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Role of prefrontal cortex in the extinction of drug memories
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Abstract
It has been recognized that drug addiction engages aberrant process of learning and memory, and substantial studies have focused on
developing effective treatment to erase the enduring drug memories to reduce the propensity to relapse. Extinction, a behavioral
intervention exposing the individuals to the drug-associated cues repeatedly, can weaken the craving and relapse induced by drug-
associated cues, but its clinic efficacy is limited. A clear understanding of the neuronal circuitry and molecular mechanism under-
lying extinction of drug memory will facilitate the successful use of extinction therapy in clinic. As a key component of mesolimbic
system, medial prefrontal cortex (mPFC) has received particular attention largely in that PFC stands at the core of neural circuits for
memory extinction and manipulating mPFC influences extinction of drug memories and subsequent relapse. Here, we review the
recent advances in both animal models of drug abuse and human addicted patients toward the understanding of the mechanistic link
between mPFC and drug memory, with particular emphasis on how mPFC contributes to the extinction of drug memory at levels
ranging from neuronal architecture, synaptic plasticity to molecular signaling and epigenetic regulation, and discuss the clinic
relevance of manipulating the extinction process of drug memory to prevent craving and relapse through enhancing mPFC function.

Keywords Drugmemory . Prefrontal cortex . Extinction . Relapse

Introduction

Addiction is a chronic relapsing disorder, and drug-associated
cues are crucial contributors to the enduring craving, compul-
sive drug-taking behaviors and relapse (Baler and Volkow
2006; Everitt and Robbins 2005). Finding effective treatment

to prevent the propensity to craving and relapse elicited by
drug-associated cues is one of the major goals of addiction
research. It has been acknowledged that once entering the
brain, the addictive drugs trigger a distorted process of learn-
ing and memory during which drug-associated cues (i.e.
drugs, drug paraphernalia, environmental context, and et al.)
serve as conditioned stimulus (CSs) while drug-associated
effects (rewarding or aversive) serve as unconditioned stimu-
lus (UCSs) (Hyman 2005; Milton and Everitt 2012a).
Exposure to CSs leads to two processes, reconsolidation and
extinction, and both processes reorganize and update the con-
solidated traces of drug memories (Rich et al. 2016; Taylor
et al. 2009). Targeting the mechanisms of reconsolidation and
extinction of drug memories is a promising strategy for pre-
vention of drug craving and relapse (Milton and Everitt
2012b; Taylor et al. 2009; Torregrossa and Taylor 2013).
Based on the theories of drug memory extinction, cue-expo-
sure has been advocated as a treatment for addiction (Heather
and Bradley 1990; Torregrossa and Taylor 2013), but clinical-
ly, the efficacy of cue-exposure therapy (CET) is limited. The
predominant view is that extinction does not erase the original
CS-UCS association. Instead, extinction forms a new associ-
ation between CS and no UCS, and this new association in-
hibits the original one (Bouton 2004; Torregrossa and Taylor
2013; Xue et al. 2012). A better understanding of the

Wen-Hua Zhang and Ke-Xin Cao contributed equally to this work.

This article belongs to a Special Issue on Psychopharmacology of
Extinction

* Bing-Xing Pan
panbingxing@ncu.edu.cn

* Yan-Xue Xue
yanxuexue@bjmu.edu.cn

1 Laboratory of Fear and Anxiety Disorders, Institute of Life Science,
Nanchang University, Nanchang 330031, China

2 Tianjin General Hospital, Tianjin Medical University,
Tianjin 300052, China

3 National Institute on Drug Dependence, and Beijing Key Laboratory
of Drug Dependence, Peking University, Beijing 100191, China

4 Key Laboratory for Neuroscience of Ministry of Education and
Neuroscience, National Health and Family Planning Commision,
Peking University, Beijing 100191, China

Psychopharmacology (2019) 236:463–477
https://doi.org/10.1007/s00213-018-5069-3

http://crossmark.crossref.org/dialog/?doi=10.1007/s00213-018-5069-3&domain=pdf
mailto:panbingxing@ncu.edu.cn
mailto:yanxuexue@bjmu.edu.cn


mechanism underlying extinction of drug memory will facil-
itate the successful use of CET in practice. In this review, we
attempt to unveil the mechanistic link between medial pre-
frontal cortex (mPFC) and the extinction of drug memories,
since mPFC holds a central role in the regulation of both cue-
induced drug-seeking and response inhibition. There have
been a number of excellent reviews regarding the role of
mPFC regulating drug-seeking and relapse (George and
Koob 2010; Goldstein and Volkow 2011; Gourley and
Taylor 2016; Kalivas 2008; Lasseter et al. 2010; Milton and
Everitt 2012a; Moorman et al. 2015; Peters et al. 2009;
Schoenbaum et al. 2016; Van den Oever et al. 2010). We here
focus on recent research progresses on the circuitry and mo-
lecular mechanisms responsible for mPFC engagement in ex-
tinction of drug memories. We also summarize the studies on
mPFC dysfunction in addicted patients and discuss its clinic
relevance with deficit of memory extinction. Lastly, we re-
view the manipulations of memory extinction to in an attempt
to erase drug memory and prevent drug craving and relapse
through enhancing the mPFC function. Before these, wemake
a brief summary on the anatomy of mPFC and animal model
of extinction memory.

