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Abstract
Background Stress during the adolescent period influences
postnatal maturation and behavioral patterns in adulthood.
Adolescent stress-induced molecular and functional changes
in neurons are the key clinical features of psychiatric disorders
including schizophrenia.
Objective In the present study, we exposed genetically vulner-
able mice to isolation stress to examine the molecular changes
in the glutamatergic system involving N-methyl-d-aspartate
(NMDA) receptors via dopaminergic disturbance in the pre-
frontal cortex (PFc).
Results We report that late adolescent stress in combination
with Disrupted-in-Schizophrenia 1 (DISC1) genetic risk elic-
ited alterations in glutamatergic neurons in the PFc, such as
increased expression of glutamate transporters, decreased ex-
tracellular levels of glutamate, decreased concentration of d-
serine, and impaired activation of NMDA-Ca2+/calmodulin
kinase II signaling. These changes resulted in behavioral def-
icits in locomotor activity, forced swim, social interaction, and

novelty preference tests. The glutamatergic alterations in the
PFc were prevented if the animals were treated with an atyp-
ical antipsychotic drug clozapine and a dopamine D1 agonist
SKF81297, which suggests that the activation of dopaminer-
gic neurons is involved in the regulation of the glutamatergic
system.
Conclusion Our results suggest that adolescent stress com-
bined with dopaminergic abnormalities in the PFc of geneti-
cally vulnerable mice induces glutamatergic disturbances,
which leads to behavioral deficits in the young adult stage.
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DCS D-cycloserine
METH Methamphetamine
SKF SKF81297
TBOA DL-threo-β-benzyloxyaspartate
MPC 5-Methylpyrazole-3-carboxylic acid
CLZ Clozapine
PFc Prefrontal cortex
NMDA N-methyl-d-aspartate
NR1 NMDA receptor subunit 1
CaMK II Ca2+/calmodulin kinase II
TH Tyrosine hydroxylase
D2R Dopamine D2 receptor
NAc Nucleus accumbens
PCP Phencyclidine

Introduction

Pathophysiology of psychiatric disorders including schizo-
phrenia is associated with the disturbance of molecular and
functional modifications in neurons (Goff and Coyle 2001;
Hayashi-Takagi et al. 2010; McCullumsmith 2015;
McCullumsmith et al. 2004; Moghaddam 2003; Tomoda
et al. 2016; Xing et al. 2016). Numerous studies strongly
support the involvement, at least in part, of disturbance in
neuronal signaling pathways which results in the loss of prop-
er brain activity, in the pathogenesis of schizophrenia and
associated disorders. (Glantz and Lewis 2000; Glessner et al.
2010; Hayashi-Takagi 2017; Hayashi-Takagi et al. 2015;
Kenny et al. 2014; Kirov et al. 2012; Lips et al. 2012;
McGlashan and Hoffman 2000).

Deficits in sociability and impaired learning andmemory are
clinical features of psychiatric disorders including schizophre-
nia, and are hypothesized to result from a disturbance in neural
systems (Gunaydin et al. 2014; Hayashi et al. 2016; Nagai et al.
2011; Takeuchi et al. 2016). Adult sociability, learning, and
memory are altered by adolescent stress (Chaby et al. 2015;
Li et al. 2015; McCormick et al. 2012; Niwa et al. 2011;
Novick et al. 2016; Sarro et al. 2014). Adolescence is a critical
time in development in which dramatic changes in hormone
levels and fine-tuning of neurocircuitry facilitate an individual’s
maturation into adulthood (Blakemore 2008). Therefore, ado-
lescent brains are vulnerable to stress (Paus et al. 2008).
Nonetheless, the biological mechanisms linking adolescent
stress to adult behavioral changes are not well understood.

Psychological stress activates the hypothalamic-pituitary-
adrenal (HPA) axis and induces production of glucocorticoids
in the adrenals, which can trigger psychiatric conditions
(Axelrod and Reisine 1984; Joels and Baram 2009; Sorrells
et al. 2009). Patients with mood disorders, psychosis, and co-
caine dependence show increased levels of corticotropin-
releasing factor, adrenocorticotropic hormone, and glucocorti-
coids (Kreek et al. 2005). A glucocorticoid receptor (GR)

antagonist, RU486 (mifepristone), is uniquely beneficial in hu-
man psychotic depression (Flores et al. 2006). In the previous
study, our results suggested that an environmental stress during
adolescence combinedwith an appropriate genetic risk can elicit
elevated corticosterone, and result in the alterations of epigenet-
ic modifications in mesocortical dopaminergic neurons (Niwa
et al. 2013). Under this condition, molecular changes in dopa-
minergic neurons and associated behavioral alterations were
blocked by administration of the GR antagonist RU486 (Niwa
et al. 2013, 2016b). Several studies reported that use of RU486
may be effective in the treatment of psychiatric symptoms and
may regulate the HPA axis (Belanoff et al. 2001, 2002; Flores
et al. 2006; Young et al. 2004). Thus, overactivation of GR
signaling might underlie neuronal dysfunction and behavioral
deficits induced by psychological stress.

Alterations in the levels of glutamate and its metabolite N-
acetylaspartate and a reduction in glutamate receptor binding
in the prefrontal cortex (PFc) have been reported at clinical
level in psychiatric disorders including schizophrenia
(Hashimoto et al. 2005; Hayashi-Takagi et al. 2010;
Pilowsky et al. 2006; Steen et al. 2005). In animal models,
administration of N-methyl-d-aspartate (NMDA)-type gluta-
mate receptor antagonists, such as phencyclidine (PCP) and
ketamine, elicits various pathological alterations affecting
physical and behavioral processes that are possibly relevant
for psychiatric disorders including schizophrenia with an adult
onset (Jaaro-Peled et al. 2009; Lu et al. 2011; Toriumi et al.
2012; Warden et al. 2012). Increasing evidence suggests that
the glutamatergic system of PFc relies on mesocortical dopa-
minergic neurons (Novick et al. 2016; Owen et al. 2016;
Swerdlow et al. 2001; Warden et al. 2012). Neuronal micro-
circuits in the PFc, consisting of glutamatergic pyramidal neu-
rons and local inhibitory interneurons, are essential for the
encoding and the maintenance of information in the PFc
(Goldman-Rakic 1995; Kabanova et al. 2015; Tanaka et al.
2011). Midbrain dopaminergic neurons projecting to the PFc
are predominantly located in the medial ventral tegmental area
(VTA) and modulate cognitive functions including persevera-
tive behavior and impulsivity (Goldman-Rakic 1995; Sandson
and Albert 1984). The mesocortical dopaminergic neurons are
indicative of ability to co-release dopamine and glutamate in
their target areas. Dopaminergic inputs into the PFc optimize
the signal-to-noise ratio in these local microcircuits and are
thought to modulate their excitability through the alteration
of input efficacy (Gorelova et al. 2002; Matsuda et al. 2006;
Vijayraghavan et al. 2007; Yang and Seamans 1996). NMDA-
mediated excitation was enhanced by a dopamine-D1 receptor
agonist in prefrontal cortical pyramidal neurons through pro-
tein kinase A (PKA)-dependent mechanisms (Snyder et al.
1998; Tingley et al. 1997; Wang and O’Donