006). Moreover, reciprocal excitatory communi-
cation between the noradrenergic locus coeruleus (LC) and the
ACC is required to support sustained arousal during exposure
to unfamiliar environments (Gompf et al. 2010), suggesting
that the LC-ACC axis is a critical substrate of arousal and
attention in response to contextual change (Aston-Jones
et al. 1999; Vankov et al. 1995).

Although studies on the subject are limited, there is
some compelling evidence for abnormalities in central
NE function and adrenergic receptor (AR) sensitivity in
patients with compulsive disorders. Elevated plasma
levels of NE metabolites (Siever et al. 1983), altered neu-
roendocrine responses to adrenergic drug challenges
(Brambilla et al. 1997; Hollander et al. 1991; Siever
et al. 1983), and genetic polymorphisms in the NE-
metabolizing enzyme COMT (Karayiorgou et al. 1999;
Pooley et al. 2007; Schindler et al. 2000) have been re-
ported in OCD patients, but the role of the central NE
system in OCD pathophysiology in humans has not been
investigated thoroughly. Similarly, the effects of seroto-
nergic drugs on NS and MB behavior have been exten-
sively documented, but the effects of drugs targeting the
NE system have only been described in a handful of stud-
ies (Li et al. 2006; Millan et al. 2000; Sugimoto et al.
2007; Young et al. 2006).

Here, we determined the effects of genetic or pharma-
cological disruption of central NE signaling on OCD-like
behaviors in the NS and MB tasks using NE-deficient
(Dbh −/−) mice and their NE-competent (Dbh +/−) coun-
terparts (Thomas et al. 1995). To provide a contrast to
canonical anxiety-like behavior, we also tested perfor-
mance in the elevated zero maze (EZM). Finally, we
assessed the effects of genetic NE deficiency on c-fos
induction in the LC and ACC as a measure of task-
specific neuronal activity during NS and MB.
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Materials and methods

Subjects

Dbh −/− mice were maintained on a mixed 129/SvEv and
C57BL/6J background, as previously described (Thomas
et al. 1995, 1998). Pregnant Dbh +/− dams were given drink-
ing water that contained the βAR agonist isoproterenol and
α1AR agonist phenylephrine (20 μg/ml each) + vitamin C
( 2 m g / m l ) f r o m E 9 . 5 – E 1 4 . 5 , a n d L - 3 , 4 -
dihydroxyphenylserine (DOPS; 2 mg/ml + vitamin C
2 mg/ml) from E14.5-parturition to prevent the embryonic
lethality associated with the homozygous Dbh deficiency
(Mitchell et al. 2008; Thomas et al. 1995). Dbh −/− mice are
readily identified by their ptosis phenotype, and genotypes
were subsequently confirmed by PCR. Dbh +/− littermates
were used as controls because their behavior and catechol-
amine levels are indistinguishable from wild-type (Dbh +/+)
mice (Marino et al. 2005; Mitchell et al. 2006; Thomas et al.
1995, 1998).

Male and female mice 3–8 months old were used in all
experiments. Because no sex differences were reported in
the literature or observed in pilot experiments, male and fe-
male mice of the sameDbh genotype were pooled. All animal
procedures and protocols were approved by the Emory
University Animal Care and Use Committee in accordance
with the National Institutes of Health guidelines for the care
and use of laboratory animals. Mice were maintained on a 12-
h light/12-h dark cycle with ad libitum access to food and
water. Behavioral testing was conducted during the light cycle
in a quiet room in which the animals were housed to minimize
the stress of cage transport on test days.

Drugs

The following drugs were used for behavioral pharmacology
experiments: the non-selective βAR antagonist DL-
propranolol hydrochloride (Sigma-Aldrich, St. Louis, MO),
the α1AR antagonist prazosin hydrochloride (Sigma-
Aldrich), the α2AR agonists guanfacine hydrochloride
(Sigma-Aldrich) and dexmedetomidine (Patterson Veterinary
Supply, Greeley, CO), the peripheral non-selective βAR an-
tagonist nadolol (Sigma-Aldrich), the DBH inhibitor
nepicastat (Synosia Therapeutics, Basel, Switzerland), the
β1AR antagonist betaxolol (Sigma-Aldrich), the β2AR an-
tagonist ICI 118,551 (Sigma-Aldrich), the α2AR antagonist
atipamezole (Patterson Veterinary Supply), the peripheral ar-
omatic acid decarboxylase inhibitor benserazide (Sigma-
Aldr ich) , and the synthet ic NE precursor l -3 ,4-
dihydroxyphenylserine (DOPS; Lundbeck, Deerfield, IL).
All drugs were dissolved in sterile saline (0.9% NaCl) except
for prazosin, which was dissolved in saline containing 1.5%
DMSO + 1.5% Cremophor EL, and DOPS, which was

dissolved in distilled water with 2% HCl, 2% NaOH, and
2 mg/kg vitamin C.

