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Abstract
Introduction The uncompetitive N-methyl-D-aspartate (NMDA) receptor (NMDAR) antagonist ketamine has been proposed to
model symptoms of psychosis. Inhibitory deficits in the schizophrenia spectrum have been reliably reported using the antisaccade
task. Interestingly, although similar antisaccade deficits have been reported following ketamine in non-human primates,
ketamine-induced deficits have not been observed in healthy human volunteers.
Methods To investigate the effects of ketamine on brain function during an antisaccade task, we conducted a double-blind,
placebo-controlled, within-subjects study on n = 15 healthy males. We measured the blood oxygen level dependent (BOLD)
response and eye movements during a mixed antisaccade/prosaccade task while participants received a subanesthetic dose of
intravenous ketamine (target plasma level 100 ng/ml) on one occasion and placebo on the other occasion.
Results While ketamine significantly increased self-ratings of psychosis-like experiences, it did not induce antisaccade or
prosaccade performance deficits. At the level of BOLD, we observed an interaction between treatment and task condition in
somatosensory cortex, suggesting recruitment of additional neural resources in the antisaccade condition under NMDAR
blockage.
Discussion Given the robust evidence of antisaccade deficits in schizophrenia spectrum populations, the current findings suggest
that ketamine may not mimic all features of psychosis at the dose used in this study. Our findings underline the importance of a
more detailed research to further understand and define effects of NMDAR hypofunction on human brain function and behavior,
with a view to applying ketamine administration as a model system of psychosis. Future studies with varying doses will be of
importance in this context.

Keywords Inhibitory control . Antisaccades . Ketamine . Schizophrenia . Psychosis . Eye movements . Experimental model
system

Introduction

The phencyclidine (PCP) derivate ketamine is receiving in-
tense interest as a model system of psychosis (Javitt et al.
2012; Kantrowitz and Javitt 2010; Poels et al. 2014).

Translational model systems are a well-established method
to investigate the pathophysiology of psychosis (Stone 2011;
Stone et al. 2010) and possible new treatments for this condi-
tion (Javitt et al. 2012; Krystal et al. 2003; Stone et al. 2012).
They may also help to explain the diverse reactions to
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available antipsychotic compounds (Stone 2011; Stone et al.
2010). Ketamine is an uncompetitive N-methyl-D-aspartate
receptor (NMDAR) antagonist (Joules et al. 2015) that has
less affinity to the NMDAR than PCP. Ketamine has a shorter
plasma half-life than PCP and has an excellent safety record in
both research and clinical settings (Doyle et al. 2013; Javitt
et al. 2012; Krystal et al. 1994; Schmechtig et al. 2013).

The finding that NMDA antagonists like ketamine and
PCP evoke transient symptoms that mimic a wide spectrum
of psychotic symptoms has led to the emergence of glutamate
theories of psychosis (Krystal et al. 1994; Lahti et al. 2001).
These theories postulate that NMDAR hypofunction is funda-
mentally related to the etiology and pathophysiology of psy-
chosis (Kantrowitz and Javitt 2010; Krystal et al. 2003; Poels
et al. 2014). Psychotic symptoms are commonly divided into
positive symptoms, such as suspiciousness and delusions;
negative symptoms, such as social withdrawal and blunted
affect; and disorganized symptoms, such as poor attention
and conceptual disorganization (Javitt 2010). Symptoms from
all three of these domains have been reported during ketamine
administration (Krystal et al. 1994).

Despite this overlap, however, it appears that ketamine
does not induce all aspects of psychosis (Murray et al. 2013;
Steeds et al. 2015). To some extent this is true of all model
systems, as psychotic disorders are complex and heteroge-
neous and it might be a near impossible challenge for one
model to mimic all of their features (van Os and Kapur 2009).

Cognitive deficits are among those characteristics of
psychosis that are for the most part resistant to currently
available treatments (Carpenter and Koenig 2008). Given
that cognitive deficits are associated with fundamental
psycho-social impairments and reduced subjective well-
being, they are an important target for possible new treat-
ments (Carter and Barch 2007; Lesh et al. 2011; Morris
and Cuthbert 2012). Model systems mimicking the cogni-
tive symptoms of psychosis, especially when combined
with cognitive biomarkers of psychosis, may further this
important development (Javitt et al. 2012).

The antisaccade task is a widely studied biomarker of
inhibitory control in schizophrenia (Gooding and Basso
2008; Koychev et al. 2011). Antisaccade performance is a
measure of the integrity of cognitive and neural mecha-
nisms of response inhibition (Hutton and Ettinger 2006).
The neural correlates of antisaccade performance are well
characterized (Leigh and Zee 2006; McDowell et al. 2002)
and deficits in the psychosis spectrum are highly reliable
(Reilly et al. 2008), which makes the task an ideal bio-
marker for the development and evaluation of new treat-
ments (Ettinger and Kumar 2003; Hutton and Ettinger
2006). Deficits in antisaccade performance such as increased
antisaccade latency and increased antisaccade error rate have
been reported in schizophrenia patients (Hutton and Ettinger
2006), people with high levels of schizotypy (Ettinger et al.

2005; Gooding 1999; Holahan and O’Driscoll 2005;
O’Driscoll et al. 1998), and first-degree relatives of schizo-
phrenia patients (Calkins et al. 2008). On the brain functional
level, schizophrenia patients were found to exhibit reduced
activity in antisaccade-related areas, such as frontal eye fields
(FEF), parietal eye fields (PEF), and supplementary eye fields
(SEF), as well as in occipital areas that play a role in early
visual processing while performing an antisaccade task
(Camchong et al. 2008; Fukumoto-Motoshita et al. 2009;
McDowell et al. 2002; Raemaekers et al. 2002).

Interestingly, although ketamine-induced deficits in
antisaccade error rate and latency have been reported in stud-
ies on non-human primates (Condy et al. 2005;Ma et al. 2015;
Skoblenick and Everling 2012, 2014) and in recreational ke-
tamine users (Morgan et al. 2009), such deficits have not been
reported for experimental ketamine administration in healthy
humans (Radant et al. 1998; Schmechtig et al. 2013). One
possible explanation for this discrepancy may be compensa-
tory mechanisms on a brain functional level. Therefore, we
used oculography to investigate the effects of ketamine on
antisaccade performance and BOLD functional magnetic res-
onance imaging (fMRI) to identify possible brain functional
effects of the substance in healthy human volunteers.

Experimental procedures

Participants

Right-handed non-smoking males were recruited via ads
placed around the campus of the University of Bonn and on-
line, as well as via existing participant pools. Before entering
the study, participants gave written informed consent.
Compensation for participation was a payment of €200. We
obtained approval of the local ethics committee, and the study
was conducted in agreement with the latest revision of the
Code of Ethics of the World Medical Association
(Declaration of Helsinki). The data reported here is based on
the same sample investigated in earlier publications (Becker
et al. 2017; Steffens et al. 2016).

Potential candidates were pre-screened via e-mail and tele-
phone concerning general inclusion criteria, such as suitability
for video-based eye-tracking and MRI. Suitable participants
were then invited to a thorough screening in our lab.
Exclusion criteria have been reported previously (Steffens
et al. 2016). On the day of assessment, participants drank only
water and stayed abstinent from food for 6 hours before the
start of the infusion. Participants were instructed to take no
medicines in the 24 h before assessment and to arrive well
rested. Well before both assessment days, participants were
informed that they would not be able to operate heavy ma-
chinery and that they should go home and rest after
participation.
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Study design

Participants whomet all inclusion criteria during the screening
session were invited to return for two fMRI assessments.
Before the first fMRI assessment, the study anesthesiologist
(C.N.) completed an additional medical screening. The anes-
thesiologist also monitored vital signs of participants through-
out both assessments and in a supervised post-infusion period
of at least 1 hour.

The study employed a double-blind, counter-balanced, pla-
cebo-controlled, and within-subjects design. An equal number
of participants were randomly assigned to receive placebo first
or ketamine first. Assessment took place at least 1 week apart
and at the same time of day (maximum of a 90-min differ-
ence). Randomization and preparation of the infusion solution
was not conducted by the study team carrying out the
assessment.

On one of the assessment days, participants received ra-
cemic ketamine (Ketamin-ratiopharm 500 Injektionslösung,
Ratiopharm, Ulm, Germany) via a computer-controlled infu-
sion pump (Graseby 3500 infusion pump, Smith Medical
Int. Ltd., Luton, UK) over the course of 1 hour. Ketamine
was administered as a 2 mg/ml solution with a constant
target plasma level of 100 ng/ml. On the other assessment
day, participants received 0.9% saline solution following the
same protocol employed during the ketamine assessment
day. Both infusion solutions were prepared by the anesthe-
siologist shortly before infusion, and participants provided
information about their height and weight, which was used
to achieve the stable desired ketamine plasma concentration.
Infusion started approximately 5 min before functional im-
ages were recorded. The solutions were each administered as
a continuous bolus infusion, which was carried out with the
STANPUMP program (S teven L . Sha fe r, MD,
Anesthesiology Service (112A), PAVAMC, 3801 Miranda
Ave., Palo Alto, CA. 94304) and was based on the three-
compartment model by Domino et al. 1982 as described
previously (Schmechtig et al. 2013).

Data collection

Eye movements

Movements of the right eye were recorded using the MRI-
compatible EyeLink 1000 (SR Research, Ottawa, Ontario,
Canada) eye-tracker with a sampling rate of 1000 Hz (minimal
spatial resolution: 0.01°, average accuracy: 0.25° to 0.5°). A
central pupil–tracking algorithm was used to detect the pupil
and the corneal reflection. A three-point spatial calibration (hor-
izontal, white calibration target on black background) was per-
formed before the task. The task was presented on a
NordicNeuroLab (Bergen, Norway) LCDmonitor with an active
area of 39.2 cm height × 52.35 cm width and a resolution of

1024 × 768 pixels. The distance from camera to eye (distance
from eye to mirror and from mirror to eye) was 172 cm.

