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Abstract
Rationale Major depressive disorder (MDD) is a highly prev-
alent illness that affects large populations across the world,
and increasing evidence suggests that neuroinflammation
and levels of brain-derived neurotrophic factor (BDNF) are
closely related to depression. Dihydromyricetin (DHM) is a
kind of flavonoid natural product that has been reported to
display multiple pharmacological effects, including anti-in-
flammatory and anti-oxidative properties, and these may con-
tribute to ameliorate MDD.
Objective This study investigated the effect of DHM on depres-
sion-related phenotypes in various experimental animal models.
Methods The antidepressant-like effect of DHM was validated
via depression-related behavioral tests in naïve male C57BL/6
mice, as well as in the acute lipopolysaccharide-induced mouse
model of depression. The chronic unpredicted mild stress
(CUMS) mouse model of depression was also used to assess
the rapid antidepressant-like effect of DHM by tail suspension

test (TST), forced swimming test (FST), locomotor activity, and
sucrose preference test (SPT). The expression of BDNF and
inflammatory factors were determined throughWestern blotting
and enzyme-linked immunosorbent assay, respectively.
Results DHM reduced immobility time in the TST and FST
both in mice and the acute LPS-induced mouse model of
depression. Seven days of DHM treatment ameliorated de-
pression-related behaviors induced by CUMS, whereas simi-
lar treatment with the typical antidepressant venlafaxine did
not. DHM activated the ERK1/2-CREB pathway and in-
creased glycogen synthase kinase-3 beta (GSK-3β) phosphor-
ylation at ser-9, with upregulation of BDNF expression, in
both hippocampal tissues and cultured hippocampal cells.
Conclusion The present data indicate that DHM exerts a more
rapid antidepressant-like effect than does a typical antidepres-
sant, in association with enhancement of BDNF expression
and inhibition of neuroinflammation.
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Introduction

Major depressive disorder (MDD) is a highly prevalent illness
that affects large populations across the world (Fang et al. 2013;
Pesarico et al. 2016; Tao et al. 2016). Although the
pathobiological basis of MDD is not understood, increasing ev-
idence suggests that neuroinflammation and levels of brain-
derived neurotrophic factor (BDNF) in the hippocampus are
closely related to depression-like behavior (Chan et al. 2016;
Wohleb 2016). Structural and functional changes in the hippo-
campus may play a critical role in the development of MDD
(Dale et al. 2016; Harrisberger et al. 2015); decreased BDNF
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expression is evident in MDD patients (Nuernberg et al. 2016),
and antidepressant drugs can restore expression of BDNF in
either patients with MDD or experimental models of depression
(Cheng and Salton 2013; Dwivedi 2013; Gimenez-Cassina et al.
2012; Manosso et al. 2015). The prefrontal cortex (Zhang et al.
2014) and nucleus accumbens (Yang et al. 2016) may also play a
role in such experimental models. In addition, numerous studies
have demonstrated that neuroinflammation plays an important
role in the development of MDD (Eyre et al. 2016; Kaufmann
et al. 2017; Vogelzangs et al. 2014). Some inflammatory media-
tors may also constitute biomarkers and indicate therapeutic re-
sponse to antidepressant treatment (Hughes et al. 2016;
O’Connor et al. 2009; Rapaport et al. 2015). Therefore, regula-
tion of neuroinflammation has also been considered as a potential
therapeutic target for MDD.

Dihydromyricetin (DHM) is a flavonoid extracted from
Ampelopsis grossedentata in southern China (Chen et al.
2015; Tong et al. 2015) that has been reported to display mul-
tiple pharmacological effects, including anti-tumor, anti-inflam-
matory, and anti-oxidative properties (Jiang et al. 2014; Kao
et al. 2017; Liu et al. 2016; Tang et al. 2016; Xie et al. 2015).
We have previously shown that DHM protects dopaminergic
neurons against MPTP-induced neurodegeneration in a mouse
model of Parkinson’s disease by suppressing the activity of
glycogen synthase kinase-3 beta (GSK-3β) (Ren et al. 2016)
and protects neurons from ischemia-reperfusion-induced apo-
ptosis by activating ERK1/2 and the cAMP response element-
binding (CREB) pathway (Zhao et al. 2017) in vivo and
in vitro. In addition to direct protection of neurons, we have
recently shown that DHM inhibitedmicroglia-mediated inflam-
mation in affording protection from ischemic insult (Zhao et al.
2017). In agreement with our observation, recent studies also
showed that DHM suppresses inflammatory responses in RWA
264.7 cells through inhibiting activation of NF-κB and MAPK
signaling pathways (Hou et al. 2015) and ameliorates behavior-
al deficits in animal models of Alzheimer’s disease (Liang et al.
2014). In addition, activities against alcohol intoxication and to
maintain glucose homeostasis have also been reported (Chen
et al. 2015; Le et al. 2016; Shen et al. 2012).