mPFC and its role in extinction of drug
memory

mPFC anatomy

A great number of literatures have reviewed the definition,
anatomy, and function of mPFC (Heidbreder and
Groenewegen 2003; Ongur and Price 2000; Ridderinkhof
et al. 2004; Uylings et al. 2003), we only make a brief sum-
mary on the anatomy of mPFC. Since Broadmann performed
the first topographical study of prefrontal cortex (PFC) across
species from rodents to primates, continuous effort has been
made to understand this brain region in terms of its definition,
boundary, subdivision and function. In humans, the PFC is
located in the anterior portion of the frontal lobe, and
cytoarchitectonically defined as Broadmann area 8 to 14 and
Braodamann area 44 to 47 (Ongur et al. 2003). From the
functional perspective, the PFC in human are divided into
dorsolateral, dorsomedial, ventromedial, and orbital prefrontal
subregions. Based on the anatomical and functional criteria,
the rodent PFC includes a medial region, the mPFC, and a
lateral region, the orbitofrontal cortex (OFC). The mPFC can
be further divided into four subregions including anterior cin-
gulate cortex (ACC), precentral cortex (PrC), prelimbic (PL),
infralimbic (IL) (Conde et al. 1995; Moorman et al. 2015;
Ongur and Price 2000). Evolutionarily, there are considerable
homologies in PFC across species. The IL subregion of mPFC
in rodent is homologous to the primate orbitomedial cortex,
and the PL subregion in rodent to the primate lateral/

dorsolateral cortex in function (Vertes 2006). In the studies
we discuss here, the dorsal mPFC is frequently referred to
PL and ACC, while ventral mPFC (vmPFC) to IL.

The PL and IL are the two most studied mPFC subregions
for memory extinction. There is no clear anatomical boundary
between the two subregions. Thus, although the PL and IL
function differently, they are not poles apart. The projections
from PL and IL to the thalamus (for example, the mediodorsal,
intermediodorsal, reuniens, and paraventricular nucleus) and
the cortex (for example, the medial orbital cortex and insular
cortex) are overall similar (Vertes 2004). However, for some
other targets such as nucleus accumbens (NAc), amygdala,
and brainstem, the projections from these two brain regions
differ drastically. While the PL projects to the core and shell of
NAc, the IL projects to the shell only. The PL projects to the
central and the basolateral nucleus, while the IL to the central,
medial, basomedial, and cortical regions of amygdala
(Gabbott et al. 2005; McDonald et al. 1996). The PL projects
to the median raphe and dorsal nuclei, and the IL to the solitary
and parabrachial nuclei of the brainstem (Gabbott et al. 2005;
McDonald et al. 1996; Moorman et al. 2015; Vertes 2004).

Extinction of drug memories and the animal models

A great number of literatures have excellently reviewed the ani-
malmodel of drug craving and relapse (Marchant et al. 2013;Nic
Dhonnchadha and Kantak 2011; O'Brien and Gardner 2005;
Sanchis-Segura and Spanagel 2006; Shaham et al. 2003;
Vanderschuren andAhmed 2013; Venniro et al. 2016); wewould
like to give a very brief introduction description of the two most
used rodentmodels for studying the extinction of drugmemories.
The first one is the self-administrationmodel (Bossert et al. 2013;
Crombag et al. 2008; Epstein et al. 2006; Shaham et al. 2003). In
this model, animals are firstly trained to acquire the association
between an action (usually a nose-poke, a lever-press or a chain-
pull) and infusion of drug (typically intravenous), a process
called conditioning. During conditioning, a cue (or cues) is pre-
sented in conjunction with each drug delivery. The cue can be
classified as a discrete cue and a discriminative cue (Burattini
et al. 2007; Ciccocioppo et al. 2003; Perry et al. 2014). Drug
dosing is response-dependent, which mimics human drug addic-
tion. Animals’ motivation for drug is measured by their re-
sponses. Then animals go through extinction training in which
the same action no longer brings about drug supply, and the self-
administration behavior extinguishes gradually. In other cases,
animals do not go through extinction training, but are simply
enforced to abstain from drug, which is known as withdrawal
(Augur et al. 2016; Lu et al. 2004; Tran-Nguyen 1998). Lastly,
during the reinstatement test of drug seeking, animals are pre-
sented with the same drug-related cues used at the conditioning
stage after a passage of time (spontaneous recovery), changed
context (renewal) or drug itself (priming), which may trigger the
reoccurrence of drug seeking (Luo et al. 2015; Torregrossa et al.
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2013; Torregrossa et al. 2010; Xue et al. 2012). The second is the
conditioned place preference (CPP)/conditioned place aversion
(CPA) model. In the procedure, the event that induces significant
motivation (US), typically the drug delivery in CPP, or the drug
withdrawal in CPA, is repeatedly presented in a certain environ-
ment (CS), and the neutral stimuli (vehicle) are given in a second
or third environment.An animal’s preference or aversion for drug
is measured by its preference for the specific environment paired
with the delivery of drug or drug withdrawal. The procedure of
CPP/CPA extinction training was similar to the establishment of
CPP/CPA, with the exception that the drugs were replaced by
saline. During the relapse test of CPP/CPA, animals are exposed
to the CPP/CPA context after a passage of time (spontaneous
recovery) or drug itself (priming), which may trigger the re-
emergence of CPP/CPA (Cunningham et al. 2006; Moorman
et al. 2015; Tzschentke 1998). Similar to extinction memory of
fear, extinction responding of drug self-administration or CPP is
susceptible to reinstatement, and spontaneous recovery (Xue
et al. 2012). The ineffectiveness of CET in clinic may be due
to the acute exposure to the addictive drug itself (Jaffe et al. 1989;
Venniro et al. 2016), the passage of time (Di Ciano and Everitt
2002; Shaham et al. 1997), changes of environmental context
(Bouton and King 1983; Hamlin et al. 2008; Khoo et al. 2017;
Marchant et al. 2015). Because CET is conducted in a clinical
setting, addicted patientsmay confront the three factors in the real
life. Thus, enhancing the extinction of drug memories may pre-
vent relapse under the above circumstances. For the two kinds of
animal models, manipulations can be made before, during or
after the extinction training to explore whether the manipulations
inhibit or facilitate the extinction training (Chen et al. 2016; Gass
and Olive 2009; LaLumiere et al. 2010; Wang et al. 2012) and
subsequently, influence the priming-induced reinstatement
(Malvaez et al. 2010; Reichel et al. 2011; Xue et al. 2012),
renewal (Luo et al. 2015; Torregrossa et al. 2013; Torregrossa
et al. 2010) or spontaneous recovery (Degoulet et al. 2016;
Malvaez et al. 2013; Peters et al. 2008b; Xue et al. 2014) of
drug-seeking behaviors.