All compounds except DOPS were administered by i.p.
injections at a volume of 10 ml/kg. Sterile saline vehicle was
injected to control for any confounding effect of injection
stress on behavior, and vehicle-treated animals were used for
statistical comparison with anti-adrenergic compounds. For
the DOPS rescue experiment, Dbh −/− mice were injected
with DOPS (1 g/kg, s.c.) + benserazide (250 mg/kg; Sigma-
Aldrich), then tested 5 h later once NE levels peaked. The
vehicle control for the DOPS experiment was also adminis-
tered 5 h before testing (Rommelfanger et al. 2007; Schank
et al. 2008; Thomas et al. 1998). The doses for all compounds
tested were based on previous studies (Durcan et al. 1989; Ji
et al. 2014; Kauppila et al. 1991; Luttinger et al. 1985; Millan
et al. 2000; Murchison et al. 2004; Rudoy and Van Bockstaele
2007; Schank et al. 2008; Schroeder et al. 2013; Stemmelin
et al. 2008; Van Der Laan et al. 1985) and optimized in pilot
experiments to ensure that behavioral effects were not due to
sedation.

Elevated zero maze

Mice were exposed to the EZM (2″ wide track, 20″ diameter)
under low light for 5 min (Shepherd et al. 1994; Tillage et al.
2020). Time spent in the open and closed segments of the
maze, entries into the open segments, distance traveled, and
velocity were recorded on an overhead camera and measured
using TopScan software (Clever Sys Inc., Reston, VA).

Nestlet shredding

Individual mice were removed from their home cages and
placed into a new standard mouse cage (13″ × 7″ × 6″) with
clean bedding and a standard cotton nestlet square (5 cm ×
5 cm, roughly 3 g). The nestlets were pre-weighed before the
start of testing to calculate the % shredded at the end of the
task (Angoa-Pérez et al. 2013; Angoa-Pérez et al. 2012; Li
et al. 2006). Mice were left undisturbed for 30, 60, or
90 min, after which they were returned to their home cages.
The weights of the remaining non-shredded nestlet material
were recorded, as previously described (Angoa-Pérez et al.
2013; Li et al. 2006). In one experiment, mice were singly
housed with nestlets for 24 h. In another set of experiments,
Dbh +/− and −/− mice were observed in the NS task for
90 min, and latencies to begin shredding and to sleep were
recorded. Shredding was operationalized as 2 min of uninter-
rupted NS behavior, and sleeping was operationalized as
2 min of uninterrupted sleep behavior (immobility, even
breathing, sleep posture). Animals that did not shred or fall
asleep within the 90-min task window were assigned a score
of 90 min for each parameter.
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For pharmacological experiments, all drugs except DOPS
and nepicastat were administered 15 min before testing, and
the task duration was set at 60 min. Nepicastat was adminis-
tered 2 h prior to testing to allow for maximal NE depletion
(Schroeder et al. 2013), and DOPS was administered 5 h be-
fore testing (Schank et al. 2008; Thomas et al. 1998). To
determine the effect of test cage habituation on NS behavior,
individual Dbh −/− and control mice were moved into new,
clean mouse cages without a nestlet. After 3 h of habituation, a
nestlet was introduced to the test cage, and NS within 60 min
was measured. The NS behavior of habituated mice was com-
pared with NS behavior in mice tested without habituation.

Marble burying

Individual mice were removed from their home cages and
placed into a large novel cage (10″ × 18″ × 10″) with 20 black
glass marbles arranged in a 4 × 5 grid pattern on top of 2″ of a
normal bedding substrate. The test cage had no lid, and the
room was brightly lit. Mice were left undisturbed in the test
cage for 30 min. At the end of the test, mice were returned to
their home cages. Digital photographs of each test cage were
captured at uniform angles and distances. The number of mar-
bles buried was determined by counting the marbles that
remained unburied and subtracting this number from 20. A
marble was counted as “buried” if at least 2/3 of it was sub-
merged by bedding (Angoa-Pérez et al. 2013; Tillage et al.
2020). For pharmacological experiments, all drugs were ad-
ministered by i.p. injection 30 min prior to testing, as de-
scribed (Jimenez-Gomez et al. 2011; Sugimoto et al. 2007).

c-fos immunohistochemistry

Dbh −/− and control mice were exposed to MB or NS tasks,
after which they were left undisturbed in the test cage.
Ninety min following the start of the task, mice were eutha-
nized with an overdose of sodium pentobarbital (Fatal Plus,
150 mg/kg, i.p.; Med-Vet International, Mettawa, IL) and
transcardially perfused with cold 4% paraformaldehyde in
0.01 M PBS. After extraction, brains were postfixed for
24 h in 4% paraformaldehyde at 4 °C, and then transferred
to 30% sucrose/PBS solution for 72 h at 4 °C. Brains were
then embedded in OCT medium (Tissue-Tek) and sectioned
by cryostat into 40-um coronal slices at the level of the ACC
and LC. Another group of Dbh −/− and control mice was
selected for baseline comparisons of c-fos induction in the
LC and ACC; these animals were naïve to the tasks and
were removed from their home cages and then immediately
euthanized and perfused.