Given the evidence for important neuroprotective, anti-in-
flammatory, and anti-oxidative effects in MDD treatment, we
investigated the potential therapeutic effects of DHM, a sub-
stance that readily crosses the blood-brain barrier (Shen et al.
2012; Youdim et al. 2003), on depression-related phenotypes
in experimental mouse models. Our results indicate that
DHM treatment ameliorates depression-related behavior
in both the acute lipopolysaccharide (LPS)-induced and
the chronic, unpredicted mild stress (CUMS)-induced
models of depression in mice. We further demonstrate that
DHM activates the MAPK/CREB signaling pathway and
inhibits the activity of GSK-3β, which resulted in upreg-
ulation of BDNF both in vivo and in cultured hippocam-
pal neurons.

Materials and methods

Animals

Male C57BL/6J mice (age 6–8 weeks; 22 ± 3 g) were pur-
chased from Shanghai SLAC Laboratory Animals Co. Ltd.
(Shanghai, China) and housed in groups of 4–6 per cage in a
humidity- and temperature-controlled vivarium on a 12:12 h
light/dark cycle (lights on at 8:00 a.m.). Food and water were
available ad libitum except during weeks when animals were
trained to perform the sucrose preference test (Wang et al.
2016). All animal protocols were proved by Animal Care
and Use Committee of Soochow University and were in com-
pliance with the Guidelines for the Care and Use of
Laboratory Animals (Chinese-National-Research-Council,
2006) and the BARRIVE^ (Animals in Research: Reporting
In Vivo Experiments) guidelines. Every effort was made to
minimize animal suffering and to reduce the number of ani-
mals used in the experiments (Ren et al. 2016).

Drugs and reagents

DHM ( ( 2 R , 3 R ) - 3 , 5 , 7 - t r i h y d r o x y - 2 - ( 3 , 4 , 5 -
trihydroxyphenyl)chroman-4-one; catalog number
ST03840120MG; purity by HPLC ≥ 98%)was obtained from
Shanghai Standard Biotech Co., Ltd., Shanghai, China; it was
initially dissolved in dimethylsulfoxide (DMSO) for stock solu-
tions and diluted with saline for intraperitoneal (i.p.) injection
(final trace concentration of DMSO ≤ 0.2%) (Ren et al. 2016)
at an injection volume of 1 ml/kg body weight. DHM powder
was stored in brown bottle covered by silver paper at 4 °C, away
from light and kept dry. The DHM solution was stored at − 40 °C
away from light. Both DHM powder and solution were prepared
immediately prior to use. For cell culture, DHMwas dissolved in
DMSO to 100 mM as stock solution and diluted with cell culture
medium to concentrations from 10 to 50μM.Lipopolysaccharide
(LPS), venlafaxine hydrochloride, and U0126 were purchased
from Sigma-Aldrich, Co. (Darmstadt, Germany) and LY294002
(10 mg/ml) was purchased from Beyotime (Shanghai, China).
LPS and venlafaxine hydrochloride were dissolved in PBS or
saline, and U0126 was dissolved in DMSO for stock solutions.