Roles of different mPFC subregions in drug extinction
memories

Pharmacological inactivation of PL causes deficit in pressing
for drug during the relapse test, indicating a promoting influ-
ence of PL in drug relapse after extinction. The promoting
effect of PL in drug relapse was quite similar to its well-
established facilitating role in the expression of conditioned
fear after extinction. On the other hand, pharmacological in-
activation of IL following extinction training augments the
drug-seeking behavior, and, activation of this subdivision re-
duces the relapse, suggesting an active role of IL in limiting
drug relapse after extinction (Peters et al. 2008a). In a recent
study using cocaine self-administration, it was observed that
IL neurons activation via viral-mediated gene transfer of

designer receptors (DREADDs) decreased relapse of cocaine
seeking triggered by drug-related cues, but only under the
condition that previous extinction training was conducted.
The findings further support that IL is critical for cocaine
memory extinction (Augur et al. 2016).

Though a large number of studies suggest the IL/PL dichot-
omy in drug extinction/drug seeking, increasing researches
report inconsistent results and raises controversies over the
IL/PL dichotomy (Gourley and Taylor 2016). It is not surpris-
ing, as the mPFC is not a single structure but a massive com-
plexity. A mouse study found that optogenetic activation of IL
pyramidal cell promoted the extinction of remote memory
rather than recent memory of cocaine, whereas inactivation
of the same region blocked extinction learning of recent mem-
ory rather than remote memory (Van den Oever et al. 2013),
suggesting that the IL’s role in the extinction of conditioned
cocaine memory is dual and time-dependent. Another study
employed discriminative-stimulus-based self-administration
task tomeasure cocaine-seeking behavior and found that phar-
macological inhibition of IL and PL induced greater lever
pressing during the CS presentation (Gutman et al. 2017).
Clearly, these results are inconsistent with the classic PL/IL
dichotomy and indicate that both IL and PL are involved with
the inhibitory control of cocaine seeking.

In contrast with the classic view that IL facilitates cocaine
memory extinction, the IL, however, may drive heroine seek-
ing. For example, selective pharmacogenetic inactivation of
IL neurons enhanced heroine memory extinction (Bossert
et al. 2011), as did administration of CB1 antagonist
(Alvarez-Jaimes et al. 2008) and GABA receptor agonists
(Alvarez-Jaimes et al. 2008; Rogers et al. 2008) in IL.
Likewise, for alcohol addiction, the results are inconsistent
for the role of IL in extinction. Inactivation with baclofen/
muscimol in IL had no impact on the extinction of alcohol
memory, but delayed the first response on test in extinction
context (Willcocks and McNally 2013). Besides, inactivating
IL with GABA receptor agonist resulted in decreased cue-
induced reinstatement of extinguished memory of metham-
phetamine (Rocha and Kalivas 2010). Thus, it appears that
the roles of the IL in extinction of drug memory are not con-
sistent among different studies, which may be attributable to
different types of drugs and training protocols.

Mechanisms underlying the role of PFC
in the extinction of drug memory

Circuit mechanisms

PFC-NAc circuit

Recent studies have begun to examine the PFC-based circuit
mechanisms that mediate extinction of drug-seeking behavior.
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The mPFC-NAc pathway may play an important role in reg-
ulating extinction and reinstatement of drug seeking after ex-
tinction (Bossert et al. 2013; Li et al. 2015; McFarland et al.
2003). The NAc core subregion receives inputs primarily from
the PL, whereas the NAc shell subregion receives input pri-
marily from the IL (Krettek and Price 1977; Sesack et al.
1989). A great number of literatures suggests that projections
of PrL-NAc core and IL-NAc shell may play different roles in
extinction of drug memories (Chen et al. 2016; Kalivas and
O'Brien 2008; Peters et al. 2008a). The glutamatergic projec-
tions in mPFC-NAc core are mainly involved in regulating
drug-seeking responses (Kalivas 2009; Kalivas and
McFarland 2003), and pharmacological or optogenetic inhibi-
tion of the projection diminishes cue- or drug-induced rein-
statement of drug-seeking behavior and the potentiation of
transient synaptic potentiation in medium spiny neurons
(MSNs) (LaLumiere and Kalivas 2008; Shen et al. 2014;
Stefanik et al. 2016). The glutamatergic projections from
mPFC (mainly IL) to the NAc shell are primarily engaged in
suppressing conditioned drug seeking after extinction learning
(Chen et al. 2016; Peters et al. 2009). Blocking this pathway
results in resumption of cocaine seeking (Peters et al. 2008a).
Pharmacological inactivation of the NAc shell increases co-
caine seeking under extinction conditions (Fuchs et al. 2008;
Peters et al. 2008a). Furthermore, by using a retro-DREADD
approach to confine the expression Gq-DREADD to mPFC
neurons that project to the medial NAc shell, it was found that
these neurons are responsible for decreasing cue-induced re-
instatement of cocaine seeking. Additionally, the effects of
mPFC activation on cue-induced reinstatement depend on pri-
or extinction training of self-administration, suggesting that
the glutamatergic input from IL-mPFC to the NAc shell may
be responsible for extinction learning (Augur et al. 2016).
Moreover, extinction training during withdrawal increases
the expression of the GluR1 and GluR2/3 subunits of the
AMPAR in NAc shell but not core (Sutton et al. 2003). The
increased GluR1 expression in NAc shell is positively associ-
ated with the degree of extinction achieved during training and
negatively associated with cue-induced relapse (Sutton et al.
2003). These findings suggest that mPFC-NAc shell circuit is
required for mediating extinction behavior through both pre-
synaptic and postsynaptic mechanisms.