The prosaccade/antisaccade task (Fig. 1) was presented in
an event-related mixed design consisting of 80 trials in total.
There were 40 prosaccade (20 to the right, 20 to the left) and
40 antisaccade trials (20 to the right, 20 to the left). The order
of trials was randomized once and this order was presented to
each participant. The task was run after a smooth pursuit eye
movements task (Steffens et al. 2016). Each trial began with
the presentation of a fixation cross for 5000–18,000 ms
(jittered, mean duration 11,450 ms) in the center of the screen.
This was followed by a cue, which was presented for 500 ms.
The cue was a vertical line to cue an antisaccade trial (gaze
shift to mirror-inverted location of the target) or a horizontal
line to cue a prosaccade trial (gaze shift to target location). The
cue was followed by the presentation of the target, a circle
(2.55° in diameter), which was presented for 1000 ms at
4.49° to the right or left of the center of the screen. All stimuli
were presented in white on black background.

fMRI

fMRI assessment was conducted using a Siemens (Erlangen,
Germany) Trio MRI scanner at 3 Tesla field strength.
Participants wore ear plugs to reduce the impact of scanner
noise. In order to minimize head movements, participants
were surrounded by foam paddings and were instructed to
lie as still as possible.

After a brief initial scan to individually adjust the field of
view, a high-resolution T1-weighted structural scan was ac-
quired to exclude participants with apparent brain pathologies
and to optimize normalization of functional MRI data. The
scan parameters for this scan were as follows: repetition
time = 1570 ms; echo time = 3.42 ms; inversion time =
800 ms; flip angle = 15°; field of view = 256 mm; matrix
size = 256 × 256; 160 slices; slice thickness = 1 mm; sequen-
tial slice-order with no inter-slice gap; and voxel size = 1 ×
1 × 1 mm. During the task, T2*-weighted images were col-
lected with a standard 12 channel head coil employing a
gradient-echo planar image sequence (repetition time =
2500 ms; echo time = 30 ms) to display the BOLD response.
Slices were oriented parallel to the intercommissural plane. A
total of 426 whole-brain images were collected for each par-
ticipant. Additional scan parameters were: flip angle = 90°;
field of view = 192 mm; matrix size = 64 × 64; 37 slices; slice
thickness = 3 mm; sequential slice order with interslice gap of
0.3 mm; and voxel size = 3x3x3.3 mm.

Psychotomimetic states inventory, test of sustained
attention, and blood samples

Participants completed the Psychotomimetic States
Inventory (PSI) (Mason et al. 2008) before, during, and

Psychopharmacology (2018) 235:3559–3571 3561



after infusion. To control for confounding effects of keta-
mine on basic attention, participants completed four lines
of the d2 test (Brickenkamp 2002) of sustained attention
during ketamine and four different lines during placebo
infusion. The d2 test is a well-established measure of
sustained attention and requires the crossing out of the
letter d combined with two dashes amidst letters d and p
with one, two, three, or four dashes. Samples of venous
blood were drawn from the non-infusion arm (Niesters
et al. 2012) before, during, and after infusion. They were
immediately centrifuged for 10 min at 1300rcf and stored
at − 80 °C.

Data processing and statistical analysis

Eye movements

Participant-level eye movement data were preprocessed using
Data Viewer software (SRResearch) andMatlab R2013a (The
MathWorks, Natick, MA). Group-level statistical analysis was
conducted in SPSS 24 (IBM Corp., Armonk, NY, USA). In
each trial, the first saccade after target appearance was includ-
ed in the analysis if its start position deviated no more than
2.04° visual angle from the center of the screen and its latency
was between 80 ms and 3000 ms. Participants were included
in the analysis if the eye movement recording of at least seven
prosaccades and seven antisaccades was possible. The three
main outcome measures were as follows: Antisaccade direc-
tion error rate was calculated as percent of antisaccade condi-
tion trials in which the first saccade was made in the direction
of the peripheral target. Latency of saccades is given as the
time between the detected start point and end point of a correct
saccade (correct prosaccades, correct antisaccades) in milli-
seconds. Prosaccade direction errors very rarely occurred
(2.41% overall); thus this variable is not considered further.

To analyze substance effects on antisaccade errors and pro-
and antisaccade latency, repeated measures ANOVAs were
conducted with the within-subjects factors substance (keta-
mine, placebo) and task condition (prosaccade, antisaccade).
Effect sizes were calculated as partial eta squared (Cohen
1973). To ensure that assumptions for statistical analyses were
met, data were screened for normality using skewness scores
and Shapiro-Wilk tests.

fMRI

fMRI data analysis was performed using Statistical Parametric
Mapping 12 software (SPM 12; http://www.fil.ion.ucl.ac.uk/
spm/software) implemented in Matlab R2013a (The
MathWorks, Natick, MA). Preprocessing included the
following steps: To correct for head motion, images of each
participant were realigned along the mean image in their time
series using a least squares approach and a six-parameter rig-
id-body transformation. Functional scans were coregistered to
the T1-weighted anatomical image. Normalization parameters
were obtained from segmentation of the structural T1 images
and used to transform the functional images into MNI stan-
dard space (Montreal Neurological Institute, MNI template).
Functional images were resampled at 2 × 2 × 2 mm and
smoothed with an 8 mm Gaussian filter (full width at half
maximum).

At the first (single-subject) level, the BOLD response was
modeled as a canonical hemodynamic response-function (hrf).
The first-level model consisted of the following regressors of
interest: correct prosaccades, correct antisaccades, missing,
antisaccade errors, prosaccade errors. The six motion regres-
sors were included as regressors of no interest. The onset of
each trial was defined as the onset of the cue. Three contrasts
were computed on the single-subject level: prosaccades >
baseline, antisaccades > baseline, and antisaccades >
prosaccades.

