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Abstract
Rationale Mesolimbic dopamine (DA) signaling is essential for the high maternal caregiving characteristic of the early postpar-
tum period, but little is known about dopamine’s role in the expression of maternal caregiving thereafter.
Objectives We tested the hypothesis that decreased mesolimbic dopaminergic signaling is particularly responsible for the natural
decline in maternal caregiving that occurs as the postpartum period progresses.
Methods Sprague-Dawley (SD) mother rats received intraperitoneal injections of either vehicle, the DA D1 receptor agonist
SKF38393, the DA D2 receptor agonist quinpirole, or both agonists twice daily from postpartum days 9 to 15. In a separate
experiment involving Long-Evans (LE) rats, we examined whether DA D1 and D2 receptor mRNAs in the nucleus accumbens
(NA) shell and ventral tegmental area (VTA), along with DA turnover in the VTA, decline across the postpartum period in
parallel with the decreasing maternal behavior.
Results All drug treatments significantly maintained higher frequencies of active maternal behaviors (nesting, pup licking,
retrieval) compared to vehicle. Furthermore, the majority of mothers treated with SKF38393 either alone or combined with
quinpirole maintained full expression of maternal behavior during behavioral testing. D2 receptor mRNA levels were found to be
lower in the late postpartum NA shell and VTA compared to early postpartum, but D1 receptor mRNA levels in the NA shell
were higher in the late postpartum period. Furthermore, both late postpartum and recently parturient LE mothers had higher VTA
DA turnover compared to nulliparae, suggesting changes in mesolimbic signal-to-noise ratio both at the end and beginning of
motherhood.
Conclusions Collectively, our results suggest that alterations in mesolimbic DA is part of the neural substrate responsible for
dynamic maternal caregiving across the entire postpartum period.
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Introduction

Maternal caregiving that is sensitive to the needs of the off-
spring is essential for normal development in many animals
(Curley and Champagne 2016; Mills-Koonce et al. 2015;
Worobey et al. 2009). This sensitivity requires changes in
maternal motivation that match the almost constantly evolving
offspring demands, thus resulting in very high levels of care-
giving during the early postpartum period that progressively
wane as the young mature and gain biobehavioral indepen-
dence (Grieb et al. 2018; Grieb et al. 2017; Grota and Ader
1969; Pereira and Morrell 2009; Reisbick et al. 1975). Similar
to other naturally rewarding behaviors such as eating (Murray
et al. 2014), drinking (Bromberg-Martin and Hikosaka 2009),
exercise (Greenwood and Fleshner 2011), and sexual interac-
tions (Brom et al. 2014), the mesolimbic dopamine (DA)
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system underlies the motivational aspects of maternal caregiv-
ing behaviors (Numan and Stolzenberg 2009). Numerous
studies have shown elevated DA release in the nucleus accum-
bens (NA) of postpartum rats just before and while they re-
trieve and lick their pups (i.e., active maternal behaviors)
(Afonso et al. 2009; Champagne et al. 2004; Hansen et al.
1993; Robinson et al. 2011). Interfering with this accumbens
DA neurotransmission by inactivating the ventral tegmental
area (VTA) (Gaffori and Le Moal 1979; Hansen et al. 1991;
Numan and Smith 1984; Numan et al. 2009), or by adminis-
tering DA D1 or D2 receptor antagonists systemically (Li
et al. 2004; Pereira et al. 2011; Pereira and Ferreira 2006;
Silva et al. 2001; Stern and Taylor 1991; Zhao and Li 2009)
or centrally (Keer and Stern 1999; Miller and Lonstein 2005;
Numan et al. 2005; Parada et al. 2008; Silva et al. 2003),
severely disrupts active maternal behaviors in early postpar-
tum rats. These manipulations also reduce pup-seeking behav-
ior and/or the encoding of pups’ incentive salience, as indicat-
ed by less bar pressing for pups in an instrumental condition-
ing task (Lee et al. 2000) and reduced maternal preference for
the pup-associated chamber in a conditioned place preference
paradigm (Fleming et al. 1994; Seip and Morrell 2009).

Importantly, almost all studies emphasizing DA’s role in
maternal motivation and caregiving behaviors in laboratory
rats and mice have been conducted during the early postpar-
tum period (from parturition to postpartum day (PPD) 8),
when the expression of maternal behavior is very high. As
noted just above, though, the frequency and duration of ma-
ternal caregiving behaviors notably decline across the postpar-
tum period as the offspring develop (Champagne et al. 2007;
Curley et al. 2009; Grieb et al. 2017; Grota and Ader 1969;
Moltz and Robbins 1965; Pereira and Morrell 2009; Pereira
et al. 2008; Reisbick et al. 1975). The neurobiological factors
underlying this decline are almost completely unknown (as
discussed in Grieb et al. 2017), but changes in the maternal
mesolimbic DA system across postpartum time may be re-
sponsible. This is suggested by the fact that DA-dependent
motivation to be in contact with pups drops during the late
postpartum period, simultaneous with emerging offspring in-
dependence (Mattson et al. 2001; Wansaw et al. 2008).

