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Abstract
Alcohol use disorder (AUD), which combines the criteria of both alcohol abuse and dependence, contributes as an important
causal factor to multiple health and social problems. Given the limitation of current treatments, novel medications for AUD are
needed to better control alcohol consumption and maintain abstinence. It has been well established that the intracellular signal
transduction mediated by the second messengers cyclic AMP (cAMP) and cyclic GMP (cGMP) crucially underlies the genetic
predisposition, rewarding properties, relapsing features, and systemic toxicity of compulsive alcohol consumption. On this basis,
the upstream modulators phosphodiesterases (PDEs), which critically control intracellular levels of cyclic nucleotides by cata-
lyzing their degradation, are proposed to play a role in modulating alcohol abuse and dependent process. Here, we highlight
existing evidence that correlates cAMP and cGMP signal cascades with the regulation of alcohol-drinking behavior and discuss
the possibility that PDEs may become a novel class of therapeutic targets for AUD.
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Introduction

Alcohol use disorder (AUD), according to the fifth edition of
the Diagnostic and Statistical Manual of Mental Disorders
(DSM-5), combines the criteria of both alcohol abuse and de-
pendence, which used to be separate disease classifications
(American Psychiatric Association 2013). AUD can be defined
as a compulsive pattern of alcohol drinking and seeking despite
harmful consequences and has been linked to a wide array of
health and social problems. Although current treatments show
effectiveness in alleviating some symptoms of AUD, the

worldwide high levels of alcohol consumption and relapse rates
still address the need to explore novel medical therapies with
greater efficacy in reducing alcohol intake and/or maintaining
abstinence. Indicated by a series of recent studies, cyclic nucle-
otide phosphodiesterases (PDEs) may represent a promising
class of therapeutic targets for alcohol-related disorders.

In mammalians, PDEs are the only known enzymes that cat-
alyze the hydrolysis of the cyclic AMP (cAMP) and cyclic GMP
(cGMP). Compared to the enzymes catalyzing the synthesis of
cAMP and cGMP, namely adenylyl cyclase (AC) and guanylyl
cyclase (GC), PDEs play a more important role in regulating the
intracellular levels of the cyclic nucleotides and their downstream
signal transductions (Bender andBeavo 2006). To date,more than
100 different protein products transcribed from at least 21 genes
have been identified in the PDE superfamily, which consists of 11
families (PDE 1–11) (Lugnier 2006; Bender and Beavo 2006;
Conti and Beavo 2007; Menniti et al. 2006). All the PDEs can
be divided into three categories based on their substrate specific-
ity: cAMP-specific PDEs (i.e., PDE4, PDE7, and PDE8), cGMP-
specific PDEs (i.e., PDE5, PDE6, and PDE9), and dual-substrate
PDEs (i.e., PDE1, PDE2, PDE3, PDE10, and PDE11).

As the cAMP and cGMP signaling pathways are extensively
involved in neural functions and synaptic transmission in the
central nervous system (CNS), PDEs, the upstream regulators
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of the cyclic nucleotide signaling, have also been tested for phys-
iological and pathological relevance of various neuropsychiatric
disorders, including depression (Zhang 2009; Zhang et al. 2002),
anxiety (Zhang et al. 2008), and schizophrenia (Snyder and
Vanover 2017); neurodegenerative diseases, including
Alzheimer’s disease (Garcia-Osta et al. 2012; Heckman et al.
2015; Wang et al. 2012) and Parkinson’s disease (Banerjee
et al. 2012; Garcia et al. 2014); and ischemic stroke (Blokland
et al. 2006; Braun et al. 2007;McLachlan et al. 2007;Millar et al.
2005; Nakayama et al. 2007; Zee et al. 2006). PDE inhibitors
exhibited antidepressant- and anxiolytic-like, as well as
cognition/memory-enhancing effects in various animal
models (Li et al. 2009; Xu et al. 2011; Zhang et al. 2000;
Zhang et al. 2005; Zhang et al. 2006). These results suggest
a critical involvement of PDEs in emotion, learning, and
memory processes, which are also recognized as fundamen-
tal components in the development of substance-dependent
behaviors (Milton and Everitt 2012; Torregrossa et al. 2011).
Accumulating evidence has proven that neuroadaptive
changes mediated by cAMP and cGMP signal transductions
critically underlie the genetic predisposition, rewarding
properties, relapsing features, and systematic toxicity of
alcohol-drinking behaviors (Pandey 2004; Pandey et al.
2001b). Based on these findings, PDEs have been proposed
to play a modulatory role in alcohol dependence and abuse
(Gong et al. 2017; Hu et al. 2011; Liu et al. 2017a; Logrip
2015; Wen et al. 2015; Wen et al. 2017). In this review, we
focus on the available evidence that indicates a regulatory
role of cAMP- and cGMP-mediated signal transduction in
alcohol use and abuse and discuss the possibility that PDEs
may become a novel class of therapeutic targets for AUD.