Fig. 1 Schematic trial
representation. Stimuli are not to
scale, further detail on stimulus
size can be found in the
Experimental procedures section
(figure created in GIMP)
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On the second (group) level, a conjunction analysis was per-
formed to identify the saccadic network. This analysis aimed to
identify consistently high and jointly significant structures for
prosaccade and antisaccade performance compared to baseline
in the placebo condition.We performed a conjunction analysis of
theminimumT-statistic over the contrasts prosaccades > baseline
and antisaccades > baseline as implemented in SPM12.
Significant clusters describe effects that are significant in both
task conditions against baseline in the placebo condition. To
investigate effects of task and substance as well as their interac-
tion, we performed a flexible factorial design random-effects
model. In addition to the between-subjects subject factor, we
defined substance (placebo vs. ketamine) and task condition
(prosaccades vs. antisaccades) as within-subjects factors. The
analysis was conducted on the whole-brain level, not masked
for any region of interest.

For all second-level analyses, the statistical height thresh-
old was set to p < .001, and significant clusters were inferred if
the peak voxel of the cluster survived a statistical threshold of
p < .05 family-wise error (FWE) corrected (cluster-level cor-
rection). Signal change scaled to local mean signal for relevant
clusters was extracted using MarsBaR (http://marsbar.
sourceforge.net). Anatomical labels were obtained using the
anatomy toolbox (Eickhoff et al. 2005), and functional local-
izations were identified from previous literature (Binkofski
et al. 2002; Leigh and Zee 2006; McDowell et al. 2002;
Meyhöfer et al. 2017).

To test if substance had an effect on head motion during
task completion, mean scores of each of the six motion pa-
rameters were calculated for ketamine and placebo, respec-
tively, and compared using paired t tests. Results were
corrected for multiple comparisons using the Bonferroni
method (corrected α = .008). Effect sizes were calculated as
Cohen’s d (Cohen 1992).

Psychotomimetic states inventory

PSI data were analyzed using SPSS 24 (IBM Corp., Armonk,
NY, USA). The PSI consists of six subscales, namely delu-
sional thinking, perceptual distortions, cognitive disorganiza-
tion, anhedonia, mania, and paranoia. To ensure that assump-
tions for statistical analyses were met, data were screened for
normality of distribution, sphericity, and homogeneity of var-
iances using skewness scores, Shapiro-Wilk tests, Mauchly’s
tests, and Levene’s statistics. Scores were transformed (ln(x)),
as they violated normality assumptions. Where sphericity as-
sumption was violated, results were Greenhouse-Geisser
corrected, and uncorrected degrees of freedom and
Greenhouse-Geisser epsilon are reported (Jennings 1987).
Data were analyzed using mixed-design ANOVA with the
within-subjects factors substance (ketamine, placebo) and ap-
plication stage (pre-infusion, during infusion, and post-infu-
sion). Effect sizes were calculated as partial eta-squared

(Cohen 1973). Alpha level for post hoc t tests was
Bonferroni corrected (corrected α = .01), and effect sizes for
post hoc tests were calculated as Cohen’s d (Cohen 1992).

Correlations among measures

We calculated Pearson correlations of difference scores (keta-
mine – placebo) for antisaccade error rate, prosaccade latency,
and antisaccade latency with difference scores (ketamine –
placebo) for the six PSI scales. Alpha level for these correla-
tions was Bonferroni corrected (α = 0.004).

We also calculated Pearson correlations between difference
scores (ketamine – placebo) for antisaccade direction error
rate, prosaccade latency, and antisaccade latency with the dif-
ference scores (ketamine – placebo) for the local BOLD signal
change in the two clusters with substance effects. Alpha level
for these correlations was Bonferroni corrected (correctedα =
0.006). Additionally, we calculated Pearson correlations be-
tween the local BOLD signal changes in the two clusters with
substance effects with the six PSI scales. Alpha level for these
correlations was Bonferroni corrected (corrected α = .004).

Results

Data prescreening

Of N = 43 individuals initially screened for participation,
N = 29 met all inclusion criteria and were included in the
study. Two participants did not participate in the second
fMRI assessment and were therefore excluded from all
analyses. Normalization failed for one participant, who
was subsequently excluded from all data analyses. Due to
technical limitations of eye tracking during fMRI, behav-
ioral eye movement data could not be acquired for all par-
ticipants (see discussion for details). Final results are thus
based on N = 15 participants. Mean age of the final sample
was M = 25.93 (SD = 3.65) years, and the mean number of
years in education was M = 17.26 (SD = 2.43).

Test of sustained attention and blood samples

Results of the d2 test of sustained attention and the blood samples
in the subset of participants examined here were similar to those
reported for the entire sample elsewhere (Steffens et al. 2016). In
short, ketamine had no significant effect on sustained attention
task performance (p > .05). Regarding blood levels, measured
ketamine concentration indicated that assignment to substance
conditions was carried out as planned. The mean ketamine plas-
ma level for during-ketamine infusion was M = 89.69 ng/mL
(SD= 13.27 ng/mL) with a minimum of 54.30 ng/ mL and a
maximumof 114.0 ng/mL, indicating that the plasma-levelswere
close to our target level.
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Eye movements—behavioral results

Descriptive statistics of eye movement variables are reported
in Table 1. Antisaccade error rate did not differ between keta-
mine and placebo conditions (p > .05), and there was no main
effect of substance on saccade latency (p > .05). There was a
main effect of task condition on saccade latency (F(1,14) =
18.42, p < .001, ηp

2 = 0.56) with prosaccades having shorter
latencies than antisaccades. This effect was not mediated by
the task condition by substance interaction (p > .05).

Eye movements—fMRI results

Saccade network

Table 2 and Fig. 2 show the saccade network (prosaccades and
antisaccades) during placebo. The saccade network consisted
of three large bilateral statistical clusters: The first cluster ex-
tended across primary visual, motion processing, and somato-
sensory areas (lingual gyrus, calcarine gyrus, superior occipi-
tal gyrus, middle occipital gyrus, inferior occipital gyrus, in-
ferior parietal lobule, and inferior temporal gyrus). The second
cluster extended across frontal regions associated with oculo-
motor control and executive function (precentral gyrus, mid-
dle frontal gyrus, inferior frontal gyrus, posterior medial fron-
tal lobe, medial cingulate cortex, and insula). A third smaller
cluster consisted of the bilateral medial cingulate cortex.
There were no significant clusters for the reverse contrast.

Task effects

There was a main effect of task condition, with clusters that
differed between prosaccade and antisaccade conditions located
in the saccade network as described above.Activationwas higher
in the antisaccade condition than the prosaccade condition in
three clusters. The first of these was a large bilateral cluster that
extended across primary visual, motion processing, and somato-
sensory areas (precuneus, superior parietal lobule, superior, and
middle occipital gyrus, area V3A). The second cluster
encompassed visual processing areas in the left lingual gyrus

and the third cluster comprised the supplementary motor cortex
in the left superior frontal gyrus. Activation was higher in the
prosaccade condition than the antisaccade condition in two clus-
ters, which consisted of early visual processing areas located in
the right and left inferior occipital gyrus respectively. These task
condition effects are shown in Table 3.

Drug effects

There was no main effect of substance. However, there was an
interaction between substance and task condition in a bilateral
cluster in the primary somatosensory cortex located in the
postcentral gyrus. Post hoc tests indicated that signal change
was higher for placebo than ketamine in the prosaccade con-
dition (left: t(14) = 2.26, p = .04, d = 0.76; right: t(14) = 2.64,
p = .001, d = .28) and higher for ketamine than placebo in the
antisaccade condition (left: t(14) = −2.50, p = 0.02, d = 1.07;
right: t(14) = −3.07, p = .008, d = 0.53). These drug effects are
shown in Table 4 and Fig. 2. The local signal change in both
clusters is illustrated in Fig. 2.

Motion parameters (total movement) were not affected by
substance (all p > .05), arguing against confounding effects of
motion differences during placebo and ketamine administration.

Psychotomimetic effects

PSI mean scores are in Table 5. Ketamine increased the PSI
scales delusional thinking (F(2,14) = 9.82, p < .001, ηp

2 =
0.41) and perceptual distortion (F(1,14) = 12.05, p < .001,
ηp

2 = 0.46) in interaction with application stage, with scores
being higher only during substance infusion (delusional think-
ing: t(14) = 3.57, p = .003, d = 0.94; perceptual distortion:
t(14) = 4.65, p < .001, d = 1.14).

Application stage had an effect on the PSI scales cog-
nitive disorganization and mania, independently of sub-
stance, with cognitive disorganization scores being higher
during infusion than before infusion (t(14) = 4.56, p < .001,
d = 1.00) or after infusion (t(14) = 6.16, p < .001, d = 1.22)
and mania scores being higher during infusion than before
infusion (t(14) = 3.60, p = .003, d = 0.53).

Table 1 Descriptive statistics for eye movement variables

Antisaccade correct
latency [ms]

Antisaccade error
latency [ms]

Antisaccade direction
error rate [%]

Prosaccade correct
latency [ms]

Prosaccade error
latency [ms]

Prosaccade direction
error rate [%]

N = 15 N = 15 N = 15 N = 15 N = 8 N = 8

Placebo 350.30 (38.74) 319.34 (41.12) 18.64 (16.62) 322.12 (20.40) 355.41 (83.06) 2.10 (2.79)

N = 15 N = 14 N = 14 N = 15 N = 9 N = 9

Ketamine 352.98 (37.32) 377.23 (34.97) 11.36 (12.15) 329.61 (29.68) 408.33 (73.77) 5.11 (7.89)

Descriptive statistics of eye movement variables by substance condition. Note that latency was not available for all participants for prosaccade direction
errors (both in ketamine and placebo substance condition), as not all participants made prosaccade direction errors

3564 Psychopharmacology (2018) 235:3559–3571



Correlations among measures

There were no correlations of difference scores for antisaccade
direction error rate, prosaccade, and antisaccade latency with
signal change difference scores in the two clusters that showed
a significant drug effect (all p > .05). Difference scores in these
two clusters also did not correlate with difference scores of
any of the PSI scales (all p > .05). Finally, difference scores of
PSI scales also did not correlate with difference scores of eye
movement variables (all p > .05).

Discussion

We investigated the effects of the uncompetitive NMDA-
receptor antagonist ketamine on brain function during re-
sponse inhibition using an antisaccade task. To do so, we
conducted a double-blind, placebo-controlled, within-
subjects study. We measured BOLD response and eye move-
ments during a mixed design antisaccade task, while partici-
pants received a subanesthetic dose of intravenous ketamine
on one and placebo on the other assessment day. Additionally,

we obtained measures of psychotomimetic states, sustained
attention, and ketamine blood levels. Our key findings are as
follows.

