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Abstract
Rationale Sleep difficulties are one of the problems associated with adolescent binge drinking. However, the mechanisms
underlying adolescent alcohol-associated sleep disturbances and potential targets for therapy remain under investigated.
Orexin receptor antagonists may have therapeutic value in the treatment of insomnia, yet the use of this class of drugs in the
treatment of sleep disturbances following adolescent alcohol exposure has not been studied.
Objectives This study employed a model whereby ethanol vapor exposure occurred for 5 weeks during adolescence (AIE), and
waking event-related oscillations (EROs) and EEG sleep were subsequently evaluated in young adult rats. The ability of two
doses (10, 30 mg/kg PO) of a dual orexin receptor antagonist (DORA-12) to modify sleep, EEG, and EROs was investigated in
AIE rats and controls.
Results Adolescent vapor exposure was found to produce a fragmentation of sleep, in young adults, that was partially amelio-
rated by DORA-12. DORA-12 also produced increases in delta and theta power in waking EROs recorded before sleep, and
deeper sleep as indexed by increases in delta and theta power in the sleep EEG in both ethanol and control rats. Rats given
DORA-12 also fell asleep faster than vehicle-treated rats as measured by a dose-dependent reduction in the latency to both the
first slow wave and REM sleep episodes.
Conclusions This study showed that DORA-12 can affect the sleep disturbance that is associated with a history of adolescent
ethanol exposure and also has several other sleep-promoting effects that are equivalent in both ethanol and control rats.
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Introduction

Disturbance in sleep regulation is one of the health risks asso-
ciated with adolescent alcohol and drug use. Adolescence is a
time when both drug and alcohol-seeking behaviors and dis-
turbances in sleep emerge; and adolescents may be particular-
ly vulnerable to sleep disturbance associated with substance
use (Bartel et al. 2015; Hasler and Clark 2013; Hasler et al.
2014a; Hasler et al. 2013; Hasler et al. 2014b, 2015).

Recently, animal models of alcohol-induced insomnia have
been developed that allow for study of the effects of ethanol

on sleep independent of factors that may confound human
studies, such as premorbid conditions and other substance
use. Investigations conducted in our laboratory as well as
others, in rodents, have shown that chronic ethanol exposure
can produce persistent and long-term changes in sleep, similar
to what has been reported in humans with alcohol use disor-
ders (AUD) (Criado and Ehlers 2010; Ehlers et al. 2013a;
Ehlers and Slawecki 2000; Sanchez-Alavez et al. 2018;
Thakkar et al. 2015). More recently, an animal model of sleep
disturbance, resulting from alcohol administration during ad-
olescence, has been developed (see (Criado et al. 2008b;
Ehlers et al. 2011; Ehlers et al. 2018)). We have shown that
alcohol exposure during adolescence, in this rat model, can
result in persistent electrophysiological, behavioral, and neu-
roanatomical deficits in young adulthood (see (Ehlers et al.
2011; Ehlers et al. 2014; Ehlers et al. 2013b, c)) that parallel
findings seen in human adolescent binge drinkers (Ehlers et al.
2019; Hanson et al. 2011; McQueeny et al. 2009;
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Schweinsburg et al. 2011; Squeglia et al. 2009). Although
these animal models have been developed, they have been
little used to study therapeutic targets.

A recent body of literature supports a prominent role of the
hypothalamic peptide hypocretin/orexin (Hct/OX) in homeo-
static control of a number of regulatory processes (see (de
Lecea 2012; Li et al. 2014)). The Hct/OX system has not only
been suggested to be an important regulator of the sleep wake
cycle (Hoyer and Jacobson 2013; Inutsuka and Yamanaka
2013; Krystal et al. 2013; Mieda et al. 2013), but has also been
shown to influence a range of other physiological processes
including feeding and energy metabolism, reward/motivated
behavior, the modulation of stress responses (Baldo et al.
2003; Cason et al. 2010; DiLeone et al. 2003; Martin-
Fardon et al. 2010; Xu et al. 2013), as well as ethanol-
seeking and drinking behaviors (Anderson et al. 2014;
Brown et al. 2013; Brown et al. 2016; Jupp et al. 2011a, b;
Kastman et al. 2016; Kim et al. 2012; Lawrence 2010;
Lawrence et al. 2006; Martin-Fardon and Weiss 2012;
Moorman 2018; Moorman and Aston-Jones 2009; Moorman
et al. 2017; Srinivasan et al. 2012; Ubaldi et al. 2016; Walker
and Lawrence 2017). However, few studies have investigated
the ability of the Hct/OX system to modify alcohol-related
sleep pathology (Sanchez-Alavez et al. 2019).