Role of cyclic nucleotide signaling in alcohol
use and abuse

The development of alcohol abuse or dependence is a chronic,
habit-forming process involving multiple neuronal dysfunc-
tions in different structures of the CNS. Like other drugs of
abuse, alcohol produces rewarding properties by stimulating
the mesolimbic dopaminergic system, which begins in the
ventral tegmental area (VTA) of the midbrain and projects to
the nucleus accumbens (NAc) and other limbic brain regions
(Gonzales et al. 2004; Koob 2003). Increased dopamine (DA)
release in the shell rather than the core of the NAc regulates
positive reinforcing properties of addictive substances (Zocchi
et al. 2003) and contributes to the promotion of alcohol-
drinking behavior (Chao and Nestler 2004; Hyman and
Malenka 2001; Imperato and Di Chiara 1986). On the other
hand, anhedonic or dysphoric states, such as anxiety and de-
pression, which may be due to pre-existing conditions or
abrupt cessation of repeated alcohol consumption, may ac-
count for the motivational aspects of alcohol abuse and relapse

(Conway et al. 2006; Koob and Le Moal 1997; Pandey 2003).
This is supported by the fact that some antidepressants are
effective in treating alcoholism (Johnson 2003; Stoltenberg
2003; Zalewska-Kaszubska et al. 2008). Amygdaloid brain
structures, specifically the central (CeA) and medial (MeA)
nuclei, have been shown to be critical for the innate and
withdrawal-induced negative affective states, especially
anxiety-like behavior (Pandey et al. 2003; Pandey et al.
2004; Pandey et al. 2005). Thus, cellular substrates with a
common role in both euphoric and dysphoric pathways may
be of greater efficacy in modulating the development of alco-
hol abuse and dependence. Cyclic nucleotide signaling, par-
ticularly the cAMP signal transduction, has been recognized
as one of the best elucidated cell signal systems in regulating
both positive and negative aspects of alcohol-dependent
process.

cAMP signal transduction

Intracellular cAMP signaling is functionally coupled to vari-
ous receptors on the plasma membrane via guanine nucleotide
binding proteins (G-protein). AC-catalyzed cAMP generation
activates protein kinase A (PKA), and ultimately leads to
changes in cAMP-inducible gene transcription patterns via
phosphorylation of cAMP-responsive element-binding pro-
tein (CREB) (Pandey et al. 2001a, b). Important CREB target
genes include neuropeptide Y (NPY), corticotrophin-
releasing factor (CRF), brain-derived neurotrophic factor
(BDNF), and activity-regulated cytoskeleton-associated pro-
tein (Arc), all of which play an important role in modulating
CNS functions. This renders cAMP signaling a critical mod-
ulator in experience-based neuroadaptation and the complex
responses to multiple addictive substances (Carlezon et al.
2005). Although the cAMP signaling cascade has been shown
to participate in addictive behavior to opiates, cannabis, meth-
amphetamine, cocaine, and nicotine, its role in modulating the
alcohol-dependent process has been most profoundly studied
(Pandey 2004, Wen et al. 2017).

Alcohol has a diverse pharmacological profile in the
CNS. Its euphoric properties can be mediated by μ-opioid
receptors (MORs), which are negatively coupled to AC ac-
tivity; other effects, i.e., sedation, anxiolysis, and ataxia, are
mediated via the GABA-benzodiazepine receptor complex
(Lingford-Hughes et al. 2010). The intracellular action of
alcohol exposure can be transduced by multiple membrane
functional sites, including G-protein coupled receptors
(GPCRs), voltage gated calcium channels (VGCCs), recep-
tors for tyrosine kinases (RTK), or N-methyl-D-aspartate
(NMDA). Their downstream signals ultimately culminate
in specific patterns of nuclear gene expression via the gene
transcription factor CREB. Plenty of evidence demonstrates
that acute ethanol exposure leads to activation in cAMP
signal transduction both in vitro (Asher et al. 2002;
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Constantinescu et al. 2002; Gordon et al. 1986) and in vivo
(Asyyed et al. 2006; Yang et al. 1996), which might be
induced by elevated AC activity (Nelson et al. 2003;
Yoshimura and Tabakoff 1995). However, chronic ethanol
treatment attenuates this effect in a brain region-specific
manner. Downregulated cAMP signaling is detected in the
mouse cerebral cortex (Saito et al. 1987) and hippocampus
(Valverius et al. 1989); in rats, similar responses are detected
in the cerebellum (Yang et al. 1996; Yang et al. 1998a, b)
and striatum (Yang et al. 1998a, b), but not in the cortical
structure. Moreover, alcohol withdrawal also causes de-
creased cAMP signal transduction in the rat cerebral cortex
and CeA (Pandey et al. 2001a, b; Pandey et al. 2003;
Pandey et al. 1999a, b), but increased pCREB levels in the
hippocampus, which is reduced during chronic alcohol treat-
ment (Bison and Crews 2003).