Brain sections were blocked for 1 h at room temperature in
5% normal goat serum (NGS) in 0.01 M PBS/0.1% Triton-X
permeabilization buffer. Sections were then incubated for 48 h
at 4 °C in NGS blocking/permeabilization buffer, including

primary antibodies raised against c-fos (rabbit anti-c-fos,
Millipore, Danvers, MA, ABE457; 1:5000) and NET (mouse
anti-NET; MAb Technologies, Neenah, WI, NET05-2;
1:1000). After washing in 0.01 M PBS, sections were incu-
bated for 2 h in blocking buffer, including goat anti-rabbit
AlexaFluor 568 and goat anti-mouse AlexaFluor 488
(Invitrogen, Carlsbad, CA; 1:500). After washing, the sections
were mounted onto Superfrost Plus slides and coverslipped
with Fluoromount-G plus DAPI (Southern Biotech,
Birmingham, AL).

Fluorescent imaging and c-fos quantification

Fluorescent micrographs of immunostained sections were ac-
quired on a Leica DM6000B epifluorescent upright micro-
scope at 20x magnification with uniform exposure parame-
ters. One representative atlas-matched section of the LC and
the ACC was selected from each animal for c-fos quantifica-
tion. An identically sized region of interest was drawn for all
images to delineate the borders of both structures in all ani-
mals after each behavior. Image processing and analysis were
performed using the ImageJ software. Our analysis pipeline
includes background subtraction, intensity thresholding (Otsu
method), and automated quantification within defined regions
of interest, guided by size and shape criteria for c-fos+ cells
(size: 50–100 mm2, circularity: 0.6–1.0). The NET antibody
was used to define LC cell bodies and identify axon terminals
in apposition to ACC neurons.

Statistical analysis

For NS experiments, the effects of time on shredding in Dbh
−/− and Dbh +/− mice were compared using a two-way re-
peated measures ANOVA (genotype × time), with post hoc
Sidak’s test for multiple comparisons. The effects of pre-
habituation to the test cage on shredding were also compared
by two-way repeated measures ANOVA for each genotype
(genotype × habituation time), with post hoc Sidak’s test for
multiple comparisons. NS behavior between genotypes after
24 h, NS behavior in DOPS- and vehicle-treated Dbh −/−
mice, and between-genotype NS and sleep latencies were
compared by unpaired t test. NS behavior in DOPS- and
vehicle-treated Dbh −/− mice was also assessed by unpaired
t test. The effects of anti-adrenergic drugs on NS compared to
vehicle were assessed using a one-way ANOVA, with post
hoc Dunnett’s test for multiple comparisons. For the MB ex-
periments, genotype differences in burying were assessed by
unpaired t test. The effects of anti-adrenergic drugs on MB
compared to vehicle were assessed by one-way repeated mea-
sures ANOVA, with post hoc Dunnett’s test for multiple
comparisons.

For c-fos quantification, genotype differences were com-
pared in the LC and ACC at baseline and after MB or NS.

1976 Psychopharmacology (2020) 237:1973–1987



Comparisons were made within behavioral tasks and between
genotypes by multiple t tests using the Holm-Sidak correction
for multiple comparisons. The threshold for adjusted signifi-
cance was set at p < 0.05, and two-tailed variants of tests were
used throughout. Graphical data are presented as group mean
± SEM. Statistical analyses were conducted and graphs were
made using Prism Version 7 (GraphPad Software, San Diego,
CA).

Results

Central norepinephrine is necessary and sufficient
for stress-induced nestlet shredding behavior

A cohort of age- and sex-matched Dbh −/− and Dbh +/−
control mice were compared in the NS task, with three differ-
ent task durations on three different test days: 30min on day 1,
60 min on day 2, and 90 min on day 3. A two-way repeated
measures ANOVA (genotype × task duration) showed a main
effect of time (F(2,24) = 20.93, p < 0.0001), a main effect of
genotype (F(1,12) = 171.2, p < 0.0001), and a time × geno-
type interaction (F(2,24) = 15.81, p < 0.001). Post hoc analy-
ses revealed that control mice shredded more nestlets at
60 min (75.44%) and 90 min (96.16%) than at 30 min
(22.82%) (p < 0.0001), while shredding was minimal in Dbh
−/− mice at all time points (p > 0.05 for all Dbh −/− time
point comparisons) (Fig. 1a). After animals were individually
housed with nestlets for 24 h, all mice of both genotypes
shredded 100% of their nestlets (t(14) = 0, p > 0.99)
(Fig. 1b). Acute restoration of central NE synthesis in Dbh
−/− mice with DOPS + benserazide increased shredding to
control levels at the 60-min time point (81.68% vs. 6.88%;
t(9) = 10.97, p < 0.0001) (Fig. 1c).