In the present study, we used an animal model of adoles-
cent alcohol exposure to study the effects of two doses of a
newly developed dual orexin receptor antagonist (DORA-12)
on waking and sleep physiology (Gotter et al. 2014; Ramirez
et al. 2013). For the evaluation of DORA-12 on waking elec-
trophysiology, we used measures of event-related oscillations
(EROs). EROs are oscillatory changes within the dynamics of
ongoing EEG rhythms that are enhanced or synchronized by a
time-locked sensory and/or cognitive stimulus (see (Anokhin
2014; Basar et al. 2000; Klimesch et al. 2007; Roach and
Mathalon 2008)). EROs have been demonstrated to be sensi-
tive measures of normal (Basar et al. 1999; Schack and
Klimesch 2002) and abnormal cognitive functioning, as well
as more importantly, endophenotypes for alcohol use disor-
ders (Ehlers et al. 2015; Pandey et al. 2012; Rangaswamy and
Porjesz 2014).We also studied the effects of this drug on sleep
measures and the spectral content of the sleep EEG during
slow wave (SW) and rapid eye movement (REM) sleep in
young adult rats who experienced alcohol vapor or control
conditions during their adolescence.

Materials and methods

Animal subjects

Forty-four adolescent male Wistar rats (Charles River, USA)
arrived with their dams on postnatal day (PD) 21. They were
triple-housed under a 12 h light/dark cycle (lights on 08:00),

with water and food available ad libitum. The study was ap-
proved by The Scripps Research Institute’s Animal Care and
Use Committee and adheres to the guidelines outlined in the
NIH Guide for the Care and Use of Laboratory Animals (NIH
publication No. 80-23, revised 1996).

Ethanol vapor exposure

The methodology for ethanol vapor inhalation during adoles-
cence has been previously described (see (Ehlers et al. 2011;
Ehlers et al. 2013a; Ehlers et al. 2013c)). The chambers used
to expose rats to ethanol were titrated to produce constant
levels of high to moderate blood ethanol concentrations
(BECs) between 175 and 225 mg/dL, which are levels that
are similar to binge drinking seen in adolescence in some
studies (Patrick et al. 2013). Rats in the ethanol group were
exposed to vaporized 95% ethanol from 8 p.m. to 10 a.m.
daily for a 5-week period (P22-57). Tail blood samples were
collected during this time every 3–4 days to assess BECs (5-
week average = 215.53 ± 6.45 mg/dL). Rats in the control
group were handled identically including tail blood collection.
An Analox micro-statAM1 (Analox Instr. Ltd., Lunenberg,
MA) was used to estimate BECs. After the 5-week ethanol
or control exposure, rats were housed in standard cages for the
rest of the experiment.

Surgical procedure

The surgical procedures performed in this study have been
previously described elsewhere (Ehlers et al. 2013b; Ehlers
et al. 2018; Ehlers and Slawecki 2000). Briefly, rats were
implanted (PD 55-71) with two screw electrodes in the calvar-
ium, one overlying the frontal cortex (FCTX, AP: 1.5 mm,
ML: ± 3.0 mm, FR1), and another over the parietal cortex
(PCTX, AP: − 4.5 mm, ML: ± 4.5 mm) with a reference im-
planted over lambda, guided by the (Paxinos and Watson
1986) atlas. A multi-pin Plastics One® connector was used
to make electrical connections.

Electrophysiological recordings

Two weeks after recovery from surgery, rats were habituated
to the electrophysiological recording conditions. All ERO/
EEG sessions began at 08:00. The EEG was recorded from
the two leads (frontal cortex and parietal cortex) that were
referenced to the lambda ground using a Sensorium
preamplifier/amplifier unit (Shelburne, VT). Signals were dig-
itized at a rate of 256 Hz using software described previously.

