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Abstract
Rationale and objectives Simultaneous alcohol and nicotine consumption occurs in the majority of individuals with
alcohol use disorder (AUD) and nicotine dependence. Varenicline (Var) is used to assist in the cessation of nicotine
use, while naltrexone (Nal) is the standard treatment for AUD. Despite evidence that ethanol (EtOH) and nicotine (NIC)
co-use produces unique neuroadaptations, preclinical research has focused on the effects of pharmacotherapeutics on a
single reinforcer. The current experiments examined the effects of Var and Nal on EtOH, NIC, or EtOH+NIC intake.
Methods Animals were randomly assigned to one of four drinking conditions of 24-h access to a three-bottle choice
paradigm, one of which always contained water. Drinking conditions were water only, 0.07 and 0.14 mg/mL NIC (NIC
only), 15% and 30% EtOH (EtOH only), or 15% and 30% EtOH with 0.14 mg/mL NIC (EtOH+NIC). The effects of Var
(0, 1, or 2 mg/kg) or Nal (0, 1, or 10 mg/kg) injections on maintenance and relapse consumption were determined during
four consecutive days.
Results Var reduced maintenance and relapse NIC intake but had no effect on EtOH or EtOH+NIC drinking. Conversely, Nal
reduced EtOH maintenance and relapse drinking, but had no effect on NIC or EtOH+NIC drinking.
Discussion The results indicate the standard pharmacological treatments for nicotine dependence and AUD were effective at
reducing consumption of the targeted reinforcer but neither reduced EtOH+NIC co-use/abuse. These findings suggest that co-
abuse may promote unique neuroadaptations that require models of polysubstance abuse to develop pharmacotherapeutics to
treat AUD and nicotine dependence.
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Introduction

Alcohol use disorder (AUD) and nicotine dependence cause,
contribute to, and exacerbate many serious health problems
and are among the top contributors to preventable deaths oc-
curring worldwide (Grucza and Bierut 2006). Past research
has shown that more than 80% of those afflicted with AUD
also exhibit comorbid use of nicotine in comparison to 34% of
non-alcoholics (John et al. 2003a, b). Likewise, individuals
suffering from nicotine dependence are 10 times more likely
to be diagnosed with AUD in their lifetime (DiFranza and
Guerrera 1990).

The amount of nicotine use is positively correlated with
the rate of AUD, and smoking enhances alcohol consump-
tion in AUD individuals compared with non-smoking
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AUD individuals (Daeppen et al. 2000; Gulliver et al.
1995). Additionally, the severity of AUD has also been
positively correlated to a number of other elements includ-
ing urge to smoke, years smoked, number of attempts to
quit smoking, and age an individual began smoking (John
et al. 2003a, b). The intensity of nicotine dependence has
been associated with exacerbated bouts of relapse in alco-
holics (DiFranza and Guerrera 1990). AUD individuals
who concurrently stop smoking have a better chance of
remaining abstinent than those who continue to smoke
(Daeppen et al. 2000; Gulliver et al. 1995). Preclinical
research has consistently reported that nicotine can poten-
tiate EtOH-seeking, and drug-seeking is enhanced in rats
simultaneously co-administering EtOH and nicotine (Lê
et al. 2014; Hauser et al. 2012a, b). These preclinical find-
ings are paralleled in the human literature that indicate
individuals concurrently diagnosed with AUD and nicotine
dependence have significantly worse clinical outcomes
than those who are only diagnosed with AUD or nicotine
dependence (Lajtha and Sershen 2010; Grant et al. 2004).

There are no reports of humans injecting nicotine. In con-
trast, the use of oral spitless products (e.g., snus, a moist pow-
der tobacco packet in which the byproduct is swallowed) has
increased in the USA in the last 20 years (Delnevo et al. 2012).
In 2011, Americans spent over 340 million dollars on snus
products (Delnevo et al. 2012). In Sweden and Norway, the
average annual intake of snus approaches the annual com-
bined budgets of NIAAA and NIDA at 1.3 billion dollars
(Digard et al. 2009).

The mixing of alcohol and nicotine for oral consumption is
evident throughout most of the USA and the rest of the world.
In 2003, the creation of the Nicotini was considered one of the
top 10 Ideas of the Year by the New York Times Magazine
(NYTM 2003). Nicotine-infused alcohols appear to have
established a foothold in high-end bars throughout the US
(Martell 2014). In Europe, there are established brands of
nicotine-infused alcohols as well as nicotine-infused bitters
and salt for the construction of cocktails. According to
European standards, there are no known biological conse-
quences of infusing nicotine into alcoholic solutions.
Therefore, recently developed animal models of concurrent
alcohol and nicotine oral consumption are ecologically valid
and that validity is increasing in relevance (Hauser et al.
2012b; Kasten et al. 2016).

The United States Food and Drug Administration (FDA)
approved varenicline (Var) for smoking cessation in 2006
(Jorenby et al. 2006; Hurt et al. 2018). Var is themost effective
monotherapy at increasing the likelihood of smoking absti-
nence (Gonzales et al. 2006; Jorenby et al. 2006).
Pharmacological analyses have indicated multiple sites of ac-
tion by Var that maymediate the effects on smoking cessation.
Var exhibits the strongest affinity for the α4β2 nicotinic ace-
tylcholine receptor (nAChR), where it acts as a partial agonist.

Var interacting with this receptor has been postulated to be the
mechanism for clinical efficacy. Var is also a less potent full
agonist at α7 and α3β4 nAChRs (Rollema et al. 2007; Grady
et al. 2010) and a potent full agonist of 5HT3 receptors
(Lummis et al. 2011). It is important to note that nicotine has
a higher affinity for the 5HT3 receptors than all cholinergic
receptors (Gurley and Lanthorn 1998), suggesting maximally
efficacious pharmacotherapies for nicotine dependence are
likely to involve an interaction with this system as well.