The effect of 3-h habituation to the test cage on NS
(60-min time point) was compared between genotypes.
A repeated measures two-way ANOVA (genotype × ha-
bituation status) showed a main effect of habituation sta-
tus (F(1,10) = 9.47, p = 0.01), a main effect of genotype
(F(1,10) = 23.62, p < 0.001), and a strong trend for a ge-
notype × habituation status interaction (F(1,10) = 4.71,
p = 0.06). Post hoc comparisons revealed that habituation
reduced NS in control mice compared to no habituation
(74.1% vs. 34.84%; p < 0.01), but NS in Dbh −/− mice
did not differ significantly after habituation (14.19% vs.
7.41%; p > 0.05) (Fig. 1d).

To characterize genotype differences in behavioral rep-
ertoires during NS, Dbh −/− and Dbh +/− mice were
compared for their latencies to shred and to sleep during
a 90-min test. Though there was no significant difference
between genotypes for latency to sleep (82.6 ± 4.1 vs.
81.9 ± 3.7 min; t(10) = 0.12, p > 0.05), Dbh −/− mice
demonstrated much longer latencies to shred than Dbh

+/− mice (73.9 ± 6.4 vs. 30.1 ± 3.4 min; t(10) = 6.04,
p < 0.001). Thus, the absence of NS behavior in Dbh
−/− cannot be explained by reduced wakefulness during
the NS task. Instead of shredding, Dbh −/− mice engaged
in qualitatively unusual behaviors such as frequent bouts
of grooming and unsupported rearing. Interestingly, Dbh
−/− mice also exhibited two behaviors never observed in
Dbh +/− controls. The first was episodes of brief shred-
ding lasting only a few seconds that fell below the 2-min
criteria for assessing latency to shred, and which resulted
in minimal dispersal of nestlet material. By contrast, once
Dbh +/− mice began to shred, they continued to do so
vigorously until the entire nest was constructed. The sec-
ond behavior unique to the Dbh −/− mice was a tendency
to fall asleep outside of nests or on top of unshredded
nestlet squares; roughly half of all animals fell asleep
within the 90-min task window, but 100% of Dbh +/−
fell asleep in fully shredded nests compared to 0% of
Dbh −/− mice.

Nestlet shredding can be suppressed in control mice
by anti-adrenergic drugs

Because Dbh +/− mice demonstrated robust but not max-
imal NS behavior at 60 min (Fig. 1a, d), we used this task
duration for pharmacological experiments. Control mice
were administered either saline vehicle or experimental
compounds in their home cages 15 min prior to testing.
The test period began once the mouse was placed into a
new clean cage with a pre-weighed cotton nestlet square.
The experimental compounds used here were the follow-
ing anti-adrenergic drugs and their mechanisms of action:
the α1AR antagonist prazosin (0.5 mg/kg), the βAR an-
tagonist propranolol (10 mg/kg), the α2AR antagonist
atipamezole (0.5 mg/kg), the α2AR agonists guanfacine
(0.3 mg/kg) and dexmedetomidine (0.02 mg/kg), and the
DBH inhibitor nepicastat (100 mg/kg). A one-way
ANOVA showed a main effect of treatment (F(6,41) =
126.3, p < 0.0001). Post hoc comparisons revealed that
propranolol (p < 0.0001), guanfacine (p < 0.0001),
dexmede tomid ine (p < 0 .0001 ) , and nep icas t a t
(p < 0.0001) reduced NS compared to vehicle. There was
no significant difference in NS in the prazosin group com-
pared to saline (p > 0.05). By contrast, atipamezole signif-
icantly increased NS behavior compared to vehicle
(p = 0.03) (Fig. 2a).

To rule out the contribution of peripheral βARs and
determine whether different subtypes of central βAR reg-
ulate the expression of NS, another group of Dbh +/−
mice was tested in a separate series of experiments. A
one-way ANOVA of treatment efficacy showed a main
effect of treatment (F(4, 28) = 10.91, p < 0.0001). Post
hoc analyses revealed that the peripheral βAR antagonist
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nadolol (10 mg/kg) was ineffective at reducing NS com-
pared to vehicle (p > 0.05), as was the selective β1 antag-
onist betaxolol (5 mg/kg) (p > 0.05) and the selective β2
antagonist ICI 118,551 (1 mg/kg) (p > 0.05). However, a
cocktail of the β1 and β2AR antagonists was sufficient to
reduce NS compared to vehicle (p < 0.001), consistent
with a partially redundant role for β1 and β2 ARs in
NS behavior (Fig. 2b).