LPS-induced model of depression

Mice were randomly divided into 4 groups of 12 animals each:
saline, LPS (i.p., 0.83 mg/kg), LPS + DHM 10.0 mg/kg, and
LPS + DHM 20.0 mg/kg. In DHM treatment groups, 10.0 or
20.0 mg/kg DHM was administered i.p. once daily for 3 days
before LPS treatment. On the last day, 0.83 mg/kg LPS was
injected 30 min after DHM administration; 24 h later, the tail
suspension test (TST) and forced swim test (FST) were per-
formed and locomotor activity was measured (Jangra et al.
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2016; Wang et al. 2010; Zhu et al. 2016). Also, the body weight
of mice was measured before and 24 h post-injection of LPS.

Chronic unpredicted mild stress model of depression

The CUMS procedure was carried out as described previously
(Wang et al. 2016). Mice were randomly divided into five groups
of at least 12 mice each: saline, CUMS, CUMS + DHM 10.0
mg/kg, CUMS + DHM 20.0 mg/kg, and CUMS + venlafaxine
10.0 mg/kg. In brief, mice were subjected to a variety of stresses
for 8 weeks, with the stressors and stressor sequences applied at
random each week to ensure unpredictability. Additionally, mice
were subjected daily to two of the following stressors: light/dark
cycle inversion (for 48 h in a different room), damp sawdust
(over-night), sawdust-free cage (over-night), white noise (2 h),
movement restraint (in a small tube), 45° cage tilting (over-night),
cold or hot water swimming (5min), water deprivation (24 h), tail
pinch (2 min), overcrowding cage (over-night), and electric stim-
ulus (0.5 mA, 30 times in 15 s). In the CUMS model, stressors
were applied over 8 weeks and then mice in treatment groups
were administered DHM 10.0 or 20.0 mg/kg i.p. or
venlafaxine10.0 mg/kg i.p. once daily for 7 days; the TST and
FSTwere performed on the third and seventh days, respectively
(Abe-Higuchi et al. 2016; Mao et al. 2017).

Behavioral tests

Tail suspension test Mice were subjected to the TST as de-
scribed previously (Pesarico et al. 2016; Tao et al. 2016;Wang
et al. 2016). Briefly, animals were suspended at least 80 cm
above the floor by adhesive tape placed approximately 1 cm
from the tip of the tail, under both acoustic and visual isola-
tion. The total TST procedure was 6 min, and immobility time
was recorded during the last 4 min; mice were considered
immobile only when hanging passively and motionless.

Forced swim test Mice were subjected to the FST as de-
scribed previously (Pesarico et al. 2016; Tao et al. 2016;
Wang et al. 2016), subject to minor modifications. Briefly,
each mouse was placed individually into a 4000 ml Pyrex
glass beaker containing 3000 ml of warm water (temperature
25 ± 1 °C). The total FST procedure was 6 min, and immo-
bility time was recorded during the last 4 min; mice were
considered immobile only when motionless or floating with
only small movements necessary to keep the head above
water.

Locomotor activity An infrared photobeam activity cage
system (Jiliang Ltd., Shanghai, China) was used to record
and analyze mouse horizontal locomotor activity. Mice
were kept in the test room for 30 min before the experi-
ment to habituate to the new environment. Mice were then
placed individually in a 25 × 25 × 30 cm plexiglass/

polyvinyl arena. Total distance traveled (mm) and time
(s) spent in the center area were counted for 20 and
5 min, respectively, using videotracking software (ANY-
maze; Stoelting, IL, USA) (Pesarico et al. 2016; Ren et al.
2016; Tao et al. 2016; Wang et al. 2016).

Sucrose preference test This test was performed as de-
scribed previously (Wang et al. 2016), subject to minor
modifications. Briefly, mice were placed individually into
a two-bottle, free-choice cage. One of the bottles
contained water and the other 1% (w/v) sucrose solution.
Prior to initiation of the test, all mice were acclimatized to
1% sucrose solution and drinking water for 48 h. Before
the sucrose preference test, mice were deprived of water
and food for 24 h, after which they were allowed free
access to the two bottles over a 2-h period. The sucrose
preference test was performed weekly during the CUMS
procedure, with sucrose preference (%) = sucrose con-
sumption/(sucrose consumption + water consumption).