PFC-VTA circuit

Apart from the NAc, the mPFC also sends dense afferents to
ventral tegmental area (VTA). The dopaminergic neurons in
VTA can be readily activated by primary rewards (abused
drugs) and reward-predicting stimuli (Wise 2009). In animals
trained to self-administer cocaine, cocaine-predictive cues trig-
ger glutamate release and dopaminergic activation in VTA
(You et al. 2007). Recently, Degoulet et al. 2016 found that
isradipine, a general LTCC antagonist, blocked the induction

of NMDAR LTP and promoted the reversal of previously in-
duced LTP in the VTA. Furthermore, intra-VTA injection of a
CaV1.3 subtype-selective LTCC antagonist before extinction
training abolished previously acquired cocaine and alcohol
CPP on subsequent days, and the effect lasted at least 2 weeks
(Degoulet et al. 2016). TA receives numerous glutamatergic
inputs from both the PrL and IL of mPFC (Heidbreder and
Groenewegen 2003), and electrical stimulation of these inputs
increases glutamate release in the VTA (Rossetti et al. 1998),
which may in turn trigger dopamine release. Behaviorally, the
glutamatergic transmission frommPFC to VTA plays a pivotal
role in reinstatement of drug-seeking behavior after extinction
training (Wise 2009). However, whether these specific affer-
ents from PrL and IL to VTA regulate extinction of drug-
seeking behavior is not yet known.

PFC-MDH circuit

Medial dorsal hypothalamus (MDH) is another downstream
target of mPFC that receives extensive projections from the IL
of mPFC (Heidbreder and Groenewegen 2003; Thompson
and Swanson 1998). In recent years, the MDH has been
shown to be associated with the termination of motivated be-
haviors and, therefore, is recognized as a logical candidate for
regulation of extinction learning. Double labeling of retro-
grade tracer cholera toxin B subunit (CTb) and Fos revealed
recruitment of MDH projecting PFC neurons during extinc-
tion expression (Marchant et al. 2010). Infusion of the inhib-
itory neuropeptides known as cocaine- and amphetamine-
regulated transcript (CART) into the MDH prevented extinc-
tion expression (Marchant et al. 2010), indicating that mPFC-
MDH circuit is also involved in extinction expression.

Neuronal ensemble mechanisms

Neuronal ensemble is a concept which is proposed by Hebb
that learned associations are encoded within specific popula-
tions of neurons that were selectively activated by environ-
mental cues. Recently, there has been increasing interest in
determining the neuronal ensembles in the mesolimbic system
control of drug seeking and relapse (Cruz et al. 2013; George
and Hope 2017). Current evidence suggests that different neu-
ronal ensembles in mPFC may be responsible for promotion
or inhibition of drug-seeking behavior, respectively. It has
been found that a fraction of vmPFC neurons were preferen-
tially activated by the heroin-associated context. Selective
pharmacogenetic inactivation of these neurons inhibited
context-induced drug relapse (Bossert et al. 2011), suggesting
that a subset of neuronal ensembles in vmPFC encode the
learned associations between heroin reward and heroin-
associated contexts, and promote the cue-induced relapse.
However, using animal model of alcohol self-administration,
Pfarr et al. reported that activity-dependent ablation of
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neuronal ensemble in the IL but not PL induced excessive
alcohol seeking (Pfarr et al. 2015). It seems that the targeted
neuronal ensemble were specific for the cue-induced response
because nonselective inactivation of IL neurons, using pCAG-
lacZ rats, only marginally affected the cue-induced reinstate-
ment task. These results indicate that promotional or inhibito-
ry control over drug seeking is exerted by distinct functional
ensembles within IL rather than by a general tone of this
region. Indeed, two recent studies have demonstrated that
Fos-expressing neuronal ensembles mediating reward and ex-
tinction memories are intermingled within the vmPFC. In the
first study, Warren et al. found that inactivation of the food
reward ensembles decreased food seeking, whereas inactiva-
tion of the extinction ensembles increased food seeking
(Warren et al. 2016). In the second study, Suto et al. found
that the same IL area is capable of controlling both promotion
and suppression of reward seeking via different neural ensem-
bles, each selectively reactive to associated or non-associated
cues, and disruption of IL neurons activated by either cue
exclusively altered the behavioral response as well as neural
activation uniquely linked to the targeted cue. The neural en-
sembles in IL mediating the bidirectional control of reward
seeking are most likely mutually exclusive rather than over-
lapping (Suto et al. 2016). These results could explain the
inconsistent results about the role of mPFC in drug memory
and extinction memory and promote novel strategy for en-
hancing extinction memory and prevention of drug relapse.

Synaptic mechanisms

Glutamatergic transmission

Glutamate is the primary excitatory neurotransmitter in the
brain which acts on the ionotropic glutamate receptors includ-
ing AMPA receptors (AMPARs), NMDA receptors
(NMDARs), kainate receptors and the metabotropic glutamate
receptors (mGluRs) (Traynelis et al. 2010). From the behav-
ioral perspective, substantial evidence has existed for the in-
volvement of glutamate system in addiction and extinction of
multiple types of abusive drugs. Besides, intra-IL administra-
tion of PEPA, a positive allosteric modulator of AMPARs,
facilitated extinction of cocaine-seeking (LaLumiere et al.
2010) as well as heroin-seeking behaviors (Chen et al. 2016).
For rat model of methamphetamine CPP, transperitoneal ad-
ministration of ceftriaxone during extinction training, which
activates the glutamate transporter (EAAT2), prevents the
drug-primed reinstatement with an increase of EAAT2
mRNA expression in mPFC (Abulseoud et al. 2012).
However, intracerebroventricular administration of the
AMPAR antagonist CNQX augmented the extinction process
of rat morphine CPP model, hampered the increased Fos ex-
pression and blocked the phosphorylation of cAMP response
element-binding protein (CREB) in PFC (Siahposht-Khachaki

et al. 2017). The discrepancies of findings between the
Siahposht-Khachaki et al and previous studies may be attrib-
utable to different types of drugs and routs of administration.
The mGluRs are also showed to play roles in drug extinction
memories. Infusion of the mGluR1/5 agonist DHPG into the
IL of cocaine-experienced rats facilitated extinction of drug
seeking (Ben-Shahar et al. 2013). Activation of group I me-
tabotropic glutamate receptor subtype 5 (mGluR5) in IL but
not PL facilitates extinction of cue-conditioned alcohol-seek-
ing behavior via potentiation of glutamatergic synaptic plas-
ticity (Gass et al. 2014), suggesting the mGluR5 as a promis-
ing drug target for facilitation of extinction learning.