ERO collection and a 5 h EEG sleep recording were ob-
tained for each session. EROs were elicited by auditory stim-
uli that were presented through a small speaker centered ap-
proximately 70 cm above the rat’s head. EROs were elicited
by an acoustic “oddball” plus noise paradigm. The acoustic
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parameters were three square wave tones (rise/fall times, 1
ms): a frequent tone (50 ms, 2 kHz, 70 dB SPL) presented
on 83% of the trials (n = 259), an infrequent tone (50 ms, 2
kHz, 80 dB SPL) presented on 10.3% of the trials (n = 32), and
a noise burst (50 ms, noise, 100 dB SPL) presented on 6.7% of
the trials (n = 21). Signals were digitized at a rate of 256 Hz
and transferred to a PC for offline analyses. Immediately fol-
lowing the ERO session, the 5-h sleep EEG was obtained.

Acute DORA-12 administration

At PD 92, the pharmacology experiments were begun. Rats
were randomized for the order of the dose: vehicle or DORA-
12 (Merck): low dose (10 mg/kg) or high dose (30 mg/kg)
using a Latin square design. The vehicle for this compound
was a Vitamin E TPGS (D-a-Tocopherol polyethylene glycol
1000 succinate) 20% solution, in sterile culture grade water
that was sonicated for 30 min prior to administration. To max-
imize bioavailability of the compound, vehicle or DORA-12
was administered by oral gavage. Intragastric administration
was performed by gently inserting a ball-tipped stainless steel
curved needle into the esophagus. Approximately 60 min
post-gavage, the 5-h sleep recordings were begun. To avoid
carry over effects, at least a week elapsed between drug doses.
The vehicle was given in an equivalent volume to the DORA-
12 doses.

Event-related oscillation analyses

Event-related oscillation (ERO) energy (peak magnitude of
the S transform output, squared, in a time frequency region
of interest) was obtained from the auditory paradigm for each
stimulus. Methods for these analyses have been described in
detail elsewhere (Ehlers and Criado 2009; Ehlers et al. 2012).
The ERO trials were digitized at a rate of 256 Hz. Trials
containing excessive artifact were eliminated prior to averag-
ing (< 5% of the trials). An artifact rejection program was
utilized to eliminate individual trials in which the EEG
exceeded ± 400 μV. Data from single trials generated by the
stimuli were entered into the time frequency analyses algo-
rithm. The S-transform (ST), a generalization of the Gabor
transform (Gabor 1946), was used.

To quantify S-transform magnitudes, a region of interest
(ROI) was identified by specifying the band of frequencies
and the time interval contained in the rectangular ROI. The
time-frequency points saved from each S transformation are
from 100 ms before to 900 ms after the onset of the stimulus,
and from 1 Hz through 50 Hz at intervals of 0.5 Hz. Energy is
the square of the magnitude of the S-transform output in a time
frequency region of interest. The S-transform magnitude
squared for a time/frequency interval is proportional to volts
squared.

Rectangular regions of interest (ROIs) were defined by
specifying, for each ROI, a time interval relative to the stim-
ulus onset time over a specific frequency band. The ROI fre-
quencies were delta (1–4 Hz), theta (4–7 Hz), and beta (13–30
Hz). The ROI time intervals were delta (200–500 ms), theta
(10–400 ms), and beta (0–300 ms). ROI time intervals were
selected based on ERO energy in specific event-related poten-
tial (ERP) component locations (N1, P3) in previous ERP
studies (Ehlers et al. 1998). Using mean values over trials,
the maximum values were calculated for each ROI, for the
two electrode locations.

Sleep EEG analyses

Slow-wave sleep (SWS) (1–4 Hz) was scored for the 5-h EEG
recording sessions for the vehicle (control), DORA-12 10
mg/kg, and DORA-12 30 mg/kg P.O. SWS episodes were
defined as an increase in EEG power that exceeded twice
the amplitude of waking baseline EEG power lasting longer
than 8 s. Rapid eye movement (REM) sleep was visually
identified as synchronized theta activity (4–8 Hz) that was
preceded by an episode of SWS in the absence of muscle
activity. Sleep patterns were identified and analyzed for
SWS and REM states. Measures included (1) latency to the
onset of the first episode of SW and REM sleep, (2) the mean
duration of all SW and REM sleep episodes, and (3) the total
number of SW and REM sleep episodes.