In the present study we hypothesized that the reduced ex-
pression of active maternal caregiving behaviors in the late
postpartum period is partly due to decreased DAergic signal-
ing. To test this hypothesis, two sets of experiments were
conducted in parallel. One set of experiments examined
whether repeated stimulation of DA D1 and/or D2 receptors
would prevent the natural decline in maternal caregiving be-
haviors of late postpartum Sprague-Dawley (SD) mother rats.
A separate set of experiments determined whether early and
late postpartum Long-Evans (LE) mother rats differ in their
DA D1 and D2 receptor gene expression in the NA shell and
VTA, as well as in their levels of tyrosine hydroxylase (TH;
the rate-limiting enzyme in DA synthesis) and DA turnover in

the VTA. Both the SD and LE rat strains have commonly been
used in the neurobiological study of maternal behavior and
demonstrate a similar repertoire of active caregiving activities
during the early postpartum period that are dependent on
mesolimbic dopamine (Afonso et al. 2009; Champagne et al.
2004; Hansen et al. 1993; Miller and Lonstein 2005; Numan
et al. 2005; Pereira et al. 2011; Robinson et al. 2011). In
addition, SD and LE mothers exhibit a similar decline in ac-
tive caregiving activities across the late postpartum period to
match the developmental needs of their offspring (Grieb et al.
2017; McIver and Jeffrey 1967; Pereira et al. 2008; Reisbick
et al. 1975; Winokur et al. 2019).

Materials and methods

Experiment 1: Effects of repeated administration
of DAD1 and D2 receptor agonists on late postpartum
maternal behavior

Subjects

Subjects were female SD rats descended from rats purchased
from Charles River Laboratories (Kingston, NY), born and
raised at the Rutgers University Laboratory Animal Facility.
Females’ estrous cycles were monitored daily by vaginal
smearing, and females on a day of proestrus were placed over-
night with a sexually experienced male from the colony.
Pregnancy was confirmed the next day by semen in a vaginal
smear or by the presence of a vaginal plug. Pregnant females
were group housed with food (Lab Diet 2008, PMI Nutrition
International, LLC, Brentwood, MO, USA) and water ad
libitum, and the room was maintained on a 12-h light/dark
cycle (light on at 0700 h). A few days before giving birth,
females were housed in individual cages (48.5 cm × 38.5 cm ×
20.5 cm) lined with fresh woodchip bedding and containing
shredded paper towels as nest-building material. Soon after
parturition (PPD0), litters were culled to contain 8 pups (4
males, 4 females). All procedures were performed in accor-
dance with the principles of the National Institutes of Health
Guide for Care and Use of Laboratory Animals and approved
by the Institutional Animal Care and Use Committee at
Rutgers University.

Pharmacological agents and treatments

The DA D1 receptor agonist, SKF38393, and the DA D2
receptor agonist, quinpirole (Sigma Chemical, St. Louis,
MO, USA), were dissolved in 0.9% saline, which also served
as the vehicle control treatment. The doses and injection times
of SKF38393 and quinpirole (0.5 and 0.05 mg/kg, respective-
ly, intraperitoneal (IP), 20 min before testing) were selected
based on previously published reports showing no effect of
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these low doses on locomotion, oral stereotypies or grooming
behavior in nonmaternal animals (e.g., Berridge and Aldridge
2000; Henry et al. 1998; Hu et al. 1992), and our preliminary
studies of their effects on maternal behaviors in female rats.

Experimental design and procedure

Separate groups of postpartum females were randomly
assigned to receive twice-daily (0900 and 1700 h) IP injec-
tions of the following: (1) 0.5 mg/kg SKF38393 (n = 11), (2)
0.05 mg/kg quinpirole (n = 8), (3) a combination of 0.5 mg/kg
SKF38393 and 0.05 mg/kg quinpirole in a single injection
(n = 10), or (4) saline vehicle (n = 7). All injection volumes
were 1.0 mL/kg body weight. Mother rats were treated and
tested daily from PPD9 to PPD15. Twenty minutes before
behavior testing, both mothers and litters were removed from
their home cages, the mothers were injected and then imme-
diately returned to their home cages. The floors of these cages
were divided into four equal compartments by 5-cm high
Plexiglas dividers to impede the pups from crawling and
grouping themselves into the nest. Litters were individually
held in small cages at room temperature for the 20 min before
behavior testing.

Maternal behavior testing

Each 30-min test started with the female’s litter scattered in the
home cage opposite the nest site and the frequency of each of
the following maternal behaviors was continuously recorded:
retrieval of pups to the nest, mouthings (oral repositioning of
the pups within the nest), full body and anogenital licking of
pups, and nest building. In addition, the total duration of hov-
ering over the pups in the nest while actively performing other
behaviors (e.g., licking pups or self-grooming) and quiescent
nursing were recorded. Total time in contact with pups was
calculated as the summed durations of hovering over the pups
and nursing them. The latencies for females to begin retrieving
pups, to reunite the entire litter in the nest, and to begin hov-
ering over and nursing were recorded. The latency to begin
hovering over or nursing the pups was the first occurrence of a
bout of each behavior that was ≥ 2 min in duration. A latency
of 1800s was assigned for any behavior that was not initiated
within a 30-min observation period. Because DA agonists can
induce hyperactivity and oral stereotypies (Delfs and Kelley
1990), other behaviors recorded included general exploration,
self-grooming, and eating or drinking. Oral stereotypic behav-
ior was observed on the minute during the maternal behavior
test and scored if sniffing, licking, biting and/or gnawing were
present. Mild stereotyped sniffing was induced in quinpirole-
treated SD mothers exclusively on PPD9, and is expressed as
the cumulative score over 30 min.

Statistical analyses

Maternal behavior data are expressed as means ± SEMs and as
the proportion of females showing full maternal behavior dur-
ing the 30-min tests as defined by retrieving all pups to the
nest, licking them, and adopting a nursing posture over them.
McNemar’s chi-square tests were used to analyze within-
group categorical data across postpartum testing days.
Between-group proportion comparisons were analyzed with
Fisher’s exact test. Behavioral data were also analyzed with
linear mixed models, using the best-fitting covariance struc-
ture, with drug treatment included as the between-subjects
factor and postpartum testing day (PPD9–PPD15) as the
within-subjects factor. When there was a statistically signifi-
cant effect, non-orthogonal planned comparisons using the
error term from the overall ANOVA were used to assess dif-
ferences between each drug treatment and the control condi-
tion. Statistical significance was indicated by p < 0.05.