Genetic or pharmacological suppression
of norepinephrine transmission attenuates marble
burying

Dbh −/− and Dbh +/− control mice were assessed in the MB
task. Compared to control mice, Dbh −/− mice buried fewer
marbles (t(26) = 2.37, p = 0.03) (Fig. 3a). Because NE is im-
portant for arousal and wakefulness, a subset of mice was

Fig. 1 Assessment of nestlet shredding behavior in Dbh −/− and Dbh
+/− mice. a Regardless of task duration, NS behavior was profoundly
reduced in Dbh −/− mice (n = 7) compared to controls (n = 7). In control
mice, NS increased when task duration was extended to 60 or 90 min
compared to 30 min, but NS behavior in Dbh −/− mice (n = 7) did not
increase as a function of task duration. bWhen mice were singly housed
with nestlets overnight, NS reached 100% and did not differ betweenDbh
−/− (n = 8) and control mice (n = 8). cRestoring central NE levels inDbh
−/− mice by treating them with DOPS (1 g/kg) + benserazide

(250 mg/kg) 5 h prior to testing (n = 5) increased NS compared to
vehicle (VEH; n = 6). d 3-h habituation to the test cage significantly
reduced NS in control mice (n = 6), indicating that NS was
mediated by acute cage-change stress. Habituation did not affect NS in
Dbh −/−mice (n = 6). e During a 90-min test period,Dbh −/−mice (n =
6) exhibited a longer latency to shred but not to sleep compared to Dbh
+/− controls (n = 6). f Representative nests after 60 min forDbh +/− and
Dbh −/− mice. ****p < 0.0001, ***p < 0.001, **p < 0.01, n.s., not
significant
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fi lmed to determine whether Dbh − /− mice were
burying fewer marbles because they were falling asleep.

Neither control nor Dbh −/− mice fell asleep during the MB
task, and mice of both genotypes engaged in typical

Fig. 3 Consequences of genetic and pharmacological disruption of
norepinephrine transmission on marble burying. a Compared to Dbh
+/− controls (n = 15), Dbh −/− (n = 13) mice buried fewer marbles. b
In control mice, PROP (10 mg/kg) was ineffective, but PRAZ

(0.5 mg/kg), co-administration of PRAZ + PROP, or GUAN
(0.3 mg/kg) reduced MB compared to VEH (n = 10, repeated
measures). c Representative images of MB cages from Dbh +/− mice
treated with VEH compared to GUAN. ***p < 0.001, *p < 0.05

Fig. 2 Anti-adrenergic drugs suppress nestlet shredding in control mice.
a Compared to vehicle-treated mice (VEH; n = 7), NS was reduced by
propranolol (10 mg/kg; PROP; n = 7), guanfacine (0.3 mg/kg; GUAN;
n = 7), dexmedetomidine (0.02 mg/kg; DEX; n = 7), and nepicastat
(100 mg/kg, NEP; n = 7). NS was enhanced by atipamezole (0.5 mg/kg;
ATIP; n = 7) and unaffected by prazosin (0.5 mg/kg; PRAZ; n = 6). b

Compared to VEH-treated mice (n = 6), nadolol (10 mg/kg; NAD; n =
6), betaxolol (5 mg/kg; BETAX; n = 7), and ICI-118,551 (1 mg/kg; ICI;
n = 7) were ineffective at reducing NS, but the combination of BETAX
and ICI (B + I; n = 7) reduced NS compared to VEH. ****p < 0.0001,
***p < 0.001, *p < 0.05
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behaviors, including grooming, rearing, and sniffing. We did
notice that some Dbh −/− mice occasionally exhibited quali-
tatively unusual behaviors not observed in control mice, such
as sitting on top of the marbles (data not shown).

Dbh +/− control mice were used for the pharmacological
characterization of anti-adrenergic drug effects on MB. The
experimental compounds usedherewere prazosin (0.5mg/kg),
propranolol (10mg/kg), a cocktail of prazosin and propranolol
at the same doses, and guanfacine (0.3 mg/kg). A one-way
repeated measures ANOVA of treatment efficacy revealed a
main effect of treatment (F(2,18) = 12.11, p < 0.001). Post hoc
comparisons demonstrated that, compared to vehicle, prazosin
(p < 0.05), prazosin + propranolol (p < 0.001), and guanfacine
(p < 0.001) potently suppressed MB compared to vehicle,
while propranolol alone was not effective (p > 0.05) (Fig. 3b).