In addition to the rapid and prolonged regulation of the
intracellular actions of alcohol, key elements in cAMP signal-
ing may serve as genetic predisposition and modulation tar-
gets for alcohol-drinking behavior. In clinical alcoholic pa-
tients with at least 6-month abstinence from alcohol, lower
AC1 isoform levels are detected in the cortical structure com-
pared to that in non-drinkers (Hashimoto et al. 1998; Sohma
et al. 1999). The following RT-PCR analysis also reveal de-
creased mRNA levels of AC1 and AC8 in blood cells of
alcoholic patients with a positive family history (Sohma
et al. 1999). These results are supported by preclinical studies
that AC1 knockout mice exhibit enhanced sensitivity to the
sedative effect of alcohol, while AC8 knockout leads to de-
creased voluntary alcohol intake (Maas et al. 2005). On the
contrary, mice lacking AC5 exhibit increased alcohol intake
and preference but reduced sensitivity to alcohol-induced

Table 1 Role of PDEs in alcohol dependence

PDE Isoform Inhibitor Animal Two-bottle choice drinking Alcohol
self-administration

Alcohol withdrawal
symptoms

Reference
Alcohol
consumption

Alcohol
preference

PDE1 Vinpocetine C57BL/6J mice - - Blednov et al. (2014)

PDE3 Milrinone - -

Olprinone - -

PDE4 Rolipram ↓a ↓a Hu et al. (2011)

Ro-20 1724 ↓ ↓

Rolipram ↓ ↓ Blednov et al. (2014)

Piclamilast ↓ ↓

Mesopram ↓ ↓

CDP840 ↓ ↓

Rolipram FH/Wjd rats ↓a ↓a ↓a Wen et al. (2012)

Rolipram C57BL/6J mice ↓ Gong et al. (2017)

FH/Wjd rats ↓

Rolipram P rats ↓b Franklin et al. (2015)

HAD1 rats ↓ b

Ro-20 1724 P rats ↓b

HAD1 rats ↓b

Roflumilast C57BL/6J mice ↓a ↓a Liu et al. (2017a)

PDE5A Zaprinastc C57BL/6J mice - - Blednov et al. (2014)

PDE10A TP-10 Scr:sP ratsd ↓ Logrip et al. (2014)

PDE10A TP-10 Wistar rats ↓b Logrip et al. (2014)

Nonspecific Propentofylline C57BL/6J mice - - Blednov et al. (2014)

Ibudilaste P rats ↓ Bell et al. (2015)

HAD1 rats ↓

C57BL/6J mice ↓

a The effects were selective to alcohol without altering sucrose intake or self-administration
b The effect was nonselective between alcohol and sucrose
c highest selectivity for PDE5, less potent at PDE1, PDE10, and PDE11
d Scr:sP rat: Sardinian alcohol-preferring rats of The Scripps Research Institute subline
e Non-specific but with preference on PDE3, 4, 10, 11
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sedation (Kim et al. 2011). The opposite modulation pattern of
these AC isoforms may be due to their different brain distri-
butions: AC5 is predominantly expressed in the NAc and
dorsal striatum (Kim et al. 2008), while calmodulin-sensitive
AC1 and AC8 exhibit high levels in the neocortex and olfac-
tory system (Muglia et al. 1999; Xia et al. 1991). Moreover,
basal expression of CREB, pCREB, and downstream neuro-
peptide Y (NPY) has been found to be innately lower in the
NAc shell, rather than the NAc core, in alcohol-preferring
C57BL/6 (C57) mice compared to non-preferring DBA/2
(DBA) mice (Belknap et al. 1993; Misra and Pandey 2003).
Partial deletion of CREB gene promote anxiety-like and
alcohol-drinking behavior (Pandey et al. 2004). Similarly, low-
er expression of CREB and pCREB in the CeA and MeA, but
not the basolateral nucleus of amygdala (BLA), is correlatedwith
higher alcohol intake and anxiety levels in alcohol-preferring (P)
rats compared to non-preferring (NP) rats (Pandey et al. 1999a, b;
Pandey et al. 2005). Acute alcohol exposure activates CREB
phosphorylation and reduces anxiety levels in P rats. By CeA
microinfusions, Sp-cAMP, a PKA activator, or NPY decreases
anxiety levels and alcohol intake in P rats, while the PKA inhib-
itor Rp-cAMP provokes anxiety-like behavior and increases al-
cohol consumption in NP rats (Pandey et al. 2005). In addition,
the CREB function is also related to anxiety-like behavior in
response to abrupt alcohol abstinence. In Sprague-Dawley (SD)
rats with chronic alcohol exposure, alcohol withdrawal-induced
anxiety-like behavior is accompanied by decreased pCREB
and NPY expression in the CeA or MeA; these are reversed by
microinfusions of Sp-cAMP into the CeA. Consistently, Rp-
cAMP infusions decrease pCREB and increase both
anxiety levels and alcohol preference (Pandey et al. 2003).
Together, the findings described above demonstrate a negative
correlation between cAMP signaling and alcohol-drinking be-
havior. Key elements in cAMP signal system may play a role
in regulating alcohol use and abuse.