Experiment 2: Reproductive state changes in the NA
and VTA DA system

Subjects

Subjects were female LE rats descended from rats purchased
from Harlan Laboratories (Indianapolis, IN), born and raised in
the Lonstein breeding colony at Michigan State University.
Females were housed after weaning with 2 or 3 same-sex litter-
mates in clear polypropylene cages (48 cm× 28 cm× 16 cm)
containing wood chip bedding, with food (Tekland rat chow,
Indianapolis, IN) and water ad libitum; the roomwasmaintained
on a 12:12 light/dark cycle (lights on at 0700 h). Females’ es-
trous cycles were monitored daily by vaginal smearing. For the
postpartum groups, females on a day of proestrus were placed
overnight with a sexually experienced male from the colony.
Pregnancy was confirmed the next day by semen in a vaginal
smear or by the presence of a vaginal plug. Pregnant subjects
were then housedwith 1–2 other pregnant females until 5–7 days
before expected parturition, after which they were singly housed
(diestrous virgins remained with their cage-mates until sacrifice).
Soon after parturition (PPD0), litters were culled to contain 8
pups (4 males, 4 females). All procedures were performed in
accordance with the principles of the National Institutes of
Health Guide for Care and Use of Laboratory Animals and ap-
proved by the Institutional Animal Care and Use Committee at
Michigan State University.

Dopamine receptor RT-qPCR

LE females were rendered unconscious with CO2 and rapidly
decapitated on a day of diestrous for the nulliparous virgins
(DV), within 3 h after delivery of the last pup (PPD0), during
the early postpartum period on PPD7, or late postpartum on
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PPD18 (ns = 7–9/group). Brains were removed from the skull,
flash frozen with isopentane, and stored at − 80 °C until section-
ing. Brains were cut coronally into 300-μm-thick sections using
a cryostat (Leica CM1950, Nussloch, Germany) to obtain three
sections that included the NA shell and three sections that in-
cluded the VTA (NA: plates 17–23; VTA: plates 76–82)
(Swanson 2004). The NA shell and VTA were each extracted
from the sections using a 1-mm-diameter micropuncher (Harris
Micropunch, Hatfield, PA). The NA shell, rather than the NA
core, was analyzed because of the association between NA shell
DA and active maternal behaviors in rats (Afonso et al. 2013;
Keer and Stern 1999; Li and Fleming 2003). The tissue was
homogenized in RLT buffer (79216, Qiagen, Valencia, CA) con-
taining β-mercaptoethanol by pulsed sonication for 20 s at 20%
amplitude (Fisher Scientific, Pittsburgh, PA). mRNAs were then
extracted using the RNeasy Plus Mini Kit (74134, Qiagen,
Valencia, CA) per the manufacturer’s instructions. The extracted
mRNAswere quantified using a gene quant 100 spectrophotom-
eter (General Electric,Marlborough,MA) bymeasuring the 260-
nm absorbance values. One hundred nanograms of mRNAs was
then converted to cDNA using a high-capacity reverse transcrip-
tion kit (Applied Biosystems, Foster City, CA) per the manufac-
turer’s instructions. After conversion to cDNA, samples were
stored at − 20 °C until being analyzed with real-time RT-PCR.
DAD1 and D2 receptor mRNAs were analyzed using previous-
ly usedmethods (Grieb et al. 2017). Briefly, each samplewas run
in triplicate and included cDNA, primers, and SYBR Green
PCR Master Mix (Applied Biosystems, Foster City, CA) in a
25-μL reaction. A QuantStudio 3 Real-Time PCR Instrument
(Product No. A28131, Applied Biosystems, Foster City, CA)
was used for quantification, with the following settings: 50 °C
for 2 min, 95 °C for 10 min, and 40 cycles of 95 °C for 15 s and
60 °C for 1min. A dissociation curve was run for each sample to
ensure that only a single product was transcribed. To analyze
changes in DA D1 and D2 receptor mRNA, three transcripts
were run: D1 (200 nM primers: Forward: 5′- GCA TGG CTT
GGA TTG CTA CG -3′; Reverse: 5′- CCA GTT GCT GCC
TGG ACT AA -3′), D2 (200 nM primers: Forward: 5′- GAG
CCA ACC TGA AGA CAC CA –3′; Reverse: 5′- GCA TCC
ATT CTC CGC CTG TT -3′), and HPRT-1 as a control gene
(200 nM primers: Forward: 5′- GAA ATG TCT GTT GCT
GCG TCC -3′; Reverse: 5′- GCC TAC AGG CTC ATA GTG
CAA -3′). All primers were from Integrated DNATechnologies
(Coralville, IA). During quantification, a no-template control
was run alongside the samples to ensure that no primer-dimer
amplification had occurred. In addition, mRNA samples not run
through the reverse transcription kit were run simultaneously to
ensure no gDNA contamination. Amplification efficiencies were
calculated for each primer set, and each was within the accepted
range (1.90–2.10; 2.0 is indicative of a doubling of replicants per
cycle) to use the ΔΔCT method to calculate fold change be-
tween groups (Livak and Schmittgen 2001; Schmittgen and
Livak 2008).