Preliminary clinical data indicated that Var treatment of
nicotine-dependent individuals was associated with a decrease
in alcohol consumption (Erwin and Slaton 2014). Research
conducted with animals and humans have suggested a role
for nAChRs in alcohol use disorder (Blomqvist et al. 1993;
Chi and de Wit 2003). Activation of the mesocorticolimbic
dopamine system by alcohol and the resulting rewarding ef-
fects have been consistently shown to involve central nAChR
stimulation (Blomqvist et al. 1993; Soderpalm et al. 2000). A
more complete examination of decreased alcohol consump-
tion during Var treatment indicated that it was able to decrease
alcohol craving (de Bejczy et al. 2015). Conversely, it is im-
portant to note that Var failed to decrease overall alcohol
drinking compared with placebo-treated individuals (de
Bejczy et al. 2015).

Naltrexone (Nal), a nonselective opioid receptor antago-
nist, has been shown to reduce the reinforcing effects of alco-
hol as well as cravings associated with alcohol use (Volpicelli
et al. 1992; O’Malley et al. 1996; Soyka and Muller 2017).
However, these studies also demonstrate the efficacy of Nal is
limited. Overall, the efficacy of Nal for the treatment of AUD
is equivocal. Nal is effective at treating AUD in a subset of
patients (Gueorguieva et al. 2010) while in other patient pop-
ulations, Nal has very limited effects (c.f., Petrakis et al.
2012). Nal efficacy for the treatment of AUD is further com-
plicated by data reporting only 1 in 10 AUD patients are
actually prescribed relevant pharmacotherapy (Thompson
et al. 2017). In addition, Nal suffers from low patient adher-
ence (Thompson et al. 2017).

Although nicotine has little or no action on opioid recep-
tors, the utility of using Nal as a treatment for nicotine depen-
dence has been examined. Clinical trials investigating Nal and
smoking cessation have demonstrated minor short-term in-
creases in abstinence rates that diminish over time (Covey
et al. 1999; King et al. 2012) or no significant difference from
placebo (Wong et al. 1999).

Together, AUD and nicotine dependence are the most com-
mon comorbid addiction diagnosis (Grant et al. 2004). It has
been suggested that the prevalence of AUD and nicotine de-
pendence comorbidity may stem from interconnected mecha-
nisms underlying these particular disorders (Grucza and
Bierut 2006). Preclinical studies indicate that the co-abuse of
EtOH+NIC can produce unique CNS changes not observed
with abuse of either drug separately (Deehan et al. 2015), and
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combinations of EtOH and NIC can have synergistic CNS
rewarding effects (Truitt et al. 2015).

A better understanding of how efficacious therapeutic
drugs are during the distinct condition of concurrent consump-
tion is necessary in order to develop better treatments and
preventive measures. Research commonly focuses on the ef-
fects of pharmacotherapeutics on a single reinforcer despite
mounting preclinical evidence that chronic consumption of
EtOH and NIC produces unique neuroadaptations that lessen
the efficacy of pharmacotherapies designed to treat AUD or
nicotine dependence. Recent data examining the effects of
varenicline on concurrent intravenous (i.v.) nicotine and oral
alcohol has indicated no reduction in self-administration
(Maggio et al. 2018a). Therefore, the current experiments ex-
amined the effects of Var or Nal on EtOH, NIC, or EtOH+NIC
consumption to test the hypothesis that these compounds
would be less effective in reducing NIC and EtOH intake,
respectively, when co-abused compared with when abused
individually.

Materials and methods

Animals

Adult female alcohol-preferring (P) rats from the 74th gener-
ation weighing 250–300 g at the start of the experiment were
used. Female animals were utilized in the present study due to
the long-term nature of the experiments and ability tomaintain
stable body weights over time. Epidemiological studies also
indicate the number of females diagnosed with AUD is in-
creasing in addition to experiencing heightened susceptibility
to ethanol injury compared with males (Ceylan-Isik et al.
2010). Additionally, despite fewer females regularly using
nicotine products, studies show lower quit rates than males
(Smith et al. 2017; Wetter et al. 1999). These differences are
among the growing evidence of sex dimorphism in response
to EtOH and NIC as well as pharmacotherapies and highlight
the importance of examining females in models of co-abuse.
Previous research indicated that EtOH intake of female P rats
was not significantly altered by the estrus cycle (McKinzie
et al. 1998). Rats were maintained on a 12-h reverse light-
dark cycle with lights off at 0900. Food and water were avail-
able ad libitum throughout the experiment. The animals used
in these experiments were maintained in facilities fully
accredited by the Association for the Assessment and
Accreditation of Laboratory Animal Care (AAALAC). All
research protocols were approved by the institutional animal
care and use committee and in accordance with the guidelines
of the Institutional Care and Use Committee of the National
Institute on Drug Abuse, National Institutes of Health, and the
Guide for the Care and Use of Laboratory Animals: Eighth
Edition (National Research Council, Institute for Laboratory

Animal Research, Division on Earth and Life Sciences 2011).
The total number of rats (n = 198) used in the current experi-
ments were as follows: Var on water consumption (n = 18,
6/group), Var on EtOH consumption (n = 26, 8–9/group),
Var on NIC consumption (n = 23, 7–8/group), Var on
EtOH+NIC (n = 27, 9/group), Nal on water consumption
(n = 21, 7/group), Nal on EtOH consumption (n = 25, 7–8/
group), Nal on NIC consumption (n = 29, 9–10/group), Nal
on EtOH+NIC consumption (n = 29, 9–10/group).