Spectral characteristics of the EEG were also quantitated
for the 5-h recording period as described previously (Ehlers
and Havstad 1982; Ehlers et al. 2018). EEG signals were
band-pass filtered (0.53–70 Hz), digitized, artifact removed,
and Fourier transformed to generate the power spectrum. EEG
analyses focused on two frequency bands: delta (1–4 Hz) and
theta (4–8 Hz) activity. Spectral power was calculated sepa-
rately for the first slow wave sleep epoch and for the average
of all the SWS epochs over the entire 5-h recording session.

Statistical analyses

Data analyses were based on the two aims of the study which
were to test the effects of vehicle and two doses of DORA-12
on (1) waking electrophysiology as indexed by event-related
oscillations (EROs), and (2) sleep physiology as indexed by
REM and SW sleep parameters, and EEG sleep spectral char-
acteristics, in the ethanol and control treatment groups. For the
ERO analyses, energy in the three time-frequency regions of
interest (delta, theta, beta) were compared in response to the
infrequent tone, in leads frontal cortex (FCTX) and parietal
cortex (PCTX) in the alcohol vapor and control animals for
the three drug conditions using a group (ethanol, control) ×
three condition (vehicle, DORA-12 10 mg/kg, DORA-12 30
mg/kg) ANOVA. Due to non-normal distributions of the data,
alcohol vapor and control animals were compared on the
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REM and SW sleep measures (latency to onset, mean duration
of episodes, number of episodes) for the treatment condition
(vehicle, DORA-12 10 mg/kg, DORA-12 30 mg/kg) using
Friedman’s test and between the two alcohol exposure groups
using Mann-Whitney U (MWU). Spectral power in the sleep
EEG in two frequency bands (delta, theta) over all the SWand
REM sleep episodes in leads FCTX and PCTX were also
evaluated for the three drug conditions using a two group
(ethanol, control) × three condition (vehicle, DORA-12 10
mg/kg, DORA-12 30 mg/kg) ANOVA. Five animals were
not used in the analysis due to decreasing function of elec-
trodes leads over the duration of testing. Post hoc analyses
were used when significant main effects were found.
Significance was set at p < 0.05.

Results

Effects of DORA-12 on waking EROs

Our first aim evaluated the response to vehicle and two doses
of the DORA-12 as indexed by waking ERO energy, in the
control and EtOH-exposed groups in frontal (FCTX) and pa-
rietal (PCTX) cortex. Repeated measure ANOVA revealed an
effect of condition (vehicle (VEH), DORA-12 10 mg/kg, 30
mg/kg) on ERO energy in delta frequency band, to the infre-
quent tone, in frontal cortex (condition: F(2,38) = 34.0, p <
0.001) and parietal cortex (condition: F(2,38) = 47.6, p <
0.001). Post hocs revealed that these results were significant
when vehicle was compared to the 10 mg/kg dose (F = 39.5, p
< 0.0001) or the 30 mg/kg dose (F = 45.2, p < 0.0001) and
when the low dose was compared to the high dose (F = 8.5, p
< 0.006) in frontal cortex as well as in parietal cortex (VEH vs.
10:F = 69.2, p < 0.0001; VEH vs. 30: F = 73.1, p < 0.0001; 10
vs. 30: 12.0, p < 0.001) (see Fig. 1). In addition, repeated
measures ANOVA revealed condition effects on ERO energy
in the theta frequency band, in both frontal cortex (condition:
F(2,38) = 34.6, p = 0.001) and parietal cortex (condition:
F(2,38) = 25.5, p < 0.001). Post hocs revealed that these re-
sults were significant when vehicle was compared to the 10
mg/kg dose (F = 47.8, p < 0.0001) or the 30 mg/kg dose (F =
52.0, p < 0.0001) and when the low dose was compared to the
high dose (F = 4.9, p < 0.03) in frontal cortex as well as in
parietal cortex (VEH vs. 10: F = 20.7, p < 0.0001; VEH vs.
30: F = 56.4, p < 0.0001; 10 vs. 30: 5.2, p < 0.03) (see Fig. 1).