It should be noted that alcohol-induced neurotoxicity
may also be related to the modulation of cAMP signaling.
Ataxia, the earliest recognized physical effect of alcohol
exposure, has been shown to be associated with the de-
velopment of alcoholism (Acquaah-Mensah et al. 2006;
Durcan et al. 1991). Intra-cerebellar microinfusions of
cAMP or its analogue, forskolin (an AC activator), or
Sp-cAMP attenuates alcohol-induced ataxia, whereas
Rp-cAMP exhibits an opposite effect (Dar 1990, 2001).
In addition, sensitivity and tolerance to the sedative effect
of alcohol may also be mediated at least in part through
cAMP signal transduction. Rats selectively bred for low-
alcohol drinking (LAD) exhibit higher sensitivity to
alcohol-induced sedation which is correlated to greater
expression of stimulatory G-protein alpha in the frontal
cortex and hippocampus compared to high-alcohol drink-
ing (HAD) rats, while HAD rats develop tolerance to the
sedative effect more rapidly (Froehlich and Wand 1997).

Moreover, activation of cAMP signaling is strongly linked
to the promotion of neuron survival and the protective
effect against alcohol-induced neuronal apoptosis. Thus,
activated cAMP signal transduction may serve as a pro-
tective factor against the neurotoxicity of alcohol (Jiao
et al. 2007; Karacay et al. 2007; Monti et al. 2002;
Walton et al. 1999).

cGMP signal transduction

The cGMP-mediated signal transduction can be activated
by increased cGMP generation, which is catalyzed by
membrane-bound particulate guanylyl cyclases (pGCs)
and cytosolic soluble guanylyl cyclases (sGCs) in re-
sponse to natriuretic peptides (NPs) and nitric oxide
(NO), respectively. Stimulation of cGMP signaling even-
tually leads to altered cell function via phosphorylation of
substrate proteins by cGMP-dependent protein kinase
(PKG) (Collins and Uhler 1999). It has been shown that
the NO/sGC/cGMP/PKG signal cascade modulates
neuroadaptive changes in synaptic activity and plays a
role in the development of multiple learning and memory
processes (Kleppisch and Feil 2009, Xu et al. 2015).
Moreover, cGMP can produce an inhibitory effect on
DA release in brain regions involved in addiction
(Guevara-Guzman et al. 1994; Samson et al. 1988;
Thiriet et al. 2001). These features indicate a potential
contribution of cGMP signaling to addictive behavior,
which has been demonstrated in several addictive sub-
stances, including cocaine (Deschatrettes et al. 2013)
and morphine (Nugent et al. 2007).

Although it has been less investigated in the modulation of
alcohol-drinking behavior, cGMP signaling may also be in-
volved in mediating intracellular actions of alcohol exposure.
Increased cGMP levels in the cortex, striatum, and hippocam-
pus are detected in rats with chronic access to alcohol; discon-
tinuation of alcohol consumption reduces cerebrocortical and
striatal cGMP to normal levels (Uzbay et al. 2004). Consistent
with the evidence demonstrating the cGMP signaling in mod-
ulating anxiety (Ding et al. 2014; Li et al. 2005; Volke et al.
2003), mice deficient in PKG type II exhibit anxiety-like be-
havior, reduced sensitivity to alcohol sedation, and increased
voluntary alcohol intake (Werner et al. 2004). On the other
hand, activation of cGMP signaling by neuropeptide CNP in
either the VTA or prefrontal cortex inhibits alcohol
deprivation-stimulated alcohol intake, an effect partially re-
versed by the selective inhibitor of PKG (Romieu et al.
2008). Thus, the findings from limited studies support that
the activity of cGMP signaling is negatively correlated to
alcohol-drinking behavior in a way similar to cAMP signal-
ing, although further investigations are needed to elucidate the
regulatory mechanisms of the cGMP signal pathway.
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Biodistribution of PDEs in the brain

Studies to date indicate that PDE isoforms are widely distrib-
uted in the CNS where all the 11 families can be found
(Menniti et al. 2006). Their expression patterns appear to be
tissue- and/or cell-specific and different among isoforms.