Chemical agents and vehicle

Ethyl alcohol (190 proof; McCormick Distilling Co., Weston,
MO, USA) was diluted to 15% and 30% with distilled water
for oral EtOH consumption. Nicotine HCl was purchased
from Sigma (St. Louis, MO, USA). NIC concentrations of
0.07 or 0.14 mg/mL were calculated based on the salt and
were added to a solution of 0.0125% saccharin. This was done
only for the NIC-alone condition. The EtOH+NIC solutions
consisted of 15 or 30% EtOH and 0.14 mg/mL NIC without
saccharin added to the solution. Rats will readily consume
nicotine solutions at the concentrations employed (about
4.5–5 mg/kg/day). We observe equivalent levels of nicotine
self-administration between rats self-administering EtOH+
NIC solution and NIC, if saccharin (0.0125%) is added to
the NIC solutions (Hauser et al. 2012b). This is reflected in
equivalent blood NIC and cotinine levels in these two groups
(Hauser et al. 2012b). Moreover, previous research from our
group has found no significant differences in neurochemistry
or locomotor activity between animals allowed to consume
saccharin and water controls (Deehan et al. 2015; Melendez
et al. 2002, 2004) and was therefore not included in the present
study.

Varenicline tartrate (Sigma) was dissolved in 3% DMSO.
Treatment with 2.5–3 mg/kg Var results in locomotor deficits,
decreased food intake, and other nonspecific actions (Ortiz
et al. 2012; O’Connor et al. 2010; Rollema et al. 2007).
Concentrations of Var used in the current experiments were
0, 1, or 2 mg/kg (i.p.). Naltrexone HCl was obtained from
Sigma and dissolved in saline. Nal was given in doses of 0,
1, or 10 mg/kg (s.c.). Doses for Nal were determined by pre-
vious studies carried out with adolescent and adult P rats dem-
onstrating as much as 20 mg/kg was necessary to decrease
EtOH intake while having no impact on water or food con-
sumption (Dhaher et al. 2012; Sable et al. 2006).

Effects of varenicline and naltrexone on EtOH, NIC,
and EtOH+NICmaintenance and relapse consumption

Rats were randomly assigned to one of four three-bottle
choice drinking conditions illustrated in Fig. 1, top panel.
These consisted of (1) water only, (2) EtOH only with concur-
rent access to 15 and 30% EtOH and water, (3) NIC only with
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0.07 and 0.14 mg/mL in 0.0125% saccharin solutions and
water, or (4) EtOH+NIC with 15 and 30% EtOH, each con-
taining 0.14 mg/mL NIC, and water. The EtOH-only, NIC-
only, and EtOH+NIC groups were given access to the three
bottles throughout the experiments of two reinforcing solu-
tions and one water. Despite the development of effective
voluntary oral NIC self-administration models (Hauser et al.
2012b; Deehan et al. 2015), i.v. NIC is commonly employed
in an attempt to parallel rapid increases in blood NIC levels
produced by smoking, which is not observed during the use of
chewing tobacco (Benowitz 1988). However, oral tobacco
products, such as snus, produce the same rapid increase in
blood NIC levels as observed in smokers. There are no signif-
icant differences between smokers and first-time snus users in
blood NIC levels during the initial 20-min period (Digard
et al. 2013). Additionally, there are a number of limitations
inherent in i.v. administration that include the need for food
restriction, surgery, catheter patency, and overcoming aver-
sion during the initial test sessions. The duration of the present
study therefore required the use of an oral consumption model
to examine Var or Nal following chronic drug intake.

The experimental timeline of the present study is visually
represented in the bottom panel of Fig. 1. Rats were given 24-
h free-choice access to their assigned solutions for 8 weeks
prior to drug testing. Rats were then assigned to two overall
groups of Var treated or Nal treated. Var or Nal was

administered daily for four consecutive days. Four days of
treatment was chosen to allow sufficient time for any additive
drug effects, indication of altered efficacy, or behavioral
changes to be readily apparent. After the initial Var or Nal
treatment period, all rats were allowed 14–20 days of free-
choice access to the assigned solutions. All rats were then
deprived for 2 weeks of EtOH, NIC, or EtOH+NICwith water
constantly available to all rats. Two weeks of deprivation re-
sults in an increased amount of EtOH consumption during the
initial period of re-exposure (Rodd et al. 2003, 2009; Rodd-
Henricks et al. 2001, 2002a, b; Spanagel et al. 1996; Spanagel
and Zieglgansberger 1997; Toalston et al. 2008). Similarly, a
2-week deprivation from NIC self-administration results in an
increased amount of NIC consumed during re-exposure
(Hauser et al. 2012b). The alcohol deprivation effect (ADE)
and nicotine deprivation effect (NDE) are valid animal models
of drug relapse (Rodd et al. 2003, 2009).