Tyrosine hydroxylase immunohistochemistry

Groups of female rats were overdosedwith sodium pentobarbital
either as virgins on a day of diestrous (DV), within 3 h after
delivery of the last pup (PPD0), on PPD7, or on PPD18 (ns =
5/group). Parturitionwasmonitored by spot checks every 30min
during the light photophase on the expected day of delivery, and
only females whose parturitions were observed were included in
the PPD0 group. Subjects were perfused transcardially with sa-
line followed by 4% paraformaldehyde, the brains extracted,
postfixed overnight, and submerged in 30% sucrose. Brainswere
cut into 40-μm sections in four series and sections stored in a
sucrose-based cryoprotectant until processing. Three matched
sections per subject containing the VTA (− 5.65 to − 6.06 mm
from bregma; sections ~ 160 μm apart) were selected for analy-
sis. Immunohistochemistry was conducted using methods previ-
ously reported in detail elsewhere (Miller and Lonstein 2009).
All rinses were in 0.1 M Tris-buffered saline (TBS). Briefly,
sections were incubated in 0.1% sodium borohydride for
15 min, followed by a 10-min incubation in 1% hydrogen per-
oxide diluted in 0.3% Triton-X TBS. Tissue was then blocked in
a solution containing 20% Normal Goat Serum (NGS) in 0.3%
Triton-X TBS for 1 h at room temperature. Sections were then
incubated in a Triton-TBS solution containing 2% NGS and a
mouse anti-tyrosine hydroxylase polyclonal antiserum
(AB5986; Millipore, Burlington, MA; 1:2000), for ~ 16 h at
room temperature, then in a biotinylated goat anti-mouse sec-
ondary antiserum (BA-9200; Vector Labs, Burlingame, CA;
1:500) for 1 h at room temperature. Sections were incubated in
ABC solution (PK 6100, Vectors Labs, Burlingame, CA) for 1 h
at room temperature. TH immunoreactivity was visualized using
Vector-SG (SK-4700; Vector Labs, Burlingame, CA), and the
slides were mounted and coverslipped. The number of TH-
immunoreactive (TH-ir) cells in the VTAwas counted bilaterally
on each section under ×40 magnification (ROI superimposed on
each hemisection = 245 μm×190 μm) by experimenters naive
to the subjects’ experimental condition using a Nikon Eclipse
E600 light microscope. Given the very low background staining
(see Fig. 4), somata with any visible TH immunoreactivity were
included in the quantification. The summed number of TH-ir
cells counted in all sections per subject was used for data anal-
yses. In addition to the number of TH-ir cells in the VTA, the
percentage of total area in the ROI that was covered by TH-ir
pixels was also analyzed. TH-ir pixels were counted if they were
darker than a standardized threshold for optical density that was
set across sections and subjects, and data were represented as the
percentage of TH-ir pixels/Total number of pixels in the ROI. All
images were taken at a standardized light level.

High performance liquid chromatography

Additional LE females either virgins on a day of diestrus (DV),
within 3 h of parturition (PPD0), on PPD7, or on PPD18 (ns= 7–
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8/group) were rendered unconscious with CO2 and rapidly de-
capitated. Brains were removed, quickly frozen with dry ice, and
stored at − 80 °C until sectioning. Brains were cut coronally into
300-μm-thick sections containing the VTA using a cryostat
(Leica CM 1950, Nussloch, Germany), and the VTA was re-
moved using a 1-mm-diameter micropuncher (Harris
Micropunch, Hatfield, PA) to analyze tissue levels of DA and
its major metabolites. Serotonin and its major metabolite were
also measured. Tissue samples were sonicated in 200 μL of an
antioxidant solution (0.4 N perchloric acid, 1.34 mMEDTA, and
0.53 mM sodium metabisulfite), and 10 μL was removed and
placed into 2% sodium dodecyl sulfate (SDS) for protein quan-
tification using a BCA protein assay (Thermo-Fisher Scientific,
Waltham, MA). Following protein quantification, samples were
centrifuged at 10,000 rpm for 10 min. The supernatant was re-
moved and separated by a 150 × 4.6mmMicrosorbMVC8 100-
5 column (Agilent Technologies, Santa Clara, CA), and simulta-
neously examined for dopamine (DA), homovanillic acid (HVA),
3,4-dihydroxyphenylacetic acid (DOPAC), 5-hydroxytryptophan
(5-HT), and 5-hydroxyindoleacetic acid (5-HIAA). Compounds
were detected using a 12-channel coulometric array detector
(CoulArray 5200, ESA, Paris, FR) attached to a Waters 2695
Solvent Delivery System (Waters, Milford, MA) under the fol-
lowing conditions: flow rate of 1 mL/min; detection potentials of
25, 85, 180, 420, 480 mV; and scrubbing potential of 750 mV.
The mobile phase consisted of 100 mm citric acid (#A104,
Thermo-Fisher Scientific, Waltham, MA), 75 mM disodium
phosphate (#BP332; Thermo-Fisher Scientific, Waltham, MA),
and 80 mm heptane sulfonate monohydrate (#51832, Thermo-
Fisher Scientific, Waltham, MA) pH 4.25 in 5% methanol.
Sample values were calculated based on a six-point standard
curve of the analytes. Data are expressed as nanogram/
milligram protein.

Statistics

PCR and neurochemical data are expressed as group means ±
SEMs and were analyzed using one-way ANOVAs, with LSD
post-hoc tests used in cases of statistically significant
ANOVAs. In cases of unequal variances between groups,
Welch’s ANOVAs were used. Statistical significance was in-
dicated by p < 0.05.