Dbh −/− mice exhibit normal anxiety-like behavior
in the elevated zero maze

Dbh −/− and Dbh +/− mice have previously been compared
in conflict-based anxiety tasks, including the elevated plus
maze (EPM), open field test, and light/dark box, and no
knockout phenotypes have been observed (Marino et al.
2005; Schank et al. 2008). To confirm that their MB and NS
phenotypes were unique to stress-induced repetitive behaviors
and unrelated to general anxiety, we evaluated the perfor-
mance of knockouts and controls in the EZM, another canon-
ical anxiety assay. There were no statistically significant ge-
notype differences on anxiety-like measures in this task, in-
cluding the percent of time spent in the open segment (t(17) =
0.01, p > 0.05) (Fig. 4a) or open segment entries (t(17) = 1.10,
p > 0.05) (Fig. 4b). Dbh −/− mice did exhibit diminished lo-
comotor activity during the EZM task; they traveled at a re-
duced average velocity compared to controls (t(17) = 2.34,
p = 0.03) (Fig. 4c) and tended to travel shorter distances, al-
though the latter did not reach statistical significance (t(17) =
1.92, p = 0.07) (Fig. 4d). Attenuation of these behavioral mea-
sures of arousal in Dbh −/− mice is consistent with previous
reports that these animals exhibit reduced locomotor re-
sponses to novel environments (Porter-Stransky et al. 2019;
Weinshenker et al. 2002).

NE-deficient mice show diminished marble burying-
and nestlet shredding-induced c-fos expression
in the anterior cingulate cortex

Dbh −/− and Dbh +/− control mice were euthanized for
quantification of c-fos+ cells in the LC and ACC at baseline
and following either NS or MB. At baseline, c-fos expression
was minimal and there were no significant genotype differ-
ences in c-fos+ cells in either the LC (t(4) = 0.76, p > 0.05) or
the ACC (t(4) = 0.39, p > 0.05) (Fig. 5a). Both MB and NS
induced robust c-fos expression in both regions, but genotype

differences emerged. Following MB, Dbh −/− mice had sig-
nificantly fewer c-fos+ cells in the ACC (t(7) = 6.38,
p < 0.001), but normal c-fos induction in the LC (t(7) = 0.07,
p > 0.05) (Fig. 5b). Following NS, Dbh −/− mice had signif-
icantly fewer c-fos+ cells in the ACC (t(10) = 5.77, p < 0.001)
and the LC (t(10) = 5.66, p < 0.001) compared to control mice
(Fig. 5c).

Discussion

Central norepinephrine is necessary and sufficient
for stress-induced nestlet shredding behavior

In this study, we compared NS behavior induced by cage-
change stress in NE-deficient and control mice. We found that
over the course of 90 min, NE-deficient mice demonstrated
virtually no NS, whereas their NE-competent littermates vig-
orously shredded nearly 100% of their nestlets. Importantly,
we observed no genotype differences in NS behavior when
micewere given 24 h to shred, indicating that the NE-deficient
mice are capable of shredding but simply do not do so with
any urgency when placed in a new cage. This finding provides
evidence that NE is necessary for rapid NS behavior following
cage change, but not for typical nest-building behavior in gen-
eral. When we acutely restored central NE to Dbh −/− mice
using DOPS + benserazide, rapid NS behavior was rescued to
control levels. This key finding demonstrates that transient
pharmacological restoration of central NE synthesis and trans-
mission is sufficient to support stress-induced NS behavior in
NE-deficient animals.

Norepinephrine-deficient mice bury fewer marbles
in the marble burying task

Although MB is often interpreted as an anxiety-like behavior,
performance in theMB task does not correlate with behavioral
measures in other models of anxiety, such as the EPM or open
field test (Jimenez-Gomez et al. 2011; Thomas et al. 2009).
However, MB behavior is highly correlated with NS behavior
and does not habituate after repeated exposures, indicating
that it better reflects compulsive behavior (Angoa-Pérez
et al. 2013; Li et al. 2006; Witkin 2008). Indeed, NE-
deficient mice exhibited normal anxiety-like behavior in the
EZM but buried fewer marbles than controls in the MB task.
This dissociation in behavioral phenotypes is consistent with
previously published reports of normal Dbh −/− behavior in
canonical conflict-based anxiety paradigms (Marino et al.
2005; Schank et al. 2008) and suggests that NE may play a
more important role in the expression of stress-induced com-
pulsive behaviors than in innate anxiety (Brady 1994; Kedia
and Chattarji 2014; Mantsch et al. 2010; McCall et al. 2015;
Valentino et al. 1993).
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Nestlet shredding and marble burying can be
suppressed in control mice by anti-adrenergic drugs

NE acts primarily through α1 and βARs to exert
neuromodulatory effects on target cells, and NE transmission
can be decreased by activation of α2 inhibitory autoreceptors.
To determine which ARs are involved in the expression of
stress-induced NS behavior, we treated control mice with a
battery of anti-adrenergic drugs that block ARs on target cells
(α1 and βAR antagonists), activate inhibitory autoreceptors
(α2AR agonists), or prevent NE biosynthesis (DBH inhibi-
tors). Prazosin, an α1AR antagonist, did not significantly af-
fect NS compared to saline vehicle. However, disruption of
NE synthesis with nepicastat, reduction of NE release with the
α2AR agonists guanfacine and dexmedetomidine, or antago-
nism of βARs with propranolol profoundly suppressed NS
behavior in control mice. In a separate set of experiments to
determine the requirement of central β1 and β2 AR activation
for NS behavior, we found that blockade of βARs outside the
brain with the peripherally restricted antagonist nadolol did
not suppress NS. We also found that selective antagonism of
either β1ARs or β2ARs alone was not sufficient to suppress
NS, but NS could be reduced by co-administration of β1- and
β2AR-selective antagonists. Thus, the effect of propranolol
on NS behavior is likely to be mediated by central β1 and

β2ARs, which have overlapping distributions in some brain
regions like the ACC, amygdala, and hippocampus, and may
serve partially redundant signaling functions (Abraham et al.
2008; Qu et al. 2008; Rainbow et al. 1984; Zheng et al. 2015;
Zhou et al. 2013).