Primary neuron culture

Primary mouse neurons were derived from the hippocampus
of C57BL/6 mice at embryonic day 17 or 18, as described
previously (Wang et al. 2016). Dissected hippocampus tissue
was digested with 2% trypsin and DNAse-I for 30 min in
37 °C and resuspended in Neurobasal medium (Gibco, NY,
USA) containing 2% B-27. After filtration with a 70-μm
sieve, collected cells were seeded in poly-D-lysine-coated
plates and cultured at 37 °C in a 5%CO2 incubator for 14 days.
Culture medium was replaced every other day.

Western blotting

Hippocampus tissue and cultured hippocampal neuron were
lysed in RIPA buffer (50 mM Tris pH 7.4, 150 mM NaCl,1%
NP-40, 1% Na deoxycholate, 1% Triton X-100, 1 mM PMSF,
EDTA, and protease inhibitor) for 30 min on ice and then
incubated at 95 °C for 5 min (Ren et al. 2016). Western blot-
ting was performed using standard protocols, and blots were
probed with anti-pCREB (S133) (1:800; 9198S, Santa Cruz),
anti-CREB (1:1000; 9197S, Santa Cruz), anti-pERK1/2
(1:1000; 4370S, Cell Signaling Technology), anti-ERK1/2
(1:1000; 4695S, Cell Signaling Technology), anti-BDNF
(1:200; SC-546, Santa Cruz), anti-pGSK3β (S9) (1:1000;
9323S, Cell Signaling Technology), anti-GSK3β (1:1000;
9832S, Cell Signaling Technology), and anti-α-tubulin
(1:10,000; T6074, Sigma-Aldrich) antibodies. Data were an-
alyzed and quantified by ChemiScope 3300 Mini (CLINX,
Shanghai, China) and densitometry with ImageJ software.
Phosphorylated ERK, GSK3β, and CREB were related to
tubulin. Each experiment was replicated at least three times
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and signals normalized to control in each independent
experiment.

RNA extraction and quantitative real-time PCR

Total RNAwas extracted from cultured hippocampal neurons
using RNAiso plus reagent (TaKaRa Biotechnology, Dalian,
China), and 1 μg RNA was reverse-transcribed into cDNA
using moloney murine leukemia virus reverse transcriptase,
deoxynucleotide triphosphate, recombinant RNAse inhibitor,
and oligo (dT) according to the manufacturer’s instructions.
cDNAs were amplified using the following specific primers:
GAPDH, forward pr imer : 5 ′ -TGTGTCCGTCGT
GGATCTGA-3′, reverse primer: 5′-TTGCTGTTGAAGTC
GCAGGAG-3 ′; TNF-α , forward primer: 5 ′-CAGG
AGGGAGAACAGAAACTCCA-3′, reverse primer: 5′-
CCTGGTTGGCTGCTTGCTT-3′; and IL-6, forward prim-
er:5′-TTCCATCCAGTTGCCTTCTT-3′, reverse primer:5′-
CAGAATTGCCATTGCACAAC-3′. Quantitative tests of
mRNA expression were performed by SYBR Premix II
(TaKaRa, Dalian, China) according to the manufacturer’s in-
structions. Expression of target genes was normalized to
GAPDH and quantified relative to expression in the respective
control. Results were analyzed and expressed as previously
described (Ni et al. 2015; Wu et al. 2015).

Enzyme-linked immunosorbent assay

To measure TNF-α and IL-6, hippocampal tissue was collect-
ed from mice following the LPS-induced model of depression
and controls. Samples were homogenized ultrasonically in
RIPA buffer with protease inhibitor (Roche, Mannheim,
Germany). Supernatants were collected after centrifugation
(12,000 rpm, 20 min, 4 °C) and protein concentration mea-
sured by BCA protein kit (Tiangen, Beijing, China). TNF-a
and IL-6 commercial ELISA kits were purchased from Boster
Biosciences Co., Wuhan, China, and protein expression mea-
sured according to the manufacturer’s instructions. OD values
were assessed by Microplate Reader (Infinite M200 PRO,
Tecan, Switzerland) (Ni et al. 2015).

Statistical analysis

Data were analyzed by GraphPad Prism® (version 6.0) soft-
ware and presented as means ± SEM. One-way ANOVAs
were followed by Dunnett’s test for comparisons with vehicle
control groups or Newman-Keul’s test for multiple-group
comparisons. For data on weight gain during the CUMS pro-
cedure, repeated measures ANOVAwas employed. A proba-
bility value of p < 0.05 was considered statistically significant.