There were no significant ketamine effects on saccadic la-
tency or antisaccade error rate. However, ketamine had an
effect on BOLD response in a small bilateral cluster in the
somatosensory cortex located in the postcentral gyrus. This
effect of ketamine was dependent on task condition, with
BOLD response being significantly higher during placebo
than ketamine administration in the prosaccade condition
and significantly higher for ketamine than placebo in the
antisaccade condition. Concerning task effects, in line with
previous literature (Schmechtig et al. 2013), participants
showed significantly shorter prosaccade than antisaccade la-
tency overall. Also compatible with previous findings, execu-
tion of prosaccades and antisaccades was associated with
higher BOLD response in a large bilateral cluster that
encompassed areas associated with early visual processing,
sensorimotor integration, and oculomotor response
(McDowell and Clementz 2001). Prosaccade performance
was associated with higher BOLD response in some areas
involved with primary visual processing, whereas antisaccade

Table 2 Saccade network—
BOLD activation during pro- and
antisaccade performance

Anatomical label Hemisphere Cluster size T value MNI coordinates [mm]

x y z

Calcarine gyrus (V1) Right 39,011 11.93 14 − 80 2

Calcarine gyrus (V1) Left 11.84 − 8 − 82 − 4
Middle occipital gyrus (IPL) Right 8.82 36 − 74 16

Middle occipital gyrus (IPL) Left 10.46 − 24 − 74 28

Superior occipital gyrus Left 10.45 − 24 − 70 30

Fusiform gyrus Right 9.60 32 − 68 − 12
Inferior parietal lobule (IPS) Right 8.94 36 − 50 46

Inferior parietal lobule (IPS) Left 9.36 − 32 − 48 44

Inferior temporal gyrus Left 9.32 − 44 − 66 − 10
Inferior occipital gyrus Left 9.23 − 46 − 74 − 4
Cuneus (V3) Right 8.99 4 − 76 24

Lingual gyrus (FG 1) Left 8.87 − 26 − 62 − 12
Precentral gyrus Right 13,064 9.56 48 0 48

Precentral gyrus Left 8.39 − 38 − 4 54

Middle frontal gyrus Right 9.07 40 − 2 52

Middle frontal gyrus Left 6.55 − 30 42 32

Insula lobe Right 8.16 34 20 8

IFG pars opercularis Right 7.76 48 8 26

Posterior medial frontal Right 7.55 8 2 66

MCC Right 7.53 4 20 34

MCC Left 6.92 − 10 16 36

Precentral gyrus Left 6.97 − 48 − 2 38

MCC Right 426 6.52 6 − 34 26

MCC Left 6.11 − 2 − 24 28

The table shows the results of the conjunction analysis for prosaccade and antisaccade task conditions during
placebo. Whole-brain cluster-level FWE corrected P < .05. Coordinates are in MNI space
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performance was associated with higher BOLD response in
some areas of primary visual processing and sensorimotor
integration.

The lack of acute ketamine effects on antisaccade perfor-
mance is consistent with previous literature on healthy human
volunteers. Earlier studies observed no significant effects on
antisaccade error rate or latency (Radant et al. 1998;
Schmechtig et al. 2013) in contrast to the consistent
antisaccade impairments in schizophrenia (Hutton and
Ettinger 2006). A possible explanation for this dissociation
of findings is that while ketamine influences the
magnocellular visual pathway, which plays an important role
in antisaccade performance, antisaccade deficits in schizo-
phrenia are likely to be based on cognitive dysfunction rather
than dysfunction of the magnocellular pathway (Javitt 2009;
Leonard et al. 2013).

Interestingly, increased antisaccade error rate and latency
under the influence of ketamine have been reported in studies
on non-human primates (Condy et al. 2005; Ma et al. 2015;
Skoblenick and Everling 2012, 2014). One possible explana-
tion for the inconsistencies between results from human and

non-human primate studies are methodological differences,
which include that in studies on non-human primates, keta-
mine is usually given via intramuscular injection and that ti-
tration studies are usually performed to determine animal-
specific concentrations of ketamine (Skoblenick and
Everling 2012). This may complicate comparisons with hu-
man studies, where ketamine is usually given via intravenous
infusion without previous titration studies (Radant et al. 1998;
Schmechtig et al. 2013).

It is also worth noting that an adverse effect of ketamine on
response inhibition has previously been shown in a study
which employed the Hayling task (Morgan et al. 2004). That
study showed a significantly increased rate of response errors
in performance on the Hayling task under ketamine adminis-
tration. In light of the heterogeneity of measures of inhibitory
control (Aichert et al. 2012), further research will be necessary
to more thoroughly describe the effect of ketamine on differ-
ent facets of inhibition.