Prior to re-exposure to the previously assigned solution
group, rats were again treated with Var or Nal. The doses of
Var and Nal were counterbalanced from the initial treatment
with respect to past treatment. Specifically, the same subjects
used in the Var experiment during the maintenance test were
also used during the relapse test for Var. Similarly, for the Nal
experiments, the same rats were used for the maintenance and
relapse tests. For example, rats treated with 1 mg/kg Nal dur-
ing the maintenance period were segmented into three groups

Fig. 1 Top panel: Illustration of the 3-bottle choice paradigm and 4 drink-
ing conditions examined consisting of (1) water only, (2) EtOH only with
concurrent access to 15 and 30% EtOH and water, (3) NIC only with 0.07
and 0.14mg/mL in 0.0125% saccharin solutions and water, or (4) EtOH+
NIC with 15 and 30% EtOH, each containing 0.14 mg/mL NIC, and

water. Bottom panel: Experimental timeline for the present study to de-
termine the effects of Var (0, 1, or 2 mg/kg) or Nal (0, 1, or 10 mg/kg)
injections on maintenance and relapse consumption determined during 4
consecutive treatment days
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during the relapse period and received 0, 1, or 10 mg/kg Nal.
Var or Nal treatment occurred during the initial 4 days of re-
exposure. Additionally, baseline means for maintenance in-
take were calculated from the last 3 days before Var or Nal
treatment and the final three drinking days prior to deprivation
for the relapse data.

Solution preference was determined for each subject con-
suming EtOH and/or NIC daily. The preference of solution
consumed has previously been used to examine the reward
valence of each solution (Rodd et al. 2003, 2009). With mul-
tiple concentrations, statistical analysis of solution preference
is complex. It is common to use standard parametric statistics
despite preference violating the Bindependence of measure^
assumption of ANOVA/multiple regression analysis and in-
validates these statistical tests. Therefore, non-parametric
analysis is appropriate. The Kuiper analysis is sensitive to
cyclic variations and can be modified to have collection error
estimate included in the analysis. However, the general unfa-
miliarity with this test and the length of the presentation of the
data have resulted in preference not being reported for the
current study.

Results

Effects of varenicline and naltrexone on water
consumption

A repeated measure ANOVA was performed on the average
daily water intake (g/kg) of the Bwater-only^ group during
Bmaintenance^ consumption in animals treated with Var
(Fig. 2, top panel) or Nal (Fig. 2, bottom panel). The analysis

revealed that there was a significant Day × Dose interaction
term (F16,168 = 5.488; p < 0.001). The interaction term was
decomposed by holding BDay^ constant and performing indi-
vidual ANOVAs for each time point. The ANOVAs indicated
that there were significant BDose^ differences during the four
injection days and the first day post-injection. Post hoc com-
parisons (Tukey’s b) indicated that consumption of rats in the
Bwater-only^ group administered 2 mg/kg Var was reduced
compared with saline and 1 mg/kg Var during the four injec-
tion days. Conversely, water consumption was enhanced in
the 2 mg/kg Var group during the first post-injection day
(Fig. 2, top panel). In contrast, Nal treatment did not alter
water consumption (Fig. 3, bottom panel; Day, Day × Dose,
Dose; p values > 0.05).

Water animals were never deprived but were treated identi-
cally to the other groups. Therefore, there was a water condition
to parallel the other Brelapse^ groups that received a second
round of four injection days and received Var or Nal to identify
potential nonspecific drug treatment effects (data not shown). In
the Var rats, there was a similar Day × Dose interaction term
(F16,168 = 3.892; p = 0.005), and post hoc comparisons indicat-
ed that 2 mg/kg Var reduced water consumption during all four
injection days without a post-injection rebound observed.
Again, there was no effect of Nal on water consumption during
the Brelapse^ period (all p values > 0.05).

Effects of varenicline and naltrexone on EtOH
consumption

During maintenance testing, Var had no effect on EtOH con-
sumption (Fig. 3; top panel). Statistically, there was no effect
of Day, Dose, or Day × Dose interaction (p values > 0.05). In

Fig. 2 Mean (+ SEM)
consumption of water in P rats
treated with varenicline (top
panel) or naltrexone (bottom
panel) during maintenance
consumption. Asterisk (*)
indicates treatment with 2 mg/kg
varenicline reduced water con-
sumption compared with saline-
treated and 1 mg/kg Val–treated
rats. Plus symbol (+) indicates rats
previously treated with 2 mg/kg
varenicline consumed more water
than rats previously treated with
saline or 1 mg/kg
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contrast, Nal reduced EtOH consumption during maintenance
testing (Fig. 3, bottom panel; Day × Dose interaction,
F16,288 = 8.586, p < 0.001). Performing ANOVAs on individ-
ual days revealed significant effects of Dose on all four injec-
tion days (F2,22 values > 11.404, p values < 0.001). Post hoc
comparisons (Tukey’s b) indicated that during the first and
fourth injection days, rats treated with 1 or 10 mg/kg Nal
consumed less EtOH than saline-treated rats, and the
1 mg/kg Nal group consumed more EtOH than the
10 mg/kg Nal group. EtOH intake recovered to baseline on
the first post-injection day.

During EtOH relapse test conditions, Var failed to alter
EtOH consumption (Fig. 4, top panel). Statistically, there
was a significant effect of Day (F8,184 = 191.65, p < 0.001),
but no effect of Dose or Day × Dose interaction (p values >
0.05). These findings forced the analysis to examine the one
significant factor (Day), and within-subject comparisons (two-
tailed t tests) indicated that EtOH consumption was elevated
during the first and second re-exposure day (p < 0.001). In
contrast, Nal inhibited the expression of the alcohol depriva-
tion effect (relapse drinking; Day ×Dose interaction,F16,176 =
7.756, p < 0.001). Decomposing the significant interaction
term by holding Day constant (ANOVAs performed on each
day) revealed significant effects of Dose (F2,22 values > 9.493,
p values < 0.01) on the first three re-exposure days. On the
first and second re-exposure days, post hoc comparisons
(Tukey’s b) revealed that all groups were different from each
other. During the third re-exposure day, saline-treated and
1 mg/kg Nal–treated rats were significantly different from
the 10 mg/kg Nal group. The significant interaction term
was also reduced by holding Dose constant, and within-

subject (Day) ANOVAs were performed for each Dose group.
The analyses revealed that there was a significant BDay^ effect
in each Dose group (p values < 0.005). In saline-treated rats,
within-subject contrasts, two-tailed t tests, revealed that EtOH
consumption during the first and second re-exposure days was
elevated compared with each baseline intake days (p values <
0.005). In rats treated with 1 mg/kg Nal, there was a signifi-
cant increase in EtOH consumption only during the first re-
exposure day compared with each baseline day (p < 0.01).
Treatment with 10 mg/kg Nal not only blocked the expression
of the alcohol deprivation effect but also reduced EtOH con-
sumption compared with baseline for the first and second re-
exposure days (p values < 0.05).