Fig. 1 Effects of treatment with DHMor venlafaxine on immobility time
in the tail suspension test (TST) and forced swimming test (FST) in naïve
mice. Male C57BL/6 mice were divided into five groups: saline; DHM
5.0, 10.0, and 20.0 mg/kg; and venlafaxine10.0 mg/kg. Mice received
intraperitoneal (i.p.) injections of DHM or venlafaxine 2 h before
behavioral tests: a TST and b FST immobility times after a single

administration of DHM or venlafaxine and c TST and d FST immobility
times after repeated administration of DHM or venlafaxine once daily for
three consecutive days. At least 12 mice were used in each group. Values
are presented as means ± SEM. Statistical analyses were performed by
one-way ANOVA followed by Dunnett’s test: *p < 0.05, **p < 0.01,
***p < 0.001 vs saline
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Fig. 2 Effects of DHM on LPS-
induced changes in the tail
suspension test (TST) and forced
swimming test (FST) and on
locomotor activity, body weight,
TNF-α, and IL-6. Male C57BL/6
mice were divided into four
groups: saline, LPS 0.83 mg/kg,
LPS 0.83 mg/kg + DHM
10.0 mg/kg, and LPS 0.83
mg/kg + DHM 20.0 mg/kg. Mice
received intraperitoneal (i.p.)
injections of DHM once daily for
three consecutive days. On the
last day, LPS was injected i.p.
30 min after DHM treatment.
Immobility times in a TST and b
FST, and c locomotor activity, as
total distance traveled, were
evaluated 24 h after LPS
injection. d Body weight (g) was
recorded before and 24 h after
LPS administration and the
difference calculated. At least 12
mice were used in each group.
Following the behavioral studies,
mice were sacrificed and
hippocampal tissue collected for
assay of e TNF-α mRNA, f IL-6
mRNA, g TNF-α protein, and h
IL-6 protein after 3 days of
treatment with DHM treatment,
10.0 and 20.0 mg/kg. At least 12
mice were used in each group.
Values are presented as
means ± SEM. Statistical analyses
for a–h were performed by
one-way ANOVA followed by
the Newman-Keuls test.
*p < 0.05, **p < 0.01,
***p < 0.001
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Results

DHM reduces immobility time in FST and TST

We first examined the antidepressant-like effect of DHM
using the FST and TST in naïve mice. As shown in Fig. 1a,
b, a 2-h pretreatment with DHM (10.0 and 20.0mg/kg) did not
alter immobility time in either FST or TST, while the typical
antidepressant venlafaxine (10.0 mg/kg) significantly de-
creased immobility time. However, pretreatment with DHM
(10.0 and 20.0 mg/kg) once per day for 3 days resulted in a

marked reduction in immobility time in dose-dependent man-
ner (Fig. 1c, d). In contrast, pretreatment with DHM for 1 or
2 days did not elicit similar antidepressant effects. These re-
sults indicated that the antidepressant effect of DHM requires
repeated administration over 3 days.

DHM attenuates LPS-induced depression-related
behaviors and inflammatory markers

We next employed an inflammation-induced, depression-
related model in mice, induced by acute injection of LPS.