Among the 11 PDE families, PDE1 is the only PDE
family activated by calcium/calmodulin. It consists of
three different subtypes (PDE1A, 1B, and 1C), with
dual-specificity to both cAMP and cGMP (Wennogle
et al. 2017). These three subtypes exhibit comparable ex-
pression across the human brain, with PDE1A at the low-
est level. PDE1B and 1C are found to be expressed at
similar levels in the cortex, hippocampus, and cerebellum.
PDE1B ranks as the most prevalent PDE isoform in the
caudate putamen (together with PDE10A) and the NAc,
indicating its role in rewarding and motivational behav-
iors. Compared to PDE1B, PDE1C is expressed at much
higher levels in the substantia nigra and hypothalamus
(Lakics et al. 2010).

The PDE2 family is encoded by a single gene, i.e., pde2a,
which is highly expressed across the human brain. It repre-
sents the most prevalent PDE in the cortex and hippocampus
and second highest in the NAc (Lakics et al. 2010). Enriched
PDE2A expression has also been found in the amygdala, hy-
pothalamus, pituitary, and adrenal gland, suggesting its in-
volvement in negative feedback inhibition of the limbic-
hypothalamus-pituitary-adrenal (limbic-HPA) axis and likely
some aspects of the development of addictive behavior (Boess
et al. 2004; Nikolaev et al. 2005).

PDE3 is comprised of PDE3A and PDE3B, which display
relatively low levels throughout the brain (Bolger et al. 1994).
There is no evidence to date for the link between PDE3 and
addictive behavior.

The PDE4 family is encoded by four genes (pde4a-d) with
at least 25 splice variants. It is recognized as the most impor-
tant PDE in controlling intracellular cAMP levels (Zhang
2009). A high distribution of PDE4 across the brain has been
detected. PDE4B is abundantly expressed in the striatum,
amygdala, cortex, hippocampus, hypothalamus, and cerebel-
lum, suggesting its possible role in DA-associated and
emotion-related processes (Perez-Torres et al. 2000). The dis-
tribution patterns of PDE4A and PDE4D are similar with that
of PDE4B but at lower levels in DA-enriched brain regions.
The high expression of PDE4D in the area postrema and nu-
cleus of solitary tract may account for the side effects associ-
ated with PDE4 inhibitor treatment, such as nausea and emesis
(Mori et al. 2010). Conversely, PDE4C is predominantly lo-
cated in peripheral tissues, with little CNS functions.

PDE5A, the only isoform of PDE5, is mainly distributed in
cerebellar Purkinje neurons. Its expression level appears to be
very low in the human brain compared with other PDEs
(Lakics et al. 2010). However, PDE5A has been shown to

modulate memory performance (Xu et al. 2011) and produce
antidepressant-like effects (Liebenberg et al. 2010).

PDE6 expression is confined to the pineal gland in the
brain. It appears to play no direct role in neural functions
(Bender and Beavo 2006).

PDE7 is encoded by two genes, pde7a and pde7b.
Relatively low levels of PDE7 mRNA are detected in the
striatum, cortex, hippocampus, and hypothalamus, with
PDE7B as the major isoform (Lakics et al. 2010; Reyes-
Irisarri et al. 2005). High PDE7B expression is specifically
found in Purkinje cells.

PDE8 has two subtypes, PDE8A and 8B. Their expression
is detected throughout the human brain, albeit at relatively low
levels. To date, no data have been reported regarding the ef-
fects of PDE8 inhibitors.

Moderate levels of PDE9A mRNA are detected in cerebel-
lar Purkinje cells, the hippocampus, hypothalamus, and
substantia nigra. Selective PDE9 inhibitors have been shown
to improve learning and memory in rodents (van der Staay
et al. 2008).

The PDE10 family is encoded also by a single gene, i.e.,
pde10a, which is highly expressed in the striatum, substantia
nigra, hypothalamus, and cerebellum. It ranks as the most
prevalent PDE (together with PDE1B) in the caudate nucleus.
In accordance with its brain distribution, selective inhibition
of PDE10 exhibits antipsychotic activity in rodent models,
indicating a role of PDE10 in mood disorders (Schmidt et al.
2008; Siuciak et al. 2006).