Effects of varenicline and naltrexone on nicotine
consumption

Var reduced oral NIC consumption during maintenance
test conditions (Fig. 5, top panel; Day × Dose interaction,
F16,160 = 7.264, p < 0.001). Decomposing the interaction
term by examining the effect of Dose on each individual
day revealed significant BDose^ differences on the four
injection days, and during the second and fourth post-
injection days (F2,20 values > 3.774, p values < 0.05).
During the four injection days, treatment with 2 mg/kg
Var significantly reduced NIC consumption compared with
the saline and 1 mg/kg Var groups. Following the termina-
tion of Var treatment, NIC consumption was significantly
increased during days 2 and 4 of post-injection in the
2 mg/kg Var group compared with saline-treated rats. Nal
treatment had no effect on oral NIC consumption (Fig. 5,

Fig. 3 Mean (+ SEM)
consumption of EtOH in P rats
treated with varenicline (top
panel) or naltrexone (bottom
panel) during maintenance
consumption. Asterisk (*)
indicates treatment with 1 or
10 mg/kg naltrexone reduced
EtOH consumption compared
with saline-treated rats, and 1 and
10 mg/kg groups differ from each
other. Plus symbol (+) indicates
treatment with 1 or 10 mg/kg
naltrexone reduced EtOH con-
sumption compared with saline-
treated rats
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bottom panel). Statistically, there was no effect of Day,
Dose, or Day × Dose interaction (p values > 0.05).

A period of forced abstinence resulted in increased oral
NIC consumption during the initial period of re-exposure
(Fig. 6). Var did alter relapse NIC intake (Fig. 6, top panel,

Day × Dose interaction, F = 7.064, p < 0.001). Decomposing
the interaction term by holding the factor of Day constant
revealed significant effect of Dose during the first three re-
exposure days (injection days 1–3; F2,20 values > 3.774, p-
values < 0.05). Post hoc comparisons (Tukey’s b) indicated

Fig. 4 Mean (+ SEM) consumption of EtOH in P rats treated with
varenicline (top panel) or naltrexone (bottom panel) during relapse
consumption following a 2-week period of forced abstinence. Baseline
means are the final three drinking days prior to the deprivation. Asterisk
(*) indicates all varenicline-treated rats consumed more EtOH than base-
line intake levels. Plus symbol (+) indicate saline and 1 mg/kg
naltrexone–treated rats consumed more EtOH than baseline intake levels,

all treatment groups differ from each other, and rats treated with 10mg/kg
naltrexone consumed less EtOH than baseline intake levels. Number sign
B#^ indicates saline-treated rats consumed more EtOH than baseline in-
take levels, and all groups are different from each other. Double asterisks
(**) indicate EtOH consumption in the 10 mg/kg naltrexone–treated rats
is less than that observed in the saline or 1 mg/kg naltrexone–treated rats

Fig. 5 Mean (+ SEM)
consumption of NIC in P rats
treated with varenicline (top
panel) or naltrexone (bottom
panel) during maintenance
consumption. Asterisk (*)
indicates 2 mg/kg varenicline re-
duced NIC consumption com-
pared with saline and 1 mg/kg
varenicline groups. Plus symbol
(+) indicates rats previously treat-
ed with 2 mg/kg varenicline con-
sumed more NIC that saline
controls
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that, during the first 3 days of NIC re-exposure, rats treated
with 2 mg/kg Var consumed less NIC than the saline-treated
and 1 mg/kg Var–treated rats. Alternatively, the significant
interaction term was reduced by holding Dose constant and
performing repeated measure ANOVAs across Day for each
individual treatment group. Rats treated with saline and
1 mg/kg Var consumed significantly more NIC during the first
and second re-exposure days compared with baseline (one-
way ANOVA, p values < 0.001; two-tailed t tests, p values
< 0.032). In contrast, rats treated with 2 mg/kg Var exhibited
no significant alteration in NIC consumption across the test
period (p = 0.378). In rats treated with Nal, there was no effect
of Dose or a Day × Dose interaction (p values > 0.05), but
there was a significant effect of Day (F8,208 = 247.68,
p < 0.0001). Examining the amount of NIC consumed across
days in all treated groups (Fig. 6) revealed that during the first
and second re-exposure periods, the amount of NIC consumed
was significantly higher than the three baseline days (two-
tailed t tests, p values < 0.001).

Effects of varenicline and naltrexone
on EtOH+nicotine consumption

In general, Var and Nal failed to alter the maintenance con-
sumption of either EtOH or NIC when given concurrently. In
Var-treated rats, there were no effects of Day, Dose, or Day ×
Dose interaction term (p values > 0.05; data not shown) for
NIC or EtOH consumption. Similarly, Nal treatment had no
effect on co-administration of EtOH+NIC (p values > 0.05).