Effects of DORA-12 on REM and SW sleep parameters

We evaluated whether DORA-12 had an effect on sleep pa-
rameters using non-parametric tests. An overall effect of
group was found for DORA-12 for both the mean duration
of slow wave sleep episodes (MWU = 1263, p < 0.017) and
for the total number of slow wave sleep episodes (MWU =

1279, p < 0.02). As seen in Fig. 2, the adolescent ethanol
exposure group had both shorter duration of their SWS epi-
sodes and a larger number of episodes overall as compared to
the air control group resulting in a fragmentation of sleep.
Post-hoc analyses revealed that this effect was only significant
for the duration of SWS episodes in the VEH condition
(MWU = 120, p < 0.05). Significant effects of condition were
found, using the Friedman test, for two of the SWS variables
as seen in Fig. 2 (latency to first SWS: Chi-square: 41.2, p <
0.001, total number of SWS episodes: Chi-square: 18.5, p <
0.001). Post hoc analyses using the Wilcoxon test showed that
both doses of DORA decreased the latency to the onset of the
first SWS episode (VEH vs. 10: Z = − 4.6, p < 0.0001; VEH
vs. 30: Z = − 5.1, p < 0.0001) in a dose-dependent fashion (10
vs. 30: Z = − 2.0, p < 0.04), as seen in Fig. 2. Both doses of
DORA-12 were also found to increase the number of slow
wave sleep episodes (VEH vs. 10: Z = − 4.0, p < 0.0001;
VEH vs. 30: Z = − 2.4, p < 0.016, 10 vs. 30: Z = − 2.26, p <
0.024).

REM parameters were also found to significantly differ
both as a function of group and condition. AIE animals were
found to have significantly more REM episodes overall
(MWU: 1275, p < 0.02), although the post hocs were not
significant between the groups within condition levels.
Significant effects of condition were found, using the
Friedman test, for all three REM variables as seen in Fig. 3
(latency to first REM: Chi-square: 40.2, p < 0.001, mean
length of REM episodes: Chi-square = 6.8, p < 0.03, total
number of REM episodes: Chi-square: 6.7, p < 0.04). Post
hoc analyses using the Wilcoxon test showed that both doses
of DORA-12 decreased the latency to the onset of the first
REM episode (VEH vs. 10: Z = − 4.9, p < 0.0001; VEH vs.
30: Z = − 5.1, p < 0.0001) in a dose-dependent fashion (10 vs.
30: Z = − 2.0, p < 0.04), as seen in Fig. 3. The high dose of
DORA-12 was also found to reduce the mean duration of
REM episodes when compared to VEH (Z = − 2.6, p < 0.01).

Effects of DORA-12 on sleep EEG spectra

An evaluation of the EEG sleep spectra during the first SWS
episode demonstrated that DORA-12 produced increases in
EEG delta power in frontal (F = 25.6, p < 0.0001) and parietal
(F = 24.5, p < 0.0001) cortex, as seen in Fig. 4. Post hoc
analyses showed that VEH was significantly different from
the low and high dose (FCTX: VEH vs. 10: F = 35.1, p <
0.001; VEH vs. 30: F = 42.6, p < 0.0001; PCTX: VEH vs. 10:
F = 33.5, p < 0.001; VEH vs. 30: F = 36.6, p < 0.0001), in
delta power during the first slow wave sleep episode, but low
and high dose were not different from each other in either
cortical region. However, when the amount of power in the
delta frequencies was assessed over all SW sleep episodes,
DORA-12 was found to produce a slight decrease in frontal
cortex only (F = 4.4, p < 0.018), and post hocs revealed that it
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was only significant when comparing VEH to the lowest dose
(F = 10.8, p < 0.002) (data not shown).

An evaluation of the EEG sleep spectra during the first
SWS episode demonstrated that DORA-12 also produced in-
creases in EEG theta power in frontal (F = 8.9, p < 0.001) and
parietal cortex (F = 9.0, p < 0.001), as seen in Fig. 4. Post hoc
analyses showed that VEH was significantly different from
the low dose (FCTX: F = 13.9, p < 0.001; PCTX: 14.6, p <
0.001), and high dose (FCTX: F = 7.62, p < 0.009; PCTX:
4.8, p < 0.04). The parietal cortex was also significantly dif-
ferent between the low dose and high dose (6.9, p < 0.01).
DORA-12 did not produce changes in EEG theta power when
the mean of all SWS episodes were evaluated, in either lead
(data not shown).

Spectral changes in REM sleep as a function of dose of
DORA-12 were also determined and the only findings were
a decrease in mean delta power for all REM episodes, over the
entire recording period, in both leads (FCTX: F = 6.6, p <

0.002; PCTX: F = 4.1, p < 0.023). Post hoc analyses found
that it was significant when VEH was compared to low dose
(FCTX:F = 11.2, p < 002; PCTX:F = 7.6, p < 0.009) and high
dose (FCTX: F = 7.8, p < 008; PCTX: F = 4.4, p < 0.04), but
not when the two doses were compared (data not shown).