While the importance of the glutamatergic receptors in
learning and memory has been long appreciated, recent studies
also started to revel how the receptors in mPFC adapt to the
extinction of drug memory (Kalivas et al. 2005). Extinction
training significantly increases the amplitude of the evoked
NMDAR-mediated current in both PL and IL (Fig. 1). In con-
trast, the AMPAR currents in the PL but not IL are reduced
after extinction training (Fig. 1). Not surprisingly, a reduction
in theAMPAR/NMDAR current, an indicator of neuronal plas-
ticity, is also found after extinction training in the PL but not IL
(Gass et al. 2014). In line with the altered glutamatergic trans-
mission, manipulation of the activity of AMPAR and NMDAR
was found to influence the extinction of fear-conditioning as
well as drug-seeking behavior (Myers et al. 2011; Peters et al.
2009). Increasing the AMPAR activity in IL via its positive
allosteric modulator augments extinction of cocaine seeking
(Oliva et al. 2018). Pharmacologically inhibiting NMDAR,
particularly those containing the NR2A in IL, facilitates the
extinction expression (Hafenbreidel et al. 2017). Few studies
investigate how mGluRs in mPFC regulate the extinction of
drug memories. A recent study shows that mGlu5R activation
significantly reduced calcium activated potassium channel
(KCa) currents in layer V PNs of IL. The mGluR5-dependent
facilitation of long-term potentiation can be readily prevented
by positive modulation of KCa channels in IL (Cannady et al.
2017), suggesting that mGluR5-mediated enhancement of ex-
tinction of alcohol-seeking behavior and synaptic plasticity in
IL involves functional inhibition of KCa channels.

In addition to altering the expression and function of glu-
tamatergic receptors in mPFC, extinction of drug memories
also causes structural remodeling of glutamatergic synapses in
mPFC (Fig. 1). Gass and colleagues demonstrate that extinc-
tion training significantly increases the spine density in basal
dendrites of layer V PNs in IL as compared with the forced
abstinence (Gass et al. 2014). The extinction-associated in-
crease was further potentiated by treatment with mGluR5 pos-
itive allosteric modulator which facilitates extinction learning
(Gass et al. 2014). The increased spine density in IL following
extinction was primarily due to an increase in the number of
mature, mushroom spines (Gass et al. 2014) and associated
with increased expression of F actin (Toda et al. 2006),
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suggesting an enhanced glutamatergic transmission.
Extinction training activates Rho GTPase Rac1 in the mPFC
in a brain-derived neurotrophic factor (BDNF)-dependent
manner (Wang et al. 2017), and, both in vivo and vitro studies
show that Rac1 plays a crucial role in spine morphogenesis
through regulating the size and density of spines in neurons
(Luo 2000; Nakayama et al. 2000). Despite this, whether
extinction-induced Rac1 activation also contributes to the al-
tered dendritic and spine morphology is not yet known.

The signaling pathways that regulate the glutamatergic re-
ceptors trafficking are also suggested to be important for the
extinction of drug memories. Neuronal activity-regulated pen-
traxin (Narp) is an immediate early gene product that is secret-
ed and binds to AMPAR (O'Brien et al. 1999). Although the
Narp knockout (KO) mice are intact in instrumental and
Pavlovian learning, they are deficient in extinction of mor-
phine CPP (Crombag et al. 2009; Johnson et al. 2007).
Blouin et al. suggest that it is the Narp in IL that mediates this
phenotype. Viral-mediated expression of a Narp dominant-
negative construct in IL of mice blocks extinction of morphine
CPP while reintroduction of Narp into IL of KO mice rescues
the impaired extinction of morphine CPP (Blouin et al.
2013a). Notably, viral-mediated knockdown of Narp in IL
had little effect on the extinction of heroin self-administration,
indicating a possibility that Narp differently affects the extinc-
tion of memory of different drugs (Blouin et al. 2013b).
PKMζ, an autonomously active isozyme of protein kinase

C, regulates NSF/GluR2-dependent AMPAR trafficking
(Migues et al. 2010; Yao et al. 2008). He et al. showed that
inhibiting PKMζ activity in IL but not PL, disrupted the ex-
pression of extinction memory of CPP and CPA, indicating
that PKMζ in IL is required for the maintenance of extinction
memory of morphine reward-related cues and morphine
withdrawal-related aversive cues (He et al. 2011).

GABAergic transmissions

Relatively little is known about the role of GABAergic transmis-
sion in mPFC in the formation and retention of extinction mem-
ory. In the rat model of cocaine self-administration, IL inactiva-
tion with the transcranial injection of the GABA receptors ago-
nist baclofen and muscimol during late extinction enhanced drug
seeking (Peters et al. 2008a). However, in the animal model of
alcohol self-administration, reversible inactivation of IL had no
effect on the reinstatement or reacquisition of alcoholic beer-
seeking and had no effect on extinction expression, while IL
inactivation did, however, increase the latencies with which an-
imals responded on test but only when animals were tested in the
extinction context (Willcocks and McNally 2013). In the animal
model of cocaine addiction, IL inactivation after extinction leads
to the re-emergence of conditioned place preference (Ovari and
Leri 2008), an effect which relates to the suppression of
GABAergic transmission and facilitation of long-term potentia-
tion (LTP) in vmPFC. Moreover, extinction training decreases

Fig. 1 Schematic showing the
synaptic remodeling following
extinction of drug memory in the
prelimbic subregion (PL) of
medial prefrontal cortex.
Extinction training causes robust
spinogenesis in the projection
neurons of PL with redistribution
of glutamatergic receptors inside
the synapses. It increases the
number of AMPA receptors but
decrease that of NMDA receptors,
accompanied by an enhancement
of the long-term potentiation of
glutamatergic transmission onto
these neurons. Please note that the
synaptic remodeling by extinction
varies across the mPFC
subregions such as the prelimbic
and infralimbic regions
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the expression of surface GABAAR β3 subunit through
dynamin-dependent GABAAR endocytosis (Wang et al. 2017),
but has little influence on the AMPAR endocytosis. The extinc-
tion training induced GABAAR endocytosis may result from
Rac1 activation in the vmPFC via a BDNF-dependent manner
(Wang et al. 2017).