The most recently described PDE11 family also contains
only one isoform, i.e., PDE11A (Loughney et al. 2005).
PDE11A is present at particularly low levels in most human
brain regions except the dorsal root ganglia.

The different distributions of PDEs in the brain and their
roles in regulating neuronal function indicate that targeted
inhibition of specific PDE isoforms may produce unique ther-
apeutic benefits for CNS disorders. However, some side ef-
fects of PDE inhibitors also likely result from the complex
expression patterns of PDEs in brain regions.

PDE regulation of alcohol-dependent
behavior

The critical involvement of cAMP and cGMP signal path-
ways in mediating the development and maintenance of
alcohol-drinking behavior renders their upstream modula-
tors PDEs as the potential interfering targets for alcohol
use and abuse (Fig. 1). The distribution patterns of PDEs
in the CNS also support their role in addictive behavior.
On this basis, a majority of PDEs have been investigated
for the possible roles in the dependent process of alcohol
or other addictive substances in animal models (Wen et al.
2017), although only a few of them were shown to be
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involved in addictive behaviors of substances, especially
alcohol and cocaine (Fig. 2). Further studies are of neces-
sity to verify their modulatory mechanisms and the func-
tions of other PDEs in alcohol-related disorders (Table 1).

PDEs regulate positive and negative reinforcement
of alcohol consumption

With high expression in addiction-related brain regions, PDE4
has been shown to play an important role in regulating behav-
ioral responses to addictive substances. Inhibition of PDE4
prevents behavioral sensitization induced by methamphet-
amine (Iyo et al. 1996) or cocaine (Janes et al. 2009), sup-
presses operant self-administration of cocaine (Knapp et al.
1999) or heroin (Lai et al. 2014), blocks cocaine- or
morphine-induced conditioned place preference (Zhong
et al. 2012; Thompson et al. 2004), and attenuates naloxone-
participated morphine withdrawal symptoms (Nunez et al.
2009; Gonzalez-Cuello et al. 2007; Hamdy et al. 2001).
These results reveal an extensive correlation between PDE4
activity and the dependent process of substances of abuse,
indicating PDE4 may also play a role in regulating alcohol
use and abuse.

This assumption was first demonstrated by reduced alcohol
drinking after systemic administration of the selective PDE4
inhibitor rolipram or Ro-20 1724 in C57BL/6J mice (Hu et al.
2011) and FH/Wjd rats (Wen et al. 2012), via the two-bottle
free-choice drinking paradigm. As total fluid or sucrose intake
was not affected, the decrease in alcohol consumption was
more likely to be attributed to changes in behavioral response
to alcohol, rather than to taste preference, interference in alco-
hol metabolism, or side effects related to PDE4 inhibition,
such as nausea and sedation. Consistently, later researches
also proved the role of PDE4 in alcohol consumption by using
various PDE4 inhibitors, including rolipram, CDP840,
piclamilast, mesopram (Blednov et al. 2014; Franklin et al.
2015), and most recently, roflumilast (Liu et al. 2017). These
agents all led to decreased alcohol intake in C57BL/6J mice
with long-term or limited-access two-bottle choice drinking.
Among different rodent species, PDE4 inhibitors exhibited
similar effects on alcohol consumption. Rolipram and Ro-20
1724 both reduced ethanol intake in alcohol-preferring (P) and
high-alcohol-drinking (HAD1) rats, but with declination in
sucrose intake (Franklin et al. 2015).

Based on the current findings, the effect of PDE4 inhibition
on alcohol consumption may result from two aspects of mech-
anisms. First, PDE4 may regulate the positive reinforcing
properties of alcohol exposure, as rolipram selectively de-
creases operant alcohol self-administration without altering
nature rewarding (sucrose seeking) or locomotor behavior
(Wen et al. 2012). The activity of cAMP signaling in the
NAc, especially the NAc shell, has been shown to negatively
correlate with the rewarding properties of alcohol and other
drugs of abuse (Chao and Nestler 2004; McClung and Nestler
2003; Knapp et al. 2001; Walters and Blendy 2001; Carlezon
et al. 1998). Thus, PDE4 inhibitors may regulate alcohol con-
sumption and preference by activating cAMP signal transduc-
tion in the NAc, where PDE4 has been found with high
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Fig. 1 Possible mechanisms of PDEs in modulating alcohol drinking
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expression. Moreover, PDE4 can directly regulate DA neuro-
transmission in the striatum (Liu et al. 2017a, b; Ramirez and
Smith 2014), which represents the most important molecular
mechanism in mediating the euphoric effects of most addic-
tive substances including alcohol. In addition to positive rein-
forcing properties of alcohol, the innate or withdrawal-
induced negative affective states also contribute as an impor-
tant motivational impetus for alcohol abuse or relapse.
Pharmacological inhibition or genetic knockout of PDE4 pro-
duces anxiolytic (Siuciak et al. 2007, Rutter et al. 2014, Ankur
et al. 2013, Li et al. 2009), antidepressant (Li et al. 2009,
Zhang 2009, Zhang et al. 2002), and antipsychotic (Kelly
et al. 2007) effects. Furthermore, PDE4 inhibition has been
proved to attenuate alcohol withdrawal-induced anxiety- and
depressive-like behavior in mice and rats (Gong et al. 2017).
Therefore, PDE4 regulation may be also involved in negative
reinforcing aspects during the initiation and maintenance of
alcohol consuming behavior.