Discussion

Alcohol use during early adolescence has been associated
with long-term health consequences, as well as elevated risk
for alcohol use disorders in young adulthood (Dawson et al.
2008; Ehlers et al. 2006). Preclinical models allow for study of
ethanol exposure during adolescence on sleep independent of
factors that may confound human studies such as differences
in genetic risk, psychiatric comorbidity, as well as environ-
mental and cultural factors. Studies from our laboratory have
shown that adolescent alcohol exposure can lead to a

Fig. 1 Event related oscillation
(ERO) energy in the delta and
theta time-frequency regions of
interest (ROI) during waking in
frontal and parietal cortex. Delta
and theta power at three time
points in rats exposed to ethanol
vapor during adolescence or air
controls: Vehicle (VEH), 10
mg/kg DORA-12(LD), and 30
mg/kg DORA-12(HD).
Significant post hoc results
shown, Asterisk indicates p ≤
0.05 dose effect. Error bars =
S.E.M
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disruption in slow-wave sleep (SWS) (Criado et al. 2008a;
Ehlers et al. 2013a; Ehlers et al. 2018). The present study is
a replication and confirmation of those studies, in that we
found that young adult rats with a history of adolescent

Fig. 3 Rapid eye movement (REM) sleep latency and duration measure-
ments following vehicle and two doses of DORA-12 in adolescent alco-
hol exposed and control rats. Latency to first REM episode, mean dura-
tion, and total number of all REM episodes shown following vehicle
(VEH), 10 mg/kg DORA-12, and 30 mg/kg, DORA-12. Significant post
hoc results shown, asterisk indicates p ≤ 0.05 dose effect. Error bars =
S.E.M

Fig. 2 Slow wave sleep (SWS) measures following vehicle and two
doses of DORA-12 in control and adolescent alcohol-exposed rats.
Latency to the first slow wave sleep episode, mean duration, and total
number of all sleep episodes shown following vehicle (VEH), 10 mg/kg
DORA-12, and 30 mg/kg, DORA-12. Significant post hoc results shown,
plus sign indicates p ≤ 0.05 group effect. Asterisk indicates p ≤ 0.05 dose
effect. Error bars = S.E.M
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alcohol vapor exposure demonstrated a fragmentation of sleep
that consisted of a decrease in the duration and an increase in
the number of slow wave sleep episodes. These findings are
also similar to what we have reported previously in adult an-
imals exposed to chronic alcohol exposure (Sanchez-Alavez
et al. 2018), although the findings appear to be somewhat less
pronounced in adolescents as compared to adults.

Although preclinical models of adolescent alcohol ex-
posure allow for the identification of alcohol-specific
sleep deficits, as opposed to premorbid conditions, they
have seldom been utilized to identify therapeutic targets.
The treatment of insomnia in adolescents and young
adults is particularly problematic since this is a time
during development when mental alertness is particular-
ly important and risk for developing addiction is high
(see (de Zambotti et al. 2018)). We have demonstrated
that Gabapentin, which binds the α2δ auxiliary subunit
of the voltage-gated calcium channels, can produce
dose-dependent increases in slow wave sleep, and ame-
liorate the effects of chronic alcohol exposure on sleep
fragmentation, in both an adult rat model of alcohol-

induced sleep disturbance (Sanchez-Alavez et al.
2018), and also ameliorate the deficits seen in slow
wave power in adolescent ethanol-exposed animals
(Ehlers et al. 2018). Gabapentin has been shown to
improve sleep and measures of recovery in individuals
with AUD in several clinical trials (Brower 2015;
Brower et al. 2008; Mason et al. 2014), and may have
less potential for addiction liability than benzodiazepine-
type hypnotics; however, it may be too sedating for use
in teens.