Dopaminergic transmission

Despite the extensive dopaminergic innervation of mPFC, the
role of dopamine receptor in mPFC subregions in the reinstate-
ment of cocaine seeking is far from being clearly identified.
Using rat model of cocaine self-administration, it was found that
IL microinfusion of the dopamine receptor 2 (D2)-like agonist
quinpirole before extinction attenuated cue-primed relapse in ad-
olescents (Zbukvic et al. 2016). There is evidence that the dys-
function of dopamine signaling may contribute to the deficit in
extinction learning and susceptibility to relapse during adoles-
cence. Extinction of drug cue associations was facilitated in ad-
olescents by elevating dopamine and norepinephrine in the PFC
with atomoxetine during extinction training. Direct microinjec-
tion of the D1 receptor agonist SKF38393 mimicked this effect
and facilitated extinction in adolescent subjects (Brenhouse et al.
2010). Furthermore, infusion of quinpirole into IL prior to ex-
tinction significantly reduced cue-induced reinstatement in ado-
lescents. This effect was replicated by acute systemic treatment
with the atypical antipsychotic aripiprazole (Abilify), a partial
D2R-like agonist (Zbukvic et al. 2016).

Adrenergic transmission

Using animal model of self-administration, LaLumiere et al.
found that injection of clenbuterol, a β2-adrenergic receptor
(AR) agonist, in IL after extinction training facilitates the reten-
tion of extinction. Local administration of β2-AR antagonist
ICI in IL before extinction training inhibited extinction reten-
tion (LaLumiere et al. 2010). Consistent with this, Huang et al.
found that β-arrestin-based β-adrenergic signaling in IL regu-
lated extinction learning of cocaine-associated memories using
animal model of CPP (Huang et al. 2018). Within 10 min after
extinction, the administration of the nonbiasedβ-AR antagonist
propranolol, but not the G protein-biased β-AR antagonist car-
vedilol, blocked extinction learning of cocaine-conditioned
place preference and the associated extracellular signal-
regulated kinase (ERK) activation in IL. Genetic deletion of
β-arrestin2 in IL, specifically in excitatory neurons, impaired
extinction learning of cocaine-conditioned place preference,
which was not rescued by carvedilol (Huang et al. 2018). The
adrenergic system may also strengthen the extinction memory
through increasing the excitability of IL neurons in a β-AR-
and PKA-dependent manner. During extinction, blockade of
noradrenergic receptors with propranolol in IL prevented the
acquisition of extinction memory, and, interfering with

noradrenergic receptors, PKA, transcription, or protein synthe-
sis in IL impairs retention of extinction (Mueller et al. 2008).

Molecular and epigenetic mechanisms

Despite the accumulating literature on the molecular mecha-
nisms underlying extinction of fear memory, little is known on
the extinction of drug memory. BDNF is widely known to be
critical for synaptic plasticity (Korte et al. 1995; Lohof et al.
1993) and extinction of fear memory (Peters et al. 2010). Otis
JM et al. found that IL infusion of BDNF enhanced the ex-
tinction of cocaine-CPP, and of ANA-12, an antagonist for
BDNF tropomyosin-related kinase B (TrkB) receptor, im-
paired cocaine-CPP extinction. Consistently, systemic admin-
istration of the TrkB receptor agonist facilitated extinction of
cocaine-CPP, indicating BDNF signaling as a promising ad-
junct for extinction therapy (Otis et al. 2014). It is interesting
to note that infusion of BDNF in mPFC also suppresses co-
caine seeking-induced molecular adaptations within the NAc
(Berglind et al. 2007; Berglind et al. 2009; Sun et al. 2014),
arguing for a critical role of BDNF in the extinction of drug
memory. Previous studies also highlighted BDNF engage-
ment in the extinction of learned fear, such that BDNF infu-
sion into the IL reduced conditioned fear even in the absence
of extinction training (Peters et al. 2010). Thus, BDNF ap-
pears to act as a co-regulator of the extinction for both drug
and fear memory. Other neurotrophic factors, such as basic
fibroblast growth factor (bFGF or FGF2) in IL, also showed
a role in the formation of extinction memory of addiction.
Following cocaine exposure, bFGF is increased in IL, and
blocking bFGF in IL-mPFC before extinction training resulted
in facilitation of subsequent extinction. However, blocking
bFGF alone was not sufficient to facilitate extinction, indicat-
ing separate roles of BDNF and bFGF in the extinction of drug
memories. In addition, multiple protein kinase signaling path-
ways, such as cyclin-dependent kinase 5, ERK and Rho
GTPase Rac1 are shown to be involved in the extinction of
addiction memories (Castino et al. 2018; Wang et al. 2012;
Wang et al. 2017). It was found that extinction training of CPA
memory led to activation of ERK and CREB in IL and intra-
vmPFC infusion of ERK inhibitor U0126 (1,4-diamino-2,3-
dicyano-1,4-bis(methylthio)butadiene) before extinction train-
ing diminished extinction of CPA behavior and the related epi-
genetic regulation of BDNF gene transcription (Wang et al.
2012). Extinction of CPA also activates Rho GTPase Rac1 in
IL in a BDNF-dependent manner, which affects GABAAR en-
docytosis via triggering synaptic translocation of activity-
regulated cytoskeleton-associated protein (Arc) through facilitat-
ing actin polymerization. Knockdown of Rac1 expression within
the vmPFC of rats using Rac1-shRNA suppressed GABAAR
endocytosis and CPA extinction, whereas expression of a consti-
tutively active form of Rac1 accelerated GABAAR endocytosis
and CPA extinction.
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Epigenetics refers to the process of altering gene functions
without inducing mutations of DNA. The major types of epige-
netic modifications include DNA methylation, chromatin modi-
fication, non-coding RNAs, post-translational histone regula-
tions, etc. (Nestler 2014). A great number of studies has demon-
strated that the persistence of drug memories and relapse propen-
sity are attributed to drug-induced epigenetic mechanisms regu-
lating long-lasting drug-induced molecular alterations (Anier
et al. 2010; Garrison and Potenza 2014; Nestler 2014; Pascual
et al. 2012; Robison and Nestler 2011; Tian et al. 2012; Wright
et al. 2015). Recently, emerging studies have been trying to re-
veal the epigenetic mechanisms underlying extinction memory
and its inhibition on drug relapse. Sadakierska-Chudy et al. stud-
ied the effect of extinction training of cocaine self-administration
on a few of genes including those encoding histone-modifying
enzymes and histone proteins that control the chromatin state. It
was found that at the end of extinction training, most of the
analyzed genes in the rats that either actively or passively expe-
rienced cocaine administration returned to the control level
(Sadakierska-Chudy et al. 2017). However, it is still needed to
explore the causal link between the changes of histone-
modifying enzymes in extinction of cocaine self-administration
memory. Using the animal model of CPA, Wang et al. investi-
gated the role of epigenetic regulation of BDNF gene expression
in extinction of morphine-associated withdrawal memory (Wang
et al. 2012). The results showed that CPA extinction training
induced an increase in acetylation of histone H3 at the promoters
of BDNF exon I transcript and increased BDNF mRNA and
protein expression in the vmPFC of acute morphine-dependent
rats. The epigenetic regulation of BDNF gene transcription could
be facilitated by intra-vmPFC infusion of HDAC inhibitor
trichostatin A before extinction training. Correspondingly, dis-
ruption of the epigenetic regulation of BDNF gene transcription
blocked extinction of CPA behavior. Histone modifications are
also found to be involved in extinction of drug-seeking in rats. A
history of nicotine exposure significantly decreased H3K14 acet-
ylation at the BDNF exon IV promoter, and this effect was
abolished with extinction training combined with NaB treatment
(Castino et al. 2018). Despite these, it is not yet known about the
role of DNA methylation and other types of epigenetic modifi-
cations in mPFC in the regulation of formation or expression of
extinction of drug memories.