NS behavior was increased when NE transmission was
enhanced via the α2AR antagonist atipamezole, which blocks
α2 inhibitory autoreceptors. In addition, we found that anti-
adrenergic drugs potently suppressed MB behavior in control
mice. Guanfacine and prazosin, but not propranolol, dramati-
cally reduced MB. These results are consistent with the liter-
ature implicating α1AR activation in behavioral reactivity to
novelty (Stone et al. 2006), maintenance of generalized arous-
al (Broese et al. 2012; Porter-Stransky et al. 2019; Stone et al.
2003), and stress-induced anxiety (Rasmussen et al. 2016;
Skelly and Weiner 2014).

NE-deficient mice show diminished c-fos induction
in the anterior cingulate cortex following nestlet
shredding and marble burying

The ACC is implicated in the pathophysiology of OCD
(Brennan et al. 2015; McGovern and Sheth 2017), and surgi-
cal ablation of the ACC can relieve OCD symptoms (Jung
et al. 2006; Kim et al. 2003). Furthermore, the ACC expresses

Fig. 4 Assessment of Dbh −/−
and Dbh +/−mice in the elevated
zero maze. Dbh −/− mice did not
differ from controls on anxiety-
like measures, including a% time
in the open (anxiogenic) segment
and b entries into the open
segment. There was a significant
genotype difference in c average
velocity and a trend for d total
distance traveled. N = 9–10 per
group, *p < 0.05

1981Psychopharmacology (2020) 237:1973–1987



all subtypes of ARs (Crino et al. 1993; Rainbow et al. 1984)
and is bidirectionally connected to the LC (Gompf et al. 2010;
Loughlin et al. 1982). Baseline genotype differences in c-fos
induction in the LC andACCwere not observedwhen animals
were euthanized immediately after removal from their home
cages. However, c-fos induction was dramatically reduced in
the ACC of NE-deficient mice after NS and MB compared to
controls. After NS, but notMB, c-fos induction was reduced in
the LC of NE-deficient mice compared to controls.

The reason for the emergence of genotype differences in
LC activity following NS but not MB is unclear but could be
related to task duration and complexity, or possibly to engage-
ment of other structures and neurotransmitter systems that
were not considered in our analysis. Given that hyperactivity
of the ACC (Fitzgerald et al. 2005; Mavrogiorgou et al. 2002),
reduced endocrine response to clonidine (Hollander et al.
1991; Siever et al. 1983), and abnormal catecholamine metab-
olism (Benkelfat et al. 1991; Schindler et al. 2000) have all
been reported in patients with OCD, we propose that exces-
sive NE transmission to the ACCmay account for some of the
cognitive and affective symptoms of OCD (De Geus et al.
2007).

Clinical implications

Although clinical studies examining the effects of α1AR
blockade on OCD symptoms are scarce (Feenstra et al.
2016), our findings suggest that further clinical trials with
prazosin for OCD patients are justified. The ability of
guanfacine to suppress MB is consistent with evidence
from the limited number of studies showing that other
α2AR agonists like clonidine and dexmedetomidine can
reduce MB (Millan et al. 2000; Young et al. 2006).
However, clonidine and dexmedetomidine have potent
sedative properties, which can hamper the interpretation
of their behavioral effects in rodents and constrains their
tolerability for psychiatric patients. At the dose used in
this study, guanfacine had no sedative or motor-
impairing effects; in fact, the sedative and motor-
impairing ED50 for guanfacine in rodents is roughly
five-fold higher than the dose used in the present study
(Luttinger et al. 1985; Scholtysik 1980; Van Der Laan
et al. 1985). Clinically, guanfacine is preferred over clo-
nidine for treatment of pediatric ADHD due to its lack of
sedative effects and superior tolerability (Arnsten et al.