Fig. 3 Effects of treatment with
DHM or venlafaxine in the
chronic unpredictable mild stress
(CUMS) model. a Experimental
design. Mice were subjected to
CUMS over 8 weeks and then
divided randomly into four
treatment groups: CUMS,
CUMS + DHM 10.0 mg/kg i.p.,
CUMS+DHM20.0mg/kg i.p., or
venlafaxine 10.0 mg/kg i.p. once
daily for 7 days; naïve mice
received saline as controls.
Sucrose preference test (SPT), tail
suspension test (TST), and forced
swimming test (FST) were carried
out after three (b–d) and seven
(e–g) days of drug treatment. h
Body weight was recorded
weekly. Total distance traveled (i)
and time spend in the center area
(j) were recorded after 7 days of
drug treatment. At least 12 mice
were used in each group. Values
are presented as means ± SEM.
Statistical analyses for b–d were
performed by one-way ANOVA
followed by Dunnett’s test;
statistical analysis for e–j were
performed by one-way ANOVA
(repeated measures ANOVA for
h) followed by the Newman-
Keuls test; *p < 0.05, **p < 0.01,
***p < 0.001; #p < 0.05,
##p < 0.01,###p < 0.001 vs saline
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As expected, acute LPS injection (0.83 mg/kg) induced
depression-like behavior in mice in terms of increases in im-
mobility times in FST and TST and reduced locomotion
(Fig. 2a, b) (Guan et al. 2015; Kurosawa et al. 2016; Wohleb
2016). DHM (10.0 and 20.0 mg/kg) reversed the LPS-induced
increase in immobility time in both TST and FST (Fig. 2a, b)
and markedly attenuated LPS-induced inhibition of locomo-
tion in terms of total distance traveled (Fig. 2c). DHM (10.0
and 20.0 mg/kg) attenuated LPS-induced weight loss 24 h
after LPS injection (Fig. 2d). DHM (10.0 and 20.0 mg/kg)
also attenuated the LPS-induced increase in hippocampal
TNF-α and IL-6 mRNA (Fig. 2e, f) and protein levels
(Fig. 2g, h).

DHM attenuates CUMS-induced depression-related
and anxiety-related behaviors and disruption
to the ERK1/2-CREB-BDNF pathway

The experimental procedure for the CUMSmodel is shown in
Fig. 3a. There were no differences in sucrose preference be-
tween the five groups at the beginning of the experiment. At 3
and 7 days following CUMS for 8 weeks, mice showed the
expected marked reduction in sucrose preference (Fig. 3b, e)
and increase in immobility time in both FSTand TST (Fig. 3c,
d, f, g), together with a decrease in time exploring the center
area of the activity monitor but without alteration in distance
traveled (Fig. 3i, j). Three days of DHM treatment (10.0 and
20.0 mg/kg) did not alter CUMS-induced decrease in sucrose
preference (Fig. 3b) or increase in FSTand TST time (Fig. 3c,
d). However, 7 days of DHM treatment reversed CUMS-
induced decrease in sucrose preference (Fig. 3e) and increase
in FST and TST time (Fig. 3f, g), together with reversal of
CUMS-induced decrease in time exploring the center area of
the activity monitor but without alteration in distance traveled
(Fig. 3i, j); 7 days of DHM treatment also reversed CUMS-
induced weight loss (Fig. 3h). In contrast, 7 days of treatment
with venlafaxine (10.0 mg/kg) did not influence any of these
CUMS-induced effects (Fig. 3b–j).

Phosphorylation of ERK1/2, CREB, and GSK-3β (ser-9)
were decreased, and the expression of BDNF was downregu-
lated in the hippocampus of mice exposed to CUMS (Fig. 4a,
b). DHM treatment (10.0 and 20.0 mg/kg daily for 7 days)
reversed these CUMS-induced alterations in ERK1/2, CREB,
GSK-3β, and BDNF (Figs. 4a, b). To further confirm these
observations, we studied the effects of DHM in naïve mice
and primary cultured hippocampal neurons. DHM (5.0, 10.0,
and 20.0 mg/kg in hippocampus tissue; 5, 25, and 50 μM in
primary cultured hippocampal neurons) increased phosphory-
lation of ERK1/2, CREB, and GSK-3β at ser-9 (Fig. 4c, d).

Since a 7-day treatment with DHM elevated hippocampal
BDNF expression in mice exposed to CUMS (Fig. 4a), we
further investigated DHM-stimulated expression of BDNF
in vivo and in primary cultured hippocampal neurons.