In evaluating ketamine as a psychosis model, the lack of
antisaccade performance deficits means that the drug is
seemingly unable to model all aspects of psychosis, at least

Fig. 2 Left: Activation pattern during anti- and prosaccades compared to
baseline (whole-brain cluster-level FWE corrected p < .001) during pla-
cebo infusion illustrated in yellow. Interaction between substance (place-
bo, ketamine) and task condition (antisaccades, prosaccades) (whole-

brain cluster-level FWE corrected p < .001) illustrated in blue. Right:
Local signal change for substance by task condition interaction (top:
MNI = − 38, − 24, 4, bottom: 40, − 18, 32; whole-brain cluster-level
FWE corrected p < .001) (figure created in MRIcon and GIMP)
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at this dose, since antisaccade performance deficits are a
robust and well-validated key finding in psychosis (Calkins
et al. 2003; Hutton and Ettinger 2006; McDowell et al.
2002). Glutamate theories of psychosis predict that some
symptoms of psychosis are directly caused by NMDAR
hypofunction, while other symptoms may be less direct
downstream consequences of these alterations (Javitt 2009;
Javitt et al. 2012; Nelson et al. 2014; Pynn and DeSouza
2013). Since NMDAR shows a wide distribution in the brain,
these theories predict regionally diffuse and widespread cor-
tical dysfunction of processes mediated by NMDAR (Javitt
et al. 2012). It is likely that a one-off administration of keta-
mine would model pr imary effec ts of NMDAR
hypofunction, such as deficits in smooth pursuit eye move-
ments (Meyhöfer et al. 2015; O’Driscoll and Callahan 2008)
and mismatch negativity (Heekeren et al. 2008; Umbricht
and Krljes 2005), but not the consequences of these alter-
ations, such as impaired top-down attentional control and
facial recognition (Javitt 2009). This is in line with findings
of long-term ketamine users exhibiting psychosis-like symp-
toms such as hallucinations, which are a key symptom of
schizophrenia. In contrast, hallucinations have not typically
been reported in one-off ketamine administration studies of
healthy volunteers (Muetzelfeldt et al. 2008).

On the brain functional level, we observed increased
BOLD response in the saccadic task network replicating pre-
vious fMRI studies (McDowell et al. 2008; Raemaekers et al.
2002). The network included areas associated with primary
visual, motion, and somatosensory processing and frontal re-
gions associated with oculomotor control and executive func-
tion, as described extensively (Leigh and Zee 2006). We also
observed an effect of ketamine on BOLD in a bilateral cluster
in the postcentral gyrus that depended on task condition.
BOLD response in this cluster, which was not located in the
saccadic task network, was significantly higher during place-
bo than ketamine in the prosaccade condition, but significant-
ly higher for ketamine than placebo in the antisaccade condi-
tion. While such effects in this somatosensory cortex cluster
were unexpected, they may be related to the significant per-
ceptual distortion induced by ketamine, an effect that has been
described consistently in previous literature (Krystal et al.
1994; Lahti et al. 2001; Schmechtig et al. 2013; Stone et al.
2008, 2015). The observed interaction of the drug effect with
task condition may be related to perceptual differences be-
tween the pro- and antisaccade conditions (gaze moving to-
wards a visible target vs. towards blank space on screen) and
their possible influence on proprioception (Balslev et al. 2011,
2013). The higher activation for ketamine compared to

Table 4 Substance by task condition interaction

Anatomical label Hemisphere Cluster size F value MNI coordinates [mm]

x y z

Postcentral gyrus (primary somatosensory cortex) Right 254 22.52 40 − 18 32

Postcentral gyrus (primary somatosensory cortex) Left 180 24.08 − 38 − 24 46

The table shows the results of the interaction between substance and task condition. Whole-brain cluster-level FWE corrected P < .05. Coordinates are in
MNI space

Table 3 Main effect of task
condition Anatomical label Hemisphere Effect

direction
Cluster
size

F value MNI coordinates
[mm]

x y z

Inferior occipital gyrus Right PS > AS 298 69.62 30 − 92 − 4
Inferior occipital gyrus Left PS > AS 229 41.46 − 30 − 92 − 10
Precuneus/superior parietal

lobule
Left AS > PS 3213 49.91 − 12 − 68 50

Superior occipital gyrus Right 34.79 22 − 70 44

Superior occipital gyrus Left 33.58 − 18 − 70 34

Superior occipital gyrus
(V3A)

Left 16.70 − 14 − 92 22

Superior parietal lobule Left 24.59 16 − 68 56

Middle occipital gyrus Left 23.42 − 24 − 82 22

Lingual gyrus Left AS > PS 834 31.19 − 18 − 78 − 8
Superior frontal gyrus Left AS > PS 186 25.26 − 28 − 6 64

The table shows the results of the main effect of task condition in the flexible factorial model. AS antisaccades, PS
prosaccades. Whole-brain cluster-level FWE corrected P < .05. Coordinates are in MNI space
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placebo in the antisaccade condition may also represent the
recruitment of additional neuronal resources, particularly
since this cluster decreased activity during antisaccade condi-
tion under placebo (Becker et al. 2013; Grady 2012).

Important ly, ketamine adminis t ra t ion induced
psychosis-like symptoms (namely delusional thinking and
perceptual distortion) that correspond with the positive
symptom domain in psychosis, as has been reported in
previous studies (Krystal et al. 1994; Lahti et al. 2001;
Schmechtig et al. 2013). Interestingly, we did not see a
signif icant increase in disorganized or negat ive
psychosis-like symptoms. It is worth noting that the results
reported here are based on a subsample of the sample re-
ported in our previous paper (Steffens et al. 2016), and that
we did see a ketamine-induced increase in disorganized
psychosis-like symptoms in the total sample. Negative
symptoms, such as anxiety and withdrawal, have previous-
ly been described under ketamine infusion (Krystal et al.
1994; Lahti et al. 2001; Malhotra et al. 1997; Schmechtig
et al. 2013). A possible explanation for the lack of negative
symptoms in our study, in addition to issues of limited
statistical power, may be that effects of ketamine on mood
appear to be dose dependent, as higher doses of ketamine
have been reported to be anxiogenic (Krystal et al. 1994),

and one study reported elevated scores of anhedonia with a
target ketamine plasma concentration of 150 ng/ml but not
with a lower dose (Pollak et al. 2015).