Fig. 5 Comparison of nestlet shredding- and marble burying-induced c-
fos expression in anterior cingulate cortex and locus coeruleus between
Dbh −/− and Dbh +/− mice. a In experimentally naïve mice at baseline,
c-fos induction was minimal in the ACC (top rows) and LC (bottom
rows), and there were no differences in c-fos+ cells between Dbh −/−
(n = 3) and control mice (n = 3) in either region. bAfter MB, fewer c-fos+

cells were detected in the ACC of Dbh −/− mice (n = 4) compared to
control mice (n = 5), but no genotype differences were found in the LC.
c After NS, fewer c-fos+ cells were detected in both the ACC and LC of
Dbh −/− mice (n = 6) compared to control mice (n = 6). ***p < 0.001,
n.s., not significant
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1988; Posey and McDougle 2007; Sallee and Eaton 2010;
Sallee et al. 2009). Propranolol and guanfacine are well
tolerated by patients and have been used both on- and off-
label for the treatment of other psychiatric disorders
(Chappell et al. 1995; Cummings et al. 2002; Lederman
1999; Steenen et al. 2016). Nepicastat and guanfacine are
effective for attenuating compulsive drug-seeking behav-
ior in animal models of addiction (Colombo et al. 2014;
Le et al. 2011; Schroeder et al. 2013), as well as relapse in
patients with substance abuse disorders (De La Garza
et al. 2015). In scattered psychiatric case studies, the
α2AR agonists guanfacine and clonidine have substantial-
ly improved OCD symptoms in certain patients
(Knesevich 1982; Lipsedge and Prothero 1987;
Taormina et al. 2016).

Limitations and future directions

It is noteworthy that mice with genetic 5-HT depletion
(Tph2 −/−) display exaggerated MB and NS behaviors
(Angoa-Pérez et al. 2013; Angoa-Pérez et al. 2012; Kane
et al. 2012). MB and NS also show predictive validity in
pharmacological experiments; SSRIs and tricyclic antidepres-
sants reduce these repetitive behaviors (Jimenez-Gomez et al.
2011; Li et al. 2006).

Disen tang l ing the ro le of the NE and 5-HT
neuromodulatory systems in the expression of stress-
induced compulsive behaviors will be a challenging but
worthwhile endeavor. From a circuitry standpoint, it is
generally agreed that serotonergic neurons in the raphe
nuclei exert a tonic inhibitory influence on the LC, while
the LC exerts a tonic excitatory influence on serotonergic
neurons in the dorsal raphe (Kim et al. 2004; Pudovkina
et al. 2002; Segal 1979; Szabo and Blier 2001). Thus, a
possible explanation for the excessive MB and NS behav-
ior observed in 5-HT-deficient mice is that the LC may be
hyperactive in the absence of serotonergic modulation.
This hypothesis could be tested by administering anti-
adrenergic agents, such as nepicastat or guanfacine, to 5-
HT-deficient mice and measuring NS and MB behavior
when NE transmission is reduced.

A limitation of our study is that we cannot infer a causal
role for LC-NE transmission to the ACC in the expression of
NS and MB behaviors. More sophisticated studies using tools
to manipulate distinct circuits will be required to functionally
dissect the NE-dependent network that governs OCD-like be-
havior. Furthermore, our finding thatβARsmediate NS, while
α1ARs mediated MB, suggests that different cell types and/or
circuits may support these correlated but distinct behaviors.
The requirement of α1AR activation for MB but not NS may
be related to the size and complexity of the test cage for each
task. For MB, testing occurred in large cages “enriched” with
marbles, whereas NS was performed in a normal mouse cage

with clean bedding and a standard nestlet square. The relative
complexity of the MB test environment might activate
arousal-promoting α1ARs that are not engaged in the simpler
NS environment (Stone et al. 1999; Stone et al. 2005; Stone
et al. 2004; Stone et al. 2006). The requirement of βARs for
NS but not MB may be related to the longer duration of the
task (60 min for NS vs. 30min forMB), which could allow for
synergistic actions of corticosterone on βAR signaling in
stress-responsive brain regions (Gorman et al. 1993;
Roozendaal et al. 2004, 2006).

Finally, this study focused on neuronal activity in two brain
regions, the LC and ACC, following MB and NS. The central
NE system is anatomically and functionally complex
(Robertson et al. 2013, 2016; Uematsu et al. 2015), and dis-
crete manipulations of genetically defined subpopulations of
NE neurons can produce unique or even opposite effects on
behavior (Aston-Jones and Waterhouse 2016; Chen et al.
2019; Flavin and Winder 2013; McCall et al. 2017). Moving
forward, it will be important to consider the contribution of
noradrenergic brainstem groups besides the LC, such as the
A2 neurons residing in the nucleus of the solitary tract, to the
expression of these behaviors (Itoi and Sugimoto 2010;
Rinaman 2010).

Conclusions

In summary, these findings support an expanded model of
OCD pathophysiology that incorporates dysregulation of cen-
tral NE signaling, possibly between the LC and ACC. In ad-
dition, we propose that anti-adrenergic agents should be
assessed for clinical efficacy in treating OCD, since many of
these drugs are already used both on- and off-label for the
treatment of related psychiatric diseases. Given the high cost
and failure rate of psychiatric drug testing, the possibility of
repurposing an approved drug such as guanfacine to treat
OCD represents an attractive alternative to new drug develop-
ment (Lee and Kim 2016).
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