A period of forced EtOH+NIC abstinence produced a
prolonged increase in EtOH+NIC consumption that was not

altered by Var (Fig. 7) or Nal (Fig. 8) treatment. In Var-treated
rats, there was an effect of Day for both NIC and EtOH intake
(F8,192 = 239.228 or 208.321, p values < 0.001), but no effect
of Dose, or Day × Dose interaction term (p values > 0.05).
Examining the effect of Day for both EtOH and NIC con-
sumed for all Var rats revealed that intake for NIC and EtOH
was increased during the first four re-exposure days (two-
tailed t tests, p values < 0.001). In Nal-treated rats, there was
an effect of Day for both NIC and EtOH intake (F8,208 =
219.795 or 175.024, p values < 0.001), but no effect of Dose
or Day × Dose interaction term (p values > 0.05). Defining the
effect of Day was performed by contrasting the overall aver-
age intake for a re-exposure day to that observed during the
third baseline day with two-tailed t tests. The analyses indi-
cated that NIC consumption was elevated during the first four
re-exposure days (p values < 0.001), and EtOH consumption
was elevated for the first five re-exposure days which included
the first post-injection day (p values < 0.01).

Discussion

Overa l l , the da ta indica te the two proto typica l
pharmacotherapeutics for AUD and nicotine dependencewere
efficacious at reducing, to a degree, the ongoing consumption
of the corresponding drug of abuse (Figs. 3, 4, 5, and 6). In
contrast, Var and Nal had no effect on reducing the intake of
the non-indicated drug of abuse (e.g., Nal on NIC intake; Figs.
3, 4, 5, and 6) or on any aspect of EtOH+NIC co-use (Figs. 7
and 8).

Fig. 6 Mean (+ SEM)
consumption of NIC in P rats
treated with varenicline (top
panel) or naltrexone (bottom
panel) during relapse
consumption following a 2-week
period of forced abstinence.
Baseline means are the final three
drinking days prior to the depri-
vation. Asterisk (*) indicates sa-
line and 1 mg/kg varenicline
groups are significantly higher
from baseline and differ from
2 mg/kg group. Plus symbol (+)
indicates saline and 1 mg/kg
varenicline groups are different
from 2 mg/kg group. Number
sign (#) indicates all naltrexone-
treated rats consumed more NIC
than baseline intake levels

1894 Psychopharmacology (2019) 236:1887–1900



The current experiments examined relapse using the ADE
model and a similar NDE model. ADE has been postulated to
mimic the increase in alcohol consumption observed following
periods of abstinence in humans and animals (Rodd et al.
2003). The ADE model is associated with adaptations in the
posterior ventral tegmental area (pVTA) that enhance EtOH
reward (Rodd et al. 2005). The NDE has not been examined
extensively in the literature since standard i.v. NIC self-
administration precludes the testing of chronic nicotine self-
administration due to the limited duration of catheter patency.
The current data sets indicate that under 24-h free-choice oral
drinking conditions, NIC intake is enhanced following a period
of deprivation (Figs. 6, 7, and 8). However, studies have not

examined NIC reinforcement in the pVTA following a period
of deprivation to determine if neuroadaptations have devel-
oped that would augment the reinforcing properties of NIC.
The lack of basic research addressing NDE mechanisms sup-
ports the need to expand on the present study and identify such
changes to understand relevant nicotine consummatory behav-
iors. Similar to past research, relapse EtOH+NIC consumption
was significantly greater and prolonged than that in rats con-
suming EtOH or NIC alone (compare Figs. 7 and 8 with Figs. 4
and 6; Hauser et al. 2012b). It is likely that EtOH+NIC co-
abuse may augment neuroadaptations produced by periods of
drug abstinence or produce unique neuroadaptations not ob-
served following intake of EtOH or NIC (Deehan et al. 2015).

Fig. 7 Mean (+ SEM)
consumption of concurrently
available NIC (top panel) and
EtOH (bottom panel) in P rats
treated with varenicline following
a period of 2 weeks of forced
abstinence. Baseline means are
the final three drinking days prior
to the deprivation. Overall, the
data indicate varenicline was
ineffective at reducing EtOH+
NIC consumption during relapse
drinking. Asterisk (*) indicates
NIC consumption was higher in
all groups compared with baseline
intake. Plus symbol (+) indicates
EtOH consumption was higher in
all groups compared with baseline
intake

Fig. 8 Mean (+ SEM)
consumption of concurrently
available NIC (top panel) and
EtOH (bottom panel) in P rats
treated with naltrexone following
a period of 2 weeks of forced
abstinence. Baseline means are
the final three drinking days prior
to the deprivation. Overall, the
data indicate naltrexone was
ineffective at reducing EtOH+
NIC consumption during relapse
drinking. Asterisk (*) indicates
NIC consumption was higher in
all groups compared with baseline
intake. Plus symbol (+) indicates
EtOH consumption was higher in
all groups compared with baseline
intake
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The current data sets indicate that Var can reduce ongoing
and relapse NIC intake (Figs. 5 and 6). It is important to note
that rats treated with high doses of Var consumed significant
amounts of NIC during the 24-h periods of NIC re-exposure at
approximately 6 mg/kg (Fig. 6). Nal had no effect on NIC
relapse drinking and all treated groups displayed similar
amounts of NIC intake. The data indicate that Nal, but not
Var, can reduce EtOH relapse drinking (Fig. 4). The efficacy
of Nal to reduce EtOH drinking is altered during relapse con-
ditions. The lower dose of Nal (1 mg/kg) produced a similar
reduction in EtOH consumption during ongoing EtOH con-
sumption testing as the higher dose (10 mg/kg; Fig. 3).
However, during relapse testing, rats administered 1 mg/kg
Nal displayed a blunted ADE that was significantly more than
drinking baseline and 10 mg/kg Nal (Fig. 4). Previous re-
search indicated that the efficacy of Nal to reduce EtOH
self-administration is decreased under relapse conditions
(Dhaher et al. 2012) and the ADE is associated with alter-
ations in the mesolimbic opioid system (Breese et al. 2005).
In rats with a history of EtOH+NIC co-abuse, Nal and Var
failed to alter relapse co-administration of the two compounds
(Figs. 7 and 8), suggesting some unique CNS neuronal chang-
es may have occurred with co-abuse that is not found with the
individual abuse of EtOH or NIC.