Another PDE isoform found to be effective in regulating
excessive alcohol drinking is PDE10A, which is a dual-
substrate PDE family and has long been focused on their ther-
apeutic potential in psychotic disorders. In multiple preclinical
models, PDE10A inhibitors produce antipsychotic effects by
reducing positive, cognitive, and negative symptoms related
to schizophrenia (Grauer et al. 2009; Megens et al. 2014;
Schmidt et al. 2008; Smith et al. 2013; Suzuki et al. 2015);
they also critically modulate the striatal DA levels (Sotty et al.
2009; Schmidt et al. 2008), indicating a possible enrollment of
PDE10A in neuronal responses to addictive substances. The
relationship between PDE10A levels and alcohol self-
administration was first proposed by Logrip and colleagues.
By using repeated foot shock accompanied with operant alco-
hol self-administration training, they found that rats with a
stress (foot shock) history and low baseline alcohol intake
exhibited twofold elevation in alcohol self-administration af-
ter an extinction period, compared with baseline and low
drinking stress-naïve controls (Logrip and Zorrilla 2012).
This effect was correlated with increased pde10a mRNA
levels in the prelimbic subdivision of the medial prefrontal
cortex (mPFC). Moreover, stress history also elevated pde10a
mRNA expression during both acute and prolonged absti-
nence from chronic intermittent alcohol vapor treatment
(Logrip and Zorrilla 2014). Increased pde10a mRNA levels
were observed in multiple subdivisions of the amygdala and
mPFC in response to acute (8–10 h) alcohol withdrawal; how-
ever, only the BLA showed long-lasting elevation in pde10a
after protracted (6 weeks) abstinence. Thus, upregulated
PDE10A expression might be involved as a neuroadaptation
in both positive and negative reinforcing properties associated
with alcohol-dependent process. These findings are supported
by subsequent researches through pharmacological blockade
of PDE10A (Logrip et al. 2014). Systemic treatment of the
selective PDE10A inhibitor TP-10 dose-dependently reduced

relapse-like alcohol self-administration in rats with or without
a stress experience, and also in genetically alcohol-preferring
rats (Scr/sP) as well as alcohol-dependent and non-dependent
Wistar rats. Results via region-specific microinjections of TP-
10 implicated that the dorsolateral striatum, but not the NAc,
plays an important role in PDE10A modulation on alcohol
self-administration. However, TP-10 also reduced saccharin
self-administration with a similar potency compared to alco-
hol, suggesting a non-specific modulating pattern of PDE10A
on reinforcing properties of rewards.

On the other hand, the involvement of PDE4 and PDE10A
in regulating alcohol consumption may be indirectly proved
by the effect of the non-specific PDE inhibitor ibudilast with
preferential inhibition of PDE3A, PDE4, PDE10A, and
PDE11A (Gibson et al. 2006). Systemic administration of
ibudilast leads to reduction in alcohol intake in alcohol-
preferring P rats, high-alcohol-drinking (HAD) rats, and
alcohol-dependent C57BL/6J mice (Bell et al. 2015). As
PDE3 inhibition shows negative effects on alcohol intake
(Blednov et al. 2014) and the expression of PDE11A is very
low in the brain, the inhibitory effect of ibudilast on alcohol
intake is likely to result from inhibition of PDE4 and PDE10A
.

PDEs regulate alcohol-induced neurotoxicity

As a main adverse effect on the brain, alcohol-induced neuro-
toxicity consists of alcohol-related neuroinflammation and
brain damage, which may cause cognition decline and neuro-
degeneration (Vetreno and Crews, 2014). In both human and
animal studies, theses injuries can be mediated by alcohol-
induced glial cell activation (Montesinos et al. 2016).