Administration of DHM (20.0 mg/kg) to naïve mice increased
expression of hippocampal BDNF in a time-dependent man-
ner, with this effect evident by day 3 and continuing to day 7;
in contrast, venlafaxine (10.0 mg/kg) was without effect
(Fig. 5a, b). Primary cultured hippocampal neurons treated
with DHM (10–50 μM) for 48 h also exhibited increased
expression of BDNF (Fig. 5c). In agreement with in vivo ob-
servations, expression of BDNF in primary cultured neurons
was enhanced in a time-dependent manner following treat-
ment with 25 μM DHM, with this effect evident by day 2
and continuing to day 3 (Fig. 5d). To confirm the signaling
pathways for DHM-stimulated BDNF expression, we
employed U0126, a ERK1/2 inhibitor, and LY294002, a se-
lective inhibitor of Akt, which activates GSK-3β indirectly. In
primary cultured hippocampal neurons, stimulation of BDNF
expression by 25 μM DHM was inhibited by each of 10 μM
LY294002 and 300 nM U0126 (Fig. 6a), indicating that stim-
ulation of BDNF expression by DHM is dependent on
ERK1/2 activation and GSK-3β inhibition.

Discussion

Currently available antidepressant drugs require administra-
tion for a number of weeks to attain full clinical efficacy. In
addition, these drugs can also cause a number of serious ad-
verse effects. Thus, there is an urgent need to develop novel
antidepressant drugs. The present study employed depression-
related phenotypes in experimental mouse models and dem-
onstrated that DHM, a natural occurring flavonoid purified
from Ampelopsis grossedentata, elicited antidepressant-like
effects. In the inflammation (LPS)-induced mouse model of
depression, DHM reduced immobility time in both the TST
and FST and inhibited inflammatory cytokines. We also ob-
served that DHM attenuated depression-related behaviors in
the CUMS mouse model in a time-dependent manner. This
antidepressant-like effect was evident following 7 days of
DHM treatment. Relative to the serotonin and norepinephrine
reuptake inhibitor venlafaxine, our results indicate that 7 days
of treatment with DHM elicited an antidepressant-like effect
on CUMS-induced depression-related behaviors without cen-
tral stimulatory effects (Supplementary figure S1). We further
demonstrated that DHM promoted hippocampal BDNF ex-
pression both in vivo and in primary cultured hippocampal
neurons in a time-dependent manner. Additionally, we dem-
onstrated that activation of ERK1/2 and CREB and inhibition
of GSK-3β contribute to DHM-stimulated BDNF expression.
The present data indicate that DHM may be a promising an-
tidepressant candidate.

Neuroinflammation is increasingly recognized as an impor-
tant factor in the development of depression and/or as a po-
tential index of therapeutic response in depressive illness.
Acute LPS is a reliable model for inducing inflammation-
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Fig. 4 Effects of DHM on ERK1/2, CREB, and GSK-3β pathways and
stimulated BDNF expression in vivo and in vitro. Following the
behavioral studies of Fig. 4, mice were sacrificed and hippocampal
tissue dissected and processed for assay. a, b Western blots with
respective antibodies. c Naïve mice were treated i.p. with DHM 5.0,
10.0, and 20.0 mg/kg, sacrificed after 2 h and hippocampal tissue
dissected for immunoblot assays. d Primary cultured hippocampal
neurons were treated with DHM 10.0, 25.0, and 50.0 μM for 1 h and

cells collected for immunoblot assays. For each of a, b, c, and d,
representative images for immunoblots are shown in the left panel and
quantitative data shown in the right panels. Values are presented as
means ± SEM from at least three independent experiments. Statistical
analyses for a and b were performed by one-way ANOVA followed by
the Newman-Keuls test. Statistical analyses for c and d were performed
by one-way ANOVA followed by Dunnett’s test. *p < 0.05, **p < 0.01,
***p < 0.001 vs control
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Fig. 6 Effects of the selective Akt inhibitor LY294002 and the selective
MEK1/2 inhibitor U0126 on DHM-stimulated BDNF expression. a
Primary cultured hippocampal neurons were pretreated in the presence
or absence of 10 μM LY294002 or 300 nM U0126 prior to and during
DHM treatment for an additional period of 48 h. For a, representative
images for immunoblots are shown in the left panel and quantitative data
shown in the right panel. Values are presented asmeans ± SEM. Statistical

analyses were performed by one-way ANOVA followed by the Newman-
Keuls test: #p < 0.05, ##p < 0.01, ###p < 0.001. b Potential signaling
mechanisms for DHM-mediated antidepressant-like activity: DHM
increases phosphorylation of ERK1/2 to activate CREB and enhance
expression of BDNF; DHM also inhibits GSK-3β, via phosphorylating
GSK-3β at ser-9, to enhance BDNF expression. However, how DHM
regulates ERK1/2 and GSK-3β remains unclear