Clinic relevance for the role of mPFC in drug
extinction memories

Effects of addictive drugs or drug-related cues on PFC
activity

Direct drug exposure alters the activity of PFC across species.
Intracerebroventricular injection of cocaine in rats induced a
significant increase in fMRI blood oxygen level-dependent

(BOLD) signal intensity in PFC (Rothbaum and Davis
2003). Non-contingent cocaine administration in drug-naïve
rhesus monkeys resulted in activation of dorsolateral PFC
(Beylergil et al. 2017). Intravenous cocaine administration to
abstinent cocaine-addicted patients improved BOLD re-
sponses in anterior prefrontal cortex (aPFC) and OFC
(Wolstenholme et al. 2017). Besides, drug cue exposure has
pronounced influence on PFC activation. For human nicotine-
addictive individuals, fMRI test revealed that cigarette-related
cues activated left dorsolateral prefrontal cortex (DLPFC)
(Peters et al. 2008a). Similarly, in human abstinent alcoholics,
alcohol-related stimuli elicited activation of bilateral ACC and
DLPFC (LaLumiere et al. 2012; Ovari and Leri 2008). In
cocaine abusers, cocaine cues induced activation of left lateral
OFC activation and right DLPFC, whereas deactivation of left
mPFC (Ben-Shahar et al. 2013). A PET study showed that
when presented with cocaine-related cues, rhesus monkey
trained to self-administrate cocaine displayed robust activa-
tion in PFC (Beylergil et al. 2017).

Effects of extinction of drug-related cues on mPFC
activity

Until now few studies explored the PFC activity during the
extinction of drug-associated cues, although substantial evi-
dence has showed that fear extinction critically depends on the
vmPFC (Milad et al. 2005; Milad et al. 2007; Mueller et al.
2014; Phelps et al. 2004). Konova et al. studied neural mecha-
nisms of extinguishing drug and pleasant cue associations in
human addiction using fMRI. They found that like fear extinc-
tion, non-fear-based extinction relies on the vmPFC. Cocaine
users showed vmPFC abnormalities for both CSs, which, in the
case of the drug-related images, correlated with craving. The
study suggests a global deficit in extinction learning in this
group that may hinder extinction-based treatment (Konova
et al. 2017). The dysfunction of mPFC may underlie the resis-
tance of drug cue associations to extinction in addiction. On the
one hand, PFC dysfunction makes individuals vulnerable to
drug use. Bechara (Bechara 2005) argued that like individuals
with vmPFC lesions, the addicted individuals’ ability of inhibi-
tion is impaired, largely due to the relatively weaker function of
reflective PFC compared with the impulsive amygdala. A re-
search recruited teenagers with parental history of alcoholism
and compared the children who were resilient to alcohol with
those vulnerable to alcohol (according to the level of problem
drinking). They found that the vulnerable group had greater
activation of the dorsomedial PFC in fMRI (Heitzeg et al. 2008).

On the other hand, repeated drug use impairs the PFC
function. When compared with rats with short access of co-
caine, those with long access performedworse in the sustained
attention task, indicating impaired cognitive flexibility.
Decrease of D2 receptor mRNA expression and D2 protein
levels in the medial prefrontal cortex, and of D2 mRNA in the
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orbitofrontal cortex were also observed (Briand et al. 2008). A
human PET study showed that during Iowa Gambling Task,
cocaine-addicted patients have higher activation of right OFC
and lower activation of right DLPFC and left mPFC compared
with control group (Bolla et al. 2003). This research suggested
functional impairment in prefrontal cortex that participates in
decision-making exists in drug abusers. Adults rodents with
alcohol exposure during adolescence showed weaker baseline
connec t iv i ty be tween PFC-s t r i a tum and among
PFC subregions, as well as alterations in the expression of
genes related with myelin and histone demethylation in PFC
(Wolstenholme et al. 2017).