While there were pronounced effects of ketamine on psy-
chotomimetic states, there were no correlations between these
effects on state measures and effects on eye movements or
BOLD signal. These negative findings, while of course limit-
ed by issues of statistical power, indicate that ketamine effects
on different levels of measurement within the same sample
tend to be rather heterogeneous.

Limitations

The most important methodological limitation of the current
study is that due to the technical challenges of eye tracking in
MRI, behavioral data could only be acquired for a subset of
our sample. fMRI data for the mixed pro- and antisaccade task
can only be analyzed when behavioral data are available, be-
cause they are needed to identify direction errors and missed
trials. Therefore, we could not include participants whose eye
movements could not be recorded. However, recordings failed
for anatomical reasons (position of eyes in the head, head
size), but not due to variables that may have a significant
impact on our analyses, thus not leading to any selection ef-
fects. Additionally, results of saccadic variables are broadly in
agreement with those observed in laboratory studies,
confirming the validity of our recordings. A general limitation
of ketamine as a psychosis model concerns the ecological
validity of the intervention. Participants are aware that they
are in a safe environment, monitored by study staff, and know
what is causing their symptoms when they are participating in
a ketamine administration study. These meta-cognitive factors
may be a key difference between the development of psycho-
sis symptoms and the ketamine state model of psychosis
(Steeds et al. 2015). As such, they represent a key limitation
of the ketamine model, given that interpretation and appraisal
of early perceptual dysfunctions have been discussed as im-
portant factors in the development of psychosis (Corlett et al.
2007; Nelson et al. 2014). Another limitation of this work is
that although ketamine is among the most selective NMDAR
antagonists available for human studies (Anis et al. 1983;
Driesen et al. 2013; Moghaddam et al. 1997; Wood et al.
2012), it has secondary sites of action unrelated to NMDAR
(Kohrs and Durieux 1998). It should furthermore be noted that
the transient symptoms induced by experimental application
of ketamine generally do not induce the entire spectrum of
schizophrenia symptoms and impairments, particularly pre-
disposing or vulnerability markers, neither in this study nor
in previous studies (Krystal et al. 1994; Radant et al. 1998;
Schmechtig et al. 2013; Steeds et al. 2015). Finally, another
limitation of the current study is that we only applied a single
dose of ketamine.Multi-dose studies would be of considerable

Table 5 Descriptive statistics of Psychotomimetic States Inventory
(PSI)

Pre-infusion During-infusion Post-infusion
mean (SD) mean (SD) mean (SD)

Delusional thinking

Ketamine 1.00 (1.55) 2.53 (3.33) 1.06 (1.53)

Placebo 1.06 (1.33) 0.26 (.59) 0.33 (.72)

Perceptual distortion

Ketamine 0.73 (1.38) 5.20 (5.17) 1.00 (2.07)

Placebo 0.53 (.91) 0.93 (1.09) 0.33 (.48)

Cognitive disorganization

Ketamine 3.53 (4.96) 9.66 (7.00) 3.20 (4.75)

Placebo 2.73 (2.96) 4.33 (3.82) 2.20 (3.18)

Anhedonia

Ketamine 3.06 (2.65) 3.20 (3.29) 3.13 (2.92)

Placebo 3.13 (3.18) 3.40 (2.77) 3.46 (3.46)

Mania

Ketamine 3.33 (1.67) 4.40 (3.04) 2.46 (1.24)

Placebo 2.73 (1.83) 2.26 (1.66) 2.20 (1.89)

Paranoia

Ketamine 2.13 (2.99) 2.13 (2.47) 1.40 (2.09)

Placebo 1.80 (2.11) 1.33 (1.95) 0.93 (1.90)

The table shows the descriptive statistics of all PSI subscales by substance
condition and administration time point. All mean scores and standard
deviations reported are based on non-transformed scores

3568 Psychopharmacology (2018) 235:3559–3571



interest, particularly given that we did not observe significant
effects of the drug on saccadic performance. It remains unan-
swered whether higher doses of ketamine would cause
schizophrenia-like impairments in antisaccades.

Conclusion

In summary, despite pronounced psychotomimetic effects of
ketamine, we did not find antisaccade or prosaccade perfor-
mance deficits under the influence of the drug. At the level of
brain function, we observed BOLD differences between keta-
mine and placebo administration in somatosensory cortex,
which depended on task condition. In evaluating ketamine
as a model system, our findings overall suggest that the drug
does not mimic all features of psychosis, at least at the dose
investigated here. To an extent, this is true for all model sys-
tems (Carhart-Harris et al. 2013), and considering the com-
plexity of psychosis, it might be challenging for one single
model to mimic all features of this heterogeneous disorder
(van Os and Kapur 2009). Defining the limitations of existing
model systems may further our understanding of specific eti-
ological mechanisms underlying psychotic symptoms. Our
findings underline the importance of a more detailed research
to further delineate effects of NMDAR hypofunction on hu-
man brain function and behavior, which will also be of impor-
tance when applying ketamine administration as a model sys-
tem of psychosis.
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