Results

Experiment 1: Effects of repeated administration
of DAD1 and D2 receptor agonists on late postpartum
maternal behavior

As shown in Fig. 1a, there were significant effects of drug
treatment on the percentage of SD dams that exhibited full
maternal behavior (i.e., retrieving and grouping all pups into

the nest, licking them, and adopting a nursing posture over
them) during the 30-min tests. Consistent with numerous prior
studies showing a decline in maternal behavior during the late
postpartum period, the majority of vehicle-treated dams did
not group all pups into the nest and exhibited very low levels
of active caregiving from PPD12 onward relative to PPD9
(McNemar’s chi-square test, PPD12–15 versus PPD9 all ps
< 0.05; Fig. 1a). In contrast, repeated treatment with
SKF38393 and SKF38393 + quinpirole maintained a signifi-
cantly higher proportion of fully maternal females throughout
PPD12–15 (Fisher’s exact test, all ps < 0.05, Fig. 1a). A sim-
ilar effect was observed in quinpirole-treated mothers, but the
effect was less pronounced and only statistically significant on
PPD14 when compared to the vehicle-treated group (Fisher’s
exact test, p < 0.05; Fig. 1a).

Treatment effects were also found for the expression of
discrete components of maternal caregiving, with mothers
treated with SKF38393, or combined SKF38393 + quinpirole,
exhibiting higher levels of nearly all active components of
maternal behavior compared to controls from PPD12 onward
(Retrieval: treatment, F(3,32) = 4.8, p = 0.007, ηp

2 = 0.31; day,
F(6,192) = 29.6, p < 0.001, ηp

2 = 0.48; treatment × day,
F(18,192) = 1.69, p = 0.04, ηp

2 = 0.137; Mouthing: treatment,
F(3,32) = 8.12, p < 0.001, ηp

2 = 0.43; day, F(6,192) = 5.56,
p < 0.001, ηp

2 = 0.15; treatment × day, F(18,192) = 2.34, p =
0.02, ηp

2 = 0.18; Corporal licking: treatment, F(3,32) = 21.59,
p < 0.001, ηp

2 = 0.67; day, F(6,192) = 14.42, p < 0.001, ηp
2 =

0.31; treatment × day, F(18,192) = 5.88, p < 0.001, ηp
2 = 0.36;

Anogenital licking: treatment,F(3,32) = 17.36, p < 0.001, ηp
2 =

0.62; day, F(6,192) = 9.22, p < 0.001, ηp
2 = 0.22; treatment ×

day, F(18, 192) = 4.87, p < 0.001, ηp
2 = 0.31; Nest building:

treatment, F(3,32) = 7.79, p < 0.001, ηp
2 = 0.42; day, F(6,192) =

5.16, p < 0.001, ηp
2 = 0.14; treatment × day, F(18, 192) = 2.45,

p = 0.001, ηp
2 = 0.19; Fig. 1b–f). Planned comparisons re-

vealed that co-administration of SKF38393 + quinpirole sig-
nificantly increased all active caregiving behaviors compared
with the vehicle-treated group throughout PPD12 to PPD15
(all ps < 0.05; Fig. 1b–f). Similarly, SKF38393 significantly
increased corporal and anogenital lickings compared to vehi-
cle on PPD12 through PPD15 (all ps < 0.05). Quinpirole tran-
siently reduced pup licking on PPD9 (p < 0.05), but thereafter
generally facilitated maternal behavior, with treated dams
exhibiting significantly higher levels of retrievals as well as
corporal and anogenital lickings compared to vehicle-treated
females from PPD12 onward (all ps < 0.05; Fig. 1b–f).

As expected, there were significant main effects of postpar-
tum day, but no main effects of treatment or day × treatment
interactions, on the latencies for postpartum females to re-
trieve their first pup or group all pups into the nest, with both
latencies increasing across postpartum days (Latency to first
retrieval: F(6,192) = 11.73, p < 0.001, ηp

2 = 0.27; Latency to re-
unite with litter: F(6,192) = 21.68, p < 0.001, ηp

2 = 0.4; Fig. 2a,
b). Notably, a significantly higher proportion of SKF38393-
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and SKF38393 + quinpirole-treated females retrieved and
grouped pups into the nest on PPD13, PPD14, and PPD15
compared to the vehicle-treated females that mostly did not
(all ps < 0.05).

Lastly, there were significant main effects of treatment and
day, as well as treatment × day interactions, on the durations
and types of contact that mothers had with pups. Specifically,
DA agonist-treated females generally spent more time with

Fig. 1 a Percentage of SD dams displaying full maternal behavior
(retrieving and grouping all pups to the nest, licking, and adopting a
nursing posture during the 30-min tests) on PPD9–15 after being treated
with either vehicle, SKF38393 (SKF), quinpirole (Quin), or SKF38393
plus quinpirole (SKF +Quin). Mean ± SEM number of b pups retrievals,
c mouthing, d anogenital and e corporal licking the pups, and f nest
building by PPD9–15 dams treated with vehicle, SKF, Quin, or SKF +

Quin. Letter a, b, or c above lines indicates significant difference when
comparing between: (a) SKF vs. vehicle, (b) Quin vs. vehicle, and (c)
SKF +Quin vs. vehicle on that particular postpartum day, p < 0.05. Note:
The a percentage of dams displaying full maternal behavior, the b number
of pups retrieved, and c the frequency of mouthing and d, e licking the
pups significantly decreased across the late postpartum days
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their pups (Hover over: treatment, F(3,32) = 6.62, p = 0.001,
ηp

2 = 0.30; day, F(6,192) = 10.27, p < 0.001, ηp
2 = 0.2; treat-

ment × day, F(18,192) = 1.897, p = 0.02; ηp
2 = 0.12; Nursing:

treatment, F(3,32) = 4.5, p = 0.01, ηp
2 = 0.3; day, F(6,192) = 3.1,

p = 0.006, ηp
2 = 0.1; treatment × day, F(18, 192) = 3.62,

p < 0.01, ηp
2 = 0.25; Total time in contact: treatment,

F(3,32) = 3.39, p = 0.03, ηp
2 = 0.24; day, F(6,192) = 2.55, p =

0.021, ηp
2 = 0.074; treatment × day, F(18,192) = 3.087,

p < 0.01, ηp
2 = 0.22; Fig. 2c, d). However, planned compari-

sons revealed no significant effects of any of the three drug
treatments on the duration of hovering over or the duration of
nursing across the late postpartum period (Fig. 2c, d).