More recently, therapeutic drugs that target orexin/
hypocretin receptors have been developed and shown to have
some limited use in insomnia (Keks et al. 2017; Kripke 2015;
Neubauer et al. 2018; Patel et al. 2015; Winrow and Renger
2014). These drugs may prove to have efficacy in the treat-
ment of adolescent insomnia because they may have less po-
tential for addiction and unacceptable side effects. In one
study, in Japan, the tolerability, efficacy, and safety of
suvorexant, a dual orexin receptor antagonist, was evaluated
in adolescents with insomnia (Kawabe et al. 2017). In that
study, suvorexant was found to improve the subjective sleep

Fig. 4 Delta and theta power in
the EEG during the first slow
wave sleep (SWS) episode in
frontal and parietal cortex. Delta
and theta power during the first
slow wave sleep (SWS) at three
time points in rats exposed to
ethanol vapor during adolescence
or air controls following: vehicle
(VEH), 10 mg/kg DORA-
12(LD), and 30 mg/kg DORA-
12(HD). Significant post hoc re-
sults shown, asterisk indicates p ≤
0.05 dose effect. Error bars =
S.E.M
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quality, although 40% of those prescribed the drug
discontinued its use during the study.

A recent review has proposed that suvorexant may be par-
ticularly suited for the treatment of alcohol use disorders
(Campbell et al. 2018). However, the effects of suvorexant
in patients with AUD are currently unknown and preclinical
studies of the treatment of alcohol-induced sleep pathology
with suvorexant are limited. In one study, adult rats were ex-
posed to chronic ethanol vapor exposure and the effects of
suvorexant were evaluated on EEG and sleep parameters. In
that study, suvorexant was found to hasten the onset of SW
and REM sleep but exacerbated the sleep fragmentation ob-
served as a function of alcohol exposure (Sanchez-Alavez
et al. 2019). Enhanced fragmentation of sleep has also been
shown following almorexant administration in a murine mod-
el of narcolepsy as well as cataplexy (Black et al. 2013). In the
present study, a newly developed dual orexin receptor antag-
onist (DORA-12) (Gotter et al. 2014; Ramirez et al. 2013) was
administered to adult rats that had been exposed to chronic
alcohol exposure during adolescence and their controls.
Chronic ethanol vapor exposure during adolescence, in the
rat, was found to produce a fragmentation of sleep in young
adults that was partially ameliorated by DORA-12. DORA-12
was also found to produce several significant effects on sleep
and waking EEG that were equivalent in the alcohol vapor and
control rats. Significant increases in delta and theta power in
waking EROs, recorded just before sleep time, as well as
deeper sleep as indexed by increases in delta and theta power
in the sleep EEG were seen in both alcohol and control rats.
Rats given DORA-12 also fell asleep faster than rats given
vehicle as measured by a dose-dependent reduction in the
latency to both the first slow wave and REM episodes.
These data suggest that DORA-12 may have some efficacy
in the treatment of alcohol-associated insomnia and may also
demonstrate some overall superiority in its ability to produce
deeper sleep, as compared to suvorexant, in preclinical studies
in rats.

Adolescent alcohol exposure most likely influences multi-
ple neurotransmitter systems and brain circuits that could ul-
timately lead to disrupted sleep in young adults, in addition to
the hypocretin/orexin system (Veatch 2006). We have shown
that persistent reductions in cell counts of ChAT-
immunoreactive (ChAT-IR) neurons in the basal forebrain,
an area important in sleep regulation, are found in adolescent
ethanol vapor-exposed rats (Ehlers et al. 2011). However,
whether ChAT-IR reductions are responsible for the fragmen-
tation of sleep found in adolescent ethanol exposed rats is
currently unknown. A reasonable hypothesis is that adolescent
alcohol exposure influences multiple sleep systems, as has
been reported in adult animals exposed to ethanol (see
(Ehlers et al. 2013a; Ehlers et al. 2013b; Sanchez-Alavez
et al. 2018; Sharma et al. 2010; Sharma et al. 2017; Thakkar
et al. 2010)).

Taken together, these studies suggest that adolescent alco-
hol exposure, in the rat, can result in a fragmentation of sleep.
This study also showed that DORA-12 can affect the sleep
disturbance that is associated with a history of adolescent eth-
anol exposure but also has several other sleep-promoting ef-
fects that are equivalent in both ethanol and control rats.
DORA-12 was found to decrease the latency to onset of sleep
and produce deeper sleep. While these studies describe poten-
tial treatment targets for alcohol-induced sleep pathology,
however, they do not mimic the complex environmental and
genetic risks for insomnia seen in adolescent and young adult
humans (de Zambotti et al. 2018), nor do theymodel the range
of drinking levels observed in adolescent humans (Ehlers et al.
2019).
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