Previous research indicated that treatment with Var signif-
icantly reduced NIC self-administration from mean baseline
levels during maintenance and relapse phases of drug intake
(Funk et al. 2016; O’Connor et al. 2010; Scuppa et al. 2015).
Additional reports support these results but utilized doses >
2 mg/kg Var and therefore, nonspecific motor inhibitory ef-
fects cannot be excluded (George et al. 2011; Maggio et al.
2018a). Although 2 mg/kg Var modestly decreased water in-
take in the Bwater-only^ condition (Fig. 2), it is important to
note that preference for water and overall fluid consumption in
the other three groups was not altered and remained over
100 g/kg/day. This suggests the potential nonspecific effects
of Var at this dose on water consumption were minor and
counteracted in the presence of reinforcers.

EtOH drinking was found to be unaltered following treat-
ment with Var consistent with recent reports (Funk et al. 2016;
Maggio et al. 2018a, b; Randall et al. 2015; Scuppa et al.
2015). However, some studies examining Var and EtOH in-
take appear to conflict with the present findings. For example,
treatment with 2 mg/kg Var reduced EtOH self-administration
to ~ 1.5 g/kg/2-h session following scheduled access and re-
peated cycles of deprivation (Froehlich et al. 2016, 2017;
Czachowski et al. 2018). A number of factors contribute to
these differences. The current experiments examined the ef-
fects of Var following more than 8 weeks of continuous access
to EtOH versus 4 weeks of 2 h/day limited access. The ex-
tended EtOH access period could have allowed time to estab-
lish lasting adaptations that occur following chronic drinking
that decreased the effectiveness of Var compared with animals

with less EtOH experience. The previous study notes the im-
portance of maintaining sufficient levels of Var in the blood in
order for treatment to remain effective. The current data indi-
cate that administration of 2 mg/kg Var reduces water con-
sumption for a 24-h period (Fig. 2). Therefore, despite the
inhibitory gustatory actions of the high dose of Var for 24 h,
there was no effect on EtOH consumption.

Two studies applying limited but free access to EtOH have
also shown some effectiveness of Var in reducing EtOH self-
administration (Holgate et al. 2017; Steensland et al. 2007). A
significant reduction in EtOH drinking following Var treat-
ment was found at 2 h (but not at 4 h) during a 4-h drinking
in the dark paradigm but was not evident at the conclusion of
the session (Holgate et al. 2017). The significant decrease at
2 h could be attributed to the small amount of EtOH being
consumed under this study design (blood alcohol concentra-
tions were relatively low with an average of 24 ± 5 mg%;
Holgate et al. 2017). This level of EtOH self-administration
is likely affected more by Var treatment, in agreement with
their previous work, than animals in the present study con-
suming approximately 6.5 g/kg/day (Steensland et al. 2007).

The current experiments support previous evidence dem-
onstrating the ability of Nal to reduce EtOH drinking (Dhaher
et al. 2012; Froehlich et al. 2016; Lê et al. 2014; Steensland
et al. 2007). Additionally, results from this study indicated no
significant changes to NIC intake when treated with Nal (Lê
et al. 2014). This agrees with earlier work involving both
animal models and clinical trials. Research examining the im-
pact of only naltrexone on smoking cessation demonstrated
very limited (Covey et al. 1999) or no effect at all (Wong et al.
1999). Opioid antagonists are known to enhance nicotine
withdrawal in nicotine-dependent animals (Malin et al.
1993, 1996; Biala et al. 2005). For this reason, clinical trials
investigating naltrexone and smoking cessation may involve
augmentation of treatment with nicotine replacement therapy
(NRT) to alleviate some nicotine withdrawal symptoms
(O’Malley et al. 2006; Toll et al. 2010). A meta-analysis car-
ried out on naltrexone and smoking cessation that included
eight separate trials and 1213 participants concluded that there
was no positive effect of naltrexone alone or in combination
with NRT on short-term or long-term smoking abstinence
(David et al. 2014).

The reality of AUD is that it is not a single drug addiction
disease.Most cases of AUD are a polysubstance syndrome and
are thus much more complicated than those arising from the
use of alcohol alone. Ignoring the polysubstance characteristic
of AUD limits our knowledge of the disease and greatly re-
duces the ability to establish functional treatments. Preclinical
studies clearly indicated that acute exposure to EtOH and NIC
results in unique responses that are not observed following an
acute exposure to EtOH or NIC. The pVTA is a site where
pharmacologically relevant levels of both NIC and EtOH can
produce reinforcing effects (Exley et al. 2011; Hauser et al.
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2014; Truitt et al. 2015; Rodd-Henricks et al. 2000). The
pVTA is a site that regulates oral EtOH (Hodge et al. 1993;
Rodd et al. 2010) and i.v. NIC (Corrigall et al. 1994) self-
administration and is a site where EtOH and NIC can interact
synergistically (Truitt et al. 2015). Intra-VTA injections of NIC
can enhance dopamine release in the nucleus accumbens shell
(AcbSh) produced by systemic administration of EtOH (Tizabi
et al. 2002). Rats will self-administer EtOH and NIC directly
into the pVTA in a synergistic manner. Furthermore, equiva-
lent microinjections of EtOH+NIC directly into the pVTA re-
sult in significant alterations to gene expression in the AcbSh,
which includes bdnf, gdnf, and homer2 than either EtOH or
NIC alone (Truitt et al. 2015).