The dual-specificity PDE1 is widely expressed in the brain.
Although it fails to affect alcohol intake in the two-bottle
choice drinking test (Blednov et al. 2014), the selective
PDE1 inhibitor vinpocetine has been shown to reverse cortical
deficits, facilitate long-term potentiation, enhance dendritic
spine complexity, restore neuronal plasticity (Medina et al.
2006; Lantz et al. 2012), and ameliorate hyperactivity and
impairment of learning and memory (Filgueiras et al. 2010;
Nunes et al. 2011) in animals exposed to alcohol during fetal
development, implying a protective role of PDE1 inhibition in
fetal alcohol-related pathology, including fetal alcohol spec-
trum disorder (FASD). These effects may be attributable to
changes in ERK and MAPK signaling in the prefrontal cortex
and hippocampus (Swart et al. 2017). Based on these findings,
it is also of interest to study whether PDE1 inhibitors similarly
prevent cognitive deficits caused by excessive alcohol con-
sumption in adulthood. Moreover, the function of PDE1 in
patterning alcohol intake remains to be investigated, as
PDE1 exhibits relatively high expression levels in striatal
structures. Microinjections of the PDE1 inhibitor into
addiction-related brain nuclei may be helpful for this purpose.
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In addition to regulating alcohol-drinking behavior, PDE4
is also well demonstrated for its role in regulating inflamma-
tion reactions and immune responses (Gobejishvili et al. 2006;
Gobejishvili et al. 2008). In C57BL/6 mice with chronic ac-
cess to alcohol exposure, elevated pde4bmRNA expression is
associatedwith a robust activation of astrocytes andmicroglia,
as well as significant increases in the inflammatory cytokines
and the generalized inflammatory marker Cox-2 (Avila et al.
2017). In primary microglial cells, alcohol exposure leads to
activation in microglial cells and selective elevation in pde4b
expression with a minimum to no change in pde4a and pde4d
isoforms. Moreover, pharmacological inhibition or genetic de-
letion of PDE4Bmarkedly attenuated the above inflammation
markers and glial cell activation. Together, these results
strongly indicate the involvement of pde4b in coordinating
alcohol-induced neuroinflammation, rendering an additional
protective effect of PDE4 inhibitors in alcohol-related
disorders.

PDEs as drug targets

Being critically involved in various physiological functions,
PDEs have long been recognized as a promising class of ther-
apeutic targets for pharmaceutical development. Since the first
PDE inhibitor theophylline was identified, a series of PDE
inhibitors have been approved as clinical medications, e.g.,
the PDE3 inhibitors amrinone and milrinone for treating
chronic heart failure, the PDE4 inhibitors rofumilast for
chronic obstructive pulmonary disease (COPD), cilomilast
for asthma, and apremilast for psoriatic arthritis, and the
PDE5 inhibitors sildenafil, vardenafil, and tadalafil for erectile
dysfunction and pulmonary artery hypertension. Notably, in a
recent human laboratory trial, the non-specific PDE inhibitor
ibudilast shows effectiveness in treating clinical patients with
mild-to-severe AUD (Ray et al. 2017). Although these drugs
exhibit potent and positive clinical efficacy, the off-target side
effects, such as gastrointestinal upsets, headache, and weight
loss, may limit their therapeutic potentials (Rabe et al. 2005).
With molecular biological approaches expanding access to
multiple purified PDE isoenzymes, more systematic studies
of PDE inhibitors are now available for new generation of
highly selective isoenzyme-specific drugs. On this basis, dis-
covery of novel PDE inhibitors with greater potency and/or
fewer side effects for treating AUD are of broad translational
potential.

Conclusion and future perspectives

As discussed above, PDEs, with potent actions on controlling
intracellular cAMP and cGMP levels, may represent a novel
class of therapeutic targets for alcohol use disorder. It has been

hypothesized that more than one PDE family may be involved
in alcohol-dependent process. Although current evidence only
reveals PDE4 and PDE10Awith definite effects on regulating
alcohol consumption, other PDEs, such as PDE1, are still of
interest to be investigated for their potential involvement in
alcohol dependence and abuse. It is encouraging that PDE4
inhibitors also produce neuroprotective effects on alcohol
exposure-related injuries in the brain. Further studies are of
necessity to elucidate the modulatory mechanisms of PDE
inhibitors and detect additional functions related to alcohol
dependence and abuse.

During the past few decades, novel PDE inhibitors have
been widely studied for potential effects on systemic diseases,
including many CNS disorders, in both preclinical experi-
ments and clinical trials. As some PDE inhibitors have been
reported with serious adverse reactions that hamper their clin-
ical applications, further exploration by utilizing molecular or
genetic manipulations may be needed to better elucidate the
potential regulatory role of specific PDE subtypes or isoforms,
which may contribute to the development of highly selective
PDE inhibitors with less off-target side effects.
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