Potential application of extinction combined
with mPFC modulation in the treatment of drug
abuse

CET includes repeated presentation of drug-related stimuli
without reinforcement. The goal of CET is to form new asso-
ciations between drug cues and the absence of drug, thus
inhibiting the expression of drug memory and preventing
cue-induced drug seeking. However, the efficacy of CET ap-
pears to be limited (Conklin and Tiffany 2002). It is not sur-
prising considering that extinction is a new learning but not an
erasure of drug-related memory (Torregrossa and Taylor
2013). Compared with drug-related memory, extinction mem-
ory is unstable and vulnerable to forgetting (Myers et al.
2011). During and after CET, drug memory remains intact,
and tends to reemerge with the passage of time, or exposure
to drug or drug-related cues (Conklin and Tiffany 2002).
Given the role of mPFC in the extinction of drug memories
in animal models mentioned above, combination of extinction
therapy with mPFC modulation may help to reduce craving
and relapse in addicted patients.

Mounting evidence suggests that repetitive transcranial
magnetic stimulation (rTMS) localized at the DLPFC, which
is more superficial than the vmPFC and functionally connect-
ed with vmPFC, is effective in treating human with substance
addiction (Bellamoli et al. 2014; Jansen et al. 2013; Salling and
Martinez 2016). The mechanisms are still unclear, one of the
possibilities is the regulation of activity in the brain regions relat-
edwith addiction behaviors (Gorelick et al. 2014). To our knowl-
edge, no human research has combined TMS with extinction
training for the intervention of drug addiction, but in the field
of fearmemory, a study found that rTMSwith imaginal exposure
therapy attenuated hyperarousal symptoms, and altered the cate-
cholamine and hormone levels in posttraumatic stress disorder
(PTSD) patients (Osuch et al. 2009). Transcranial direct current
stimulation (tDCS) has been proved to enhance abstinent rate in
crack-cocaine-addicted patients (Batista et al. 2015). Alcohol-
dependent patients who underwent bilateral tDCS of the
DLPFC had lower subjective craving for alcohol as well as
higher startle amplitudes, in comparison with those receiving

placebo tDCS. In this study, the startle amplitude is the objective
measurement for cue reactivity, and furthermore, the objective
measurement for craving level (Wietschorke et al. 2016).
Similarly, deep brain stimulation (DBS) has been proved as a
future treatment for addiction (Peisker et al. 2018; Salling and
Martinez 2016), yet more studies are needed to reveal the under-
lying mechanisms and how those physical interventions can be
co-used with extinction therapy to yield more satisfactory treat-
ment outcomes.

There are some other extinction-based interventions for
drug relapse, such as memory retrieval-extinction procedure
and combination of extinction training and vagus nerve stim-
ulation (VNS). These interventions are related to the changes
of mPFC activities, although mPFC are not directly stimulat-
ed. A retrieval-extinction procedure is referred to giving an
extinction training after a memory retrieval manipulation. The
effects only emerged when the interval between retrieval and
extinction training is shorter than the reconsolidation time
window. The memory retrieval-extinction procedure has been
shown to reduce drug craving and relapse, both in abstinent
human individuals addicted with heroin and nicotine, and rat
model of cocaine, morphine, heroin, and alcohol relapse
(Germeroth et al. 2017; Millan et al. 2013; Sartor and Aston-
Jones 2014; Xue et al. 2012). The mechanism underlying
memory retrieval-extinction procedure may at least be partial-
ly due to the alterations of mPFC activities (Xue et al. 2012).
In rats self-administered with cocaine, VNS conducted during
extinction attenuated cue-elicited reinstatement, and de-
creased the expression of the phosphorylated transcription
factor CREB (pCREB) in the PFC (Childs et al. 2017), which
regulates drug-seeking behaviors (Zhou and Zhu 2006). With
the development of transcutaneous VNS in a broader range of
neuropsychological disorders (Ben-Menachem et al. 2015;
Genheimer et al. 2017; Jin and Kong 2017; Kong et al.
2018; Nichols et al. 2011; Shi et al. 2013), pairing VNS with
extinction has begun to show potential for the treatment of
drug addiction in clinic.

Conclusive remarks

Aberrant drug memories of the association between the drug-
taking behavior and drug-related environmental cues contrib-
ute to the high rate of relapse after abstinence. Memory ex-
tinction weakens the strength of drug memories and reduces
the propensity to relapse. However, since extinction training
only causes temporary suppression but not permanent erasure
of memories, drug memories are often spontaneously recov-
ered after a long period of abstinence, reinstated by a priming
dose of drugs, or renewed after exposure to drug-associated
stimulus in a new environment. The ultimate goal of exploring
the mechanisms underlying extinction of drug memories is to
augment the persistence of memory extinction or prevent the
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original drug memories from relapse under the above-
mentioned circumstances. Converging evidence from clinical
and animal studies have suggested a critical role of mPFC,
especially the IL-mPFC, in the extinction of drug memories,
and manipulation of neural activity, synaptic plasticity or sig-
naling pathway in IL-mPFC is effective in altering the persis-
tence of extinction memory of drugs. To better understand the
role of mPFC in the extinction memory of drugs and enhance
the clinic translation for the use of memory extinction therapy,
future studies in the following directions are needed. First, the
causal relationship between mPFC and extinction memory in
drug-addicted patients remains to be identified. Second, clin-
ical and preclinical studies should be developed to ascertain
whether manipulating the function of mPFC may be sufficient
to reduce the reappearances of drug memories in addicted
patients. Lastly, given the sufficiency of memory retrieval-
extinction behavioral procedure in reducing the drug-seeking
behavior and relapse, it is urgent to understand whether mPFC
participates in this process, and if yes, how to enhance the
anti-relapse effect of the behavioral procedure in both animal
models and addicted patients through manipulating the mPFC
function.
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