Fig. 5 Effects of a DHM and b
venlafaxine on BDNF expression
in hippocampus. Mice were
treated i.p. with 20.0 mg/kg DHM
or 10.0 mg/kg venlafaxine once
daily for 1, 3, and 7 days and
sacrificed at these different times.
BDNF expression in
hippocampal tissue was measured
by immunoblot. Primary cultured
hippocampal neurons were c
treated with 10.0, 25.0, and
50.0 μM DHM for 48 h, or d
treated with 25.0 μMDHM for 1,
2, or 3 days, before collection for
immunoblot assays to determine
BDNF expression. For each of a,
b, c, and d, representative images
for immunoblots are shown in the
upper panels and quantitative data
shown in the lower panels. Values
are presented as means ± SEM
from at least three independent
experiments. Statistical analyses
were performed by one-way
ANOVA followed by Dunnett’s
test: *p < 0.05, **p < 0.01,
***p < 0.001 vs control
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related depression-like phenotypes; it also elicits the expres-
sion and secretion of inflammatory cytokines such as TNF-α
and IL-6, which appear critical in the pathological processes
of inflammation-related depression (Kurosawa et al. 2016;
O’Connor et al. 2009; Park et al. 2011; Sulakhiya et al.
2016; Wang et al. 2010). We demonstrated that LPS-induced
increases in immobility time and weight loss were prevented
by a 3-day pretreatment with DHM. In addition, DHM
inhibited LPS-stimulated expression and secretion of
TNF-αand IL-6 in mice. These results indicated that 3 days
of pretreatment with DHM prevented LPS-induced depres-
sion-related behavior and attenuated associated LPS-induced
increases in hippocampal inflammatory processes. Thus, inhi-
bition of inflammation may also contribute to the
antidepressant-like action of DHM.

It is interesting to note that antidepressant-like activity on
LPS-induced depression-related behavior in mice was ob-
served after 3 days of DHM treatment; acute administration
of DHM for 1 or 2 days did not elicit antidepressant-like
activity. This may be associated with BDNF expression
(BoJiang et al. 2016), as increased expression of BDNF in
the hippocampus was evident after 3 days of DHM treatment
and elevated BDNF expression in primary cultured hippocam-
pal neurons was evident only after 2–3 days of DHM treat-
ment. DHM activates ERK1/2 and GSK-3β, and both
ERK1/2 and GSK-3β are known to be involved in the regu-
lation of BDNF expression (Beurel and Jope 2010; Bui et al.
2012; Gimenez-Cassina et al. 2012; Omata et al. 2011;
Screaton et al. 2004; Tsai et al. 2008; Xue et al. 2016;
Zunszain et al. 2013). Such DHM-induced activation of the
ERK1/2-CREB-BDNF pathway may contribute to its
antidepressant-like activity, and there is growing evidence that
BDNF plays an important role in many neuropsychiatric dis-
eases, including MDD (Duman and Voleti 2012; Mai et al.
2002; Sun et al. 2016; Xu et al. 2016; Xue et al. 2016).

Potential signaling mechanisms for DHM-mediated antide-
pressant-like activity are indicated in Fig. 6b, but the question
of how DHM upregulates the phosphorylation level of ERK1/
2 andGSK-3β needs further research. Furthermore, the mech-
anism(s) underlying the time-dependent induction of BDNF
expression by DHM remain to be determined. While our stud-
ies focus on BDNF expression in the hippocampus, future
studies should also include investigation of pro-BDNF and
any role(s) for the prefrontal cortex and nucleus accumbens
in these processes.

In summary, the present work demonstrates that (a) DHM
elicits a more rapid antidepressant-like effect than does the
typical antidepressant venlafaxine and that (b) this effect
may involve stimulation of BDNF expression, possibly via
activation of the ERK1/2-CREB pathway and inhibition of
GSK-3β, and inhibition of neuroinflammation. These find-
ings provide the first evidence that DHM may be a promising
candidate for the treatment of MDD.
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