Importantly, home cage activity—including general explo-
ration (as measured by line crosses across the different quad-
rants of the cage and rearing), self-grooming, eating, and
drinking—did not differ among groups across PPD9-PPD15
(Crossing: treatment, F(3,32) = 0.86, p = ns, ηp

2 = 0.075; day,
F(6,192) = 0.15, p = ns, ηp

2 = 0.038; treatment × day, F(18,192) =
0.29, p = ns, ηp

2 = 0.057; Rearing: treatment, F(3,32) = 0.07,
p = ns, ηp

2 = 0.006; day, F(6,192) = 0.22, p = ns, ηp
2 = 0.038;

treatment × day, F(18,192) = 0.22, p = ns, ηp
2 = 0.072; Self-

grooming: F(3,32) = 0.86, p = ns, ηp
2 = 0.075; day, F(6,192) =

0.15, p = ns, ηp
2 = 0.038; treatment × day, F(18,192) = 0.29, p =

ns, ηp
2 = 0.057; Table 1). However, quinpirole induced mild

stereotyped sniffing, exclusively in PPD9 females (treatment,
F(3,32) = 3.7, p = 0.021, ηp

2 = 0.26; day, F(6,192) = 20.4, p <
0.01, ηp

2 = 0.39; treatment × day, F(18,192) = 3.7, p = 0.021,
ηp

2 = 0.26; PPD9Quinpirole 2.0 ± 0.7 vs PPD9Vehicle 0.0 ± 0.0,
p = 0.014). Oral stereotypies were not observed on subsequent
quinpirole treatment days or following any other drug treat-
ment (all ps = ns; data not shown).

Experiment 2: Reproductive state changes in the NA
and VTA dopamine system

In LE mothers, D2 mRNA expression in the NA shell was
lower in both the PPD18 and recently parturient females com-
pared to DVs (F(3, 28) = 4.22, p = 0.01, ηp

2 = 0.31; Fig. 3a),
and lower in the VTA of PPD18 dams compared to all other
groups (F(3, 29) = 7.65, p < 0.01, ηp

2 = 0.44; Fig. 3c). On the
other hand, D1 mRNA expression in the NA shell was higher
in the PPD7 and PPD18 mothers compared to DVs (F(3, 28) =

Fig. 2 Mean ± SEM latency to a retrieve their first pup, and b group all
their pups into the nest, and duration of c hovering over pups in the nest
and d nursing by PPD9–15 SD dams treated with either vehicle,
SKF38393 (SKF), quinpirole (Quin), or SKF38393 plus quinpirole

(SKF +Quin). Note: The latency to a retrieve the first pup and b group
the pups into the nest significantly increased across late postpartum days,
while the duration of c hovering over the pups in the nest significantly
decreased across late postpartum period
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3.23, p = 0.04, ηp
2 = 0.26; Fig. 3b), and there was no signifi-

cant difference across reproductive state in D1mRNA expres-
sion in the VTA (F(3, 29) = 1.44, p = 0.25, ηp

2 = 0.13; Fig. 3d).
While the number of TH-ir cells did not differ across group

(Fig 4a-c), levels of TH immunoreactivity in the VTA was
significantly lower in PPD18 dams (F(3, 16) = 3.31, p < 0.05,
ηp

2 = 0.38; Fig. 4d) compared to all other groups. The groups
also differed in their VTA DA turnover (i.e., HVA +DOPAC/
DA) (F(3, 27) = 10.73, p < 0.01, ηp

2 = 0.61; Fig. 4f), with
PPD18 dams having higher turnover compared to DVs (p =
0.02). Recently parturient dams also had higher DA turnover
in the VTA compared to DVs (p < 0.001), as well as compared
to the PPD7 (p < 0.001) and PPD18 dams (p < 0.01). There
were no significant effects of female reproductive state on
VTA levels of DA (Fig. 4e), DOPAC, HVA, 5-HT, 5-HIAA,
or 5-HT turnover (i.e., 5-HIAA/5-HT) (Table 2).

Discussion

The present studies are important first steps in testing the
hypothesis that decreased mesolimbic DA signaling at least
partly underlies the decline in maternal behaviors across the
early to late postpartum periods. In support of our hypothesis,
in Experiment 1 we found that repeated treatment with DA
agonist(s) (especially the combination of D1 and D2 receptor
agonists) maintained higher expression of all active compo-
nents of maternal caregiving behavior in postpartum SD rats
compared to vehicle-treated controls, whose caregiving more
rapidly declined during the late postpartum period. There was
no consistent effect of DA agonist treatment on locomotor

activity, oral stereotypies, or grooming behavior indicating
that our maternal behavior results were not confounded by
these known potential consequences of DA receptor agonism.
In Experiment 2, we found that late postpartum LE rats had
significantly lower D2 receptor expression in the NA shell and
the VTA, and higher D1 receptor expression in the NA shell,
compared to diestrous virgins. TH-ir optical density was also
lower in the VTA of the late postpartum dams compared to
either early postpartum mothers or diestrus virgins. This
change in VTATH levels was further accompanied by higher
DA turnover in the late postpartum females compared to di-
estrus virgins. Given that SD and LE strains of rats have a very
similar decline in dopamine-dependent active caregiving be-
haviors across the late postpartum period (Afonso et al. 2009;
Champagne et al. 2004; Grieb et al. 2017; Hansen et al. 1993;
Pereira et al. 2008; Reisbick et al. 1975; Winokur et al. 2019),
these results collectively suggest that the mesolimbic DA sys-
tem changes across female reproduction to not only stimulate
maternal caregiving during the early postpartum period
(Gaffori and Le Moal 1979; Hansen et al. 1991; Keer and
Stern 1999; Li et al. 2004; Miller and Lonstein 2005;
Numan et al. 2005; Numan and Smith 1984; Numan et al.
2009; Parada et al. 2008; Pereira et al. 2011; Pereira and
Ferreira 2006; Silva et al. 2001; Stern and Taylor 1991;
Zhao and Li 2009), but further contribute to the characteristic
waning of caregiving as postpartum time progresses.