Chronic EtOH+NIC co-use/abuse also results in unique
neuroadaptations throughout the brain. The oral EtOH+NIC
model of self-administration results in equivalent consump-
tion of EOH and NIC in the solo- and poly-drug exposure
groups (Hauser et al. 2012b). In the AcbSh, chronic EtOH+
NIC self-administration results in enhancement of NIC reward
that is not observed in rats consuming equivalent amounts of
EtOH or NIC (Deehan et al. 2015). In the medial prefrontal
cortex, EtOH+NIC co-use/abuse resulted in a threefold in-
crease in basal glutamate extracellular levels while compara-
ble consumption of EtOH or nicotine had no effect (Deehan
et al. 2015). The unique neuroadaptations of chronic EtOH+
NIC self-administration could be the biological basis for the
pharmacological results reported herein.

The present study indicated there was no effect of Var or Nal
treatment on EtOH+NIC maintenance or relapse self-adminis-
tration. The significant reductions of EtOH consumption by
Nal treatment and NIC intake by Var treatment are no longer
evident when both reinforcers are presented together. This is
consistent with preclinical research from our lab and others
demonstrating that acute and chronic exposure to EtOH+NIC
results in neuronal alterations specific to co-administration that
are not observed with either drug alone (Clark and Little 2004;
Deehan et al. 2015; Lé et al. 2014; Tizabi et al. 2002, 2007;
Truitt et al. 2015). Similar to the current data set, in P rats
concurrently self-administering i.v. NIC and oral EtOH, Var
and other smoking cessation agents failed to alter EtOH or
NIC consumption (Maggio et al. 2018a). The failure of Var
and Nal, as well as the specific α6β2* antagonist r-bPiDI, to
alter concurrent oral EtOH and i.v. NIC self-administration has
been replicated in a novel model that increases intake levels of
both drugs (Maggio et al. 2018b). Therefore, consistent pre-
clinical data has indicated that Var is not effective at reducing
EtOH+NIC co-administration.

Despite the disproportionately high rate of EtOH and NIC
comorbid abuse, the prevailing pharmacotherapeutic strategy
has been to develop treatments that target EtOH or NIC use as
separate conditions. This approach has resulted in an inade-
quate number of approved pharmacological treatment options
that, overall, have only demonstrated limited success. For

example, a number of meta-analyses revealed that Nal does
not increase abstinence rates or decrease the risk of relapse to
heavy alcohol drinking. However, the delay to initiation of
drinking was increased as well as the total number of days
abstinent prior to relapse (Maisel et al. 2013; Jonas et al.
2014; Donoghue et al. 2015). Furthermore, despite FDA ap-
proval for Var in 2006, overall smoking cessation rates at the
population level in the USA have not risen in over two de-
cades (Zhu et al. 2012). This appears to contradict expected
results following dispensing of more than 2.1 million Var pre-
scriptions per year and numerous randomized controlled trials
demonstrating the effectiveness of Var (Gonzales et al. 2006;
Jorenby et al. 2006; Bolliger et al. 2011; Zhu et al. 2012;
Baker et al. 2016; Motschman et al. 2016). These outcomes
could in part be explained by the ability of Var clinical trials to
recruit nicotine-dependent individuals into abstinence but fail
to prevent instances of relapse over placebo-treated smokers
(Agboola et al. 2015). Examination of AUDs and nicotine
dependence separately in preclinical research and during clin-
ical trials has resulted in approved therapeutics of Nal and Var
with relapse rates at greater than one third of patients at a 6-
month follow-up and up to 75% at 1 year, respectively
(Jorenby et al. 2006; Volpicelli et al. 1997).

The current study demonstrates the failure of Var or Nal to
reduce EtOH+NIC consumption. However, potential limita-
tions to the above model should be considered when evaluat-
ing these findings. First, future studies should examine the
impact of Var or Nal treatment on EtOH+NIC intake when
presented separately in the three-bottle choice drinking para-
digm, rather than in a combined solution. This would provide
further insight into the effect of Var or Nal on their respective
reinforcers. When presented together, potential reductions in
just EtOH or NIC intake during treatment would be highlight-
ed that otherwise could be obscured with the combined solu-
tion paradigm. Second, increasing the number of Var or Nal
treatment days would provide additional time for the blood
levels of each therapeutic to stabilize. Finally, the inclusion of
measurements taken at specific time points during 24-h access
would be beneficial. A better representation of drinking be-
havior during Var or Nal treatment could be determined with
data collection points at 2, 4, and 6 h post-treatment.

These results indicate that the standard pharmacological
treatments for nicotine dependence or AUD were effective at
reducing the consumption of a single targeted drug but neither
reduced the amount of EtOH+NIC consumed. Overall, the
findings suggest that failures to develop successful treatment
for comorbid AUD and nicotine dependence may result from
limitations in models used to develop such treatments, specif-
ically through a failure to address the unique neuroadaptations
produced by co-use of these drugs. Continued refinement of
the preclinical co-abuse model described herein will be in-
valuable in the pursuit of assessing future pharmacotherapies
for the treatment of heavy alcohol drinking smokers.
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