Repeated treatment with DA receptor agonist(s), especially
the combined D1/D2 agonists treatment, maintained the full
expression of maternal behavior into the late postpartum peri-
od. This was evidenced by a majority of treated SD females
performing the complete repertoire of caregiving activities

Table 1 Home-cage activity of DA agonist(s)-treated SD mothers during each PPD9–15 maternal behavior tests

PPD9 PPD10 PPD11 PPD12 PPD13 PPD14 PPD15

Line Crosses

Vehicle 23.3 ± 3.1 22.7 ± 2.4 22.0 ± 1.4 22.9 ± 3.2 21.3 ± 1.3 21.2 ± 2.1 23.4 ± 1.8

SKF38393 25.8 ± 2.3 25.8 ± 2.4 22.1 ± 1.8 23.9 ± 2.1 22.3 ± 2.4 24.5 ± 2.2 23.2 ± 1.4

Quinpirole 23.6 ± 2.2 23.7 ± 2.8 22.1 ± 2.9 23.4 ± 2.8 23.5 ± 2.4 22.9 ± 2.8 22.8 ± 2.6

SKF38393 + quinpirole 23.4 ± 2.3 25.5 ± 1.8 22.7 ± 1.7 26.8 ± 2.4 23.2 ± 2.5 25.3 ± 2.6 24.5 ± 2.0

Rearing

Vehicle 11.4 ± 3.1 9.1 ± 2.1 11.0 ± 2.1 9.9 ± 3.5 11.0 ± 2.0 11.4 ± 2.8 11.0 ± 2.5

SKF38393 12.4 ± 2.5 10.4 ± 2.1 11.9 ± 2.2 10.3 ± 2.0 11.6 ± 2.6 12.5 ± 2.5 9.8 ± 2.4

Quinpirole 11.0 ± 3.5 12.0 ± 2.6 10.0 ± 3.0 10.7 ± 2.8 12.7 ± 2.8 12.1 ± 2.8 12.5 ± 1.9

SKF38393 + quinpirole 10.7 ± 2.5 9.8 ± 2.5 9.8 ± 1.8 12.7 ± 2.7 10.4 ± 2.0 11.9 ± 2.9 12.8 ± 2.8

Self-grooming

Vehicle 2.6 ± 0.8 2.6 ± 1.3 2.4 ± 0.6 3.1 ± 0.9 2.9 ± 0.9 3.1 ± 0.9 3.3 ± 0.7

SKF38393 3.3 ± 0.7 3.1 ± 0.6 2.6 ± 0.7 3.6 ± 0.9 2.8 ± 0.7 3.0 ± 0.7 2.9 ± 0.6

Quinpirole 2.9 ± 0.9 2.5 ± 0.7 3.0 ± 0.7 2.4 ± 0.7 3.5 ± 0.7 2.5 ± 0.8 2.9 ± 0.9

SKF38393 + quinpirole 3.2 ± 0.9 3.6 ± 0.6 3.4 ± 1.1 2.7 ± 0.6 3.1 ± 0.9 2.8 ± 0.6 3.6 ± 0.8

Data are expressed as means ± SEM. Home cage activity, including general exploration (as measured by line crosses across the different quadrants of the
cage and rearing), and self-grooming did not differ among groups across PPD9–PPD15
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(i.e., completing retrieval, licking, and nursing their pups) and
doing so at levels characteristics of the early postpartum peri-
od, when compared to controls, whose caregiving more rap-
idly declined across the late postpartum period. Although
quinpirole-treated dams initially licked their pups less on
PPD9, they subsequently exhibited higher levels of lickings
from PPD12 to 15, compared to vehicle-treated dams. This
initial disruptive effect of quinpirole on pup licking is likely
related to its activation of DA D2 autoreceptors that decreases
both excitability of DA neurons and DA release (Ford 2014).
However, repeated administration of quinpirole reduces D2
autoreceptor sensitivity (downregulation), favoring activation
of D2 postsynaptic receptors (Bartlett et al. 2005), which
probably explains the subsequent higher expression of active
caregiving in these females from PPD12 to 15. Another pos-
sible, non-exclusive explanation is that quinpirole’s initial ef-
fect on stereotyped sniffing might have briefly affected pup
licking. Taken together, our results suggest that reduced post-
synaptic DA receptor activation during mid-to-late postpar-
tum is involved in the normal waning of active maternal be-
haviors. This finding is consistent with previous studies show-
ing that interfering with DA receptor activity, via systemic or

intra-accumbens administration of either DA D1 or D2 recep-
tor antagonists, selectively disrupts active caregiving behav-
iors in early postpartum female rats, including both SD and LE
mothers, without affecting general activity (Keer and Stern
1999; Li et al. 2004; Numan et al. 2005; Pereira and Ferreira
2006; Silva et al. 2001; Stern and Taylor 1991; Zhao and Li
2009). It is also consistent with prior results demonstrating
less DA release in the NA of late postpartum female rats
compared to early postpartum rats during interactions with
pups (Pereira et al. 2013).

While DA receptor agonism in our study maintained sig-
nificantly higher levels of active caregiving behaviors in mid-
to-late lactation, it did not completely prevent the natural de-
cline in caregiving. It may be the case that, due to decreased
DA activity across the postpartum period, gradually increas-
ing the doses of the DA agonists across testing would have
been needed to fully maintain caregiving behaviors at early
postpartum levels. Consistent with this possibility of de-
creased sensitivity of the DA system to the/its agonist(s), in
Experiment 2 we did find lower DAD2 receptor mRNA in the
NA shell of late postpartum compared to early postpartum LE
dams. That experiment found no difference in DAD1 receptor

Fig. 3 Dopamine D2 receptor mRNA expression (means ± SEMs) in the
a nucleus accumbens (NA) shell and c ventral tegmental area (VTA) of
LE female rats sacrificed as diestrus virgins (DV), 3 h after parturition
(PPD0), on early PPD7, or on late PPD18. Dopamine D1 receptor mRNA

expression (means ± SEMs) in the b NA shell and d VTA of females
sacrificed as DV, PPD0, on PPD7, or on PPD18. Different letters above
bars indicate significant differences between groups, p < 0.05
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mRNA between early and late postpartum rats, though, de-
spite the fact that DA D2 and D1 receptor blockade produces
very similar disruptions of active caregiving (Byrnes et al.
2002; Keer and Stern 1999; Silva et al. 2001). Thus, down-
regulation of DA D2 receptor mRNA might underlie the de-
cline in mothering across the postpartum period, either alone
or by altering the ratio of D1/D2 receptor content in the NA
(Hull et al. 1989).

DA receptor agonism in Experiment 1 also may not have
been able to fullymaintainmaternal behavior at early postpartum
levels because continuous exposure to pups in the late postpar-
tum female might have led to tolerance within the mesolimbic
DA system. In this sense, long-term exposure to drugs and alco-
hol is associated with adaptations in the mesolimbic DA system,
including decreased TH immunoreactivity (Mazei-Robison et al.

2011; Russo et al. 2007; Sklair-Tavron et al. 1996). Consistent
with this, Experiment 2 found that late postpartummothers had a
significantly lower density of TH immunoreactivity in the VTA
compared to early postpartum or diestrus virgin females. Low
levels of TH immunoreactivity in the VTA is associated with
reduced capacity for DA synthesis (Bacopoulos and Bhatnagar
1977) and less responsiveness to rewarding stimuli (Russo et al.
2007). We also found that the late postpartum dams had higher
DA turnover in the VTA, which may have been driven by their
decreased VTA D2 expression in response to chronically high
DA (Bartlett et al. 2005; Ford 2014). Higher DA turnover within
the VTA activates D2 autoreceptors on VTA neurons, subse-
quently decreasing DA cell firing (Beaulieu and Gainetdinov
2011; Ford 2014; Gantz et al. 2013; Pucak and Grace 1994)
and distal DA release in regions such as the NA and mPFC

Fig. 4 Photomicrographs of tyrosine hydroxylase (TH) immunoreactivi-
ty in the VTA of representative a diestrous virgin (DV) and b
late postpartum day (PPD) 18 LE rats. c Mean ± SEM number of TH-ir
cells in the VTA of females sacrificed as DV, 3 h after parturition (PPD0),
on PPD7, or on PPD18. d Percentage of total VTA area covered by TH

immunoreactivity of those same groups (normalized to DV group; means
± SEMs). eMean ± SEM dopamine levels (ng/mg tissue) and f dopamine
turnover (DOPAC + HVA)/DA) in the VTA. Different letters above bars
indicate significant differences between groups, p < 0.05. IPN,
interpeduncular nucleus; SNc, substantia nigra, pars compacta
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(Andersson et al. 2006; Mebel et al. 2012; Rice and Patel 2015).
Decreased DA release at target sites, including the NA shell,
could ultimately lead to decreased caregiving during the late
postpartum period (Andersson et al. 2006; Kliem et al. 2007;
Pruett and Salvatore 2013).

We also found that recently parturient LE rats (PPD0) had
higher DA turnover in the VTA compared to virgins. These
diffferences in DA turnover in the VTA can be contrasted with
the stable DA turnover previously reported in the NA across
the postpartum period (Lonstein et al. 2003; Winokur et al.
2019). While both PPD0 and PPD18 dams had high DA turn-
over in the VTA, the behavioral consequences probably differ
between the groups. For instance, if high DA turnover in re-
cently parturient dams decreases basal DA release in the NA
shell compared to virgins, it may enhance new mothers’
signal-to-noise ratio for DAergic responses to pup-related
stimuli (Afonso et al. 2009; Afonso et al. 2013). This in-
creased signal-to-noise ratio would only occur in the early
postpartum period when there is high DA release in response
to the pups’ cues (Afonso et al. 2009; Champagne et al. 2004;
Hansen et al. 1993; Pereira et al. 2013). Therefore, increased
VTA DA turnover soon after parturition could be associated
with enhanced signal-to-noise ratio to help new mothers dis-
tinguish between basal and pup-stimulated DA release, while
increased VTA DA turnover in the late postpartum period
would likely lead to decreased DA output as discussed just
above.

In conclusion, our results support the hypothesis that re-
duced expression of active maternal caregiving behaviors in
the late postpartum period is partly due to decreasing DAergic
function across postpartum time . Given that both offspring
age and maternal postpartum stage drive this decline in mater-
nal caregiving behaviors (Grieb et al. 2018; Pereira et al. 2008;
Reisbick et al. 1975; Rosenblatt 1969), it would be valuable

for future research to disentangle their respective roles in the
dynamic maternal mesolimbic system and its contribution to
behavioral change across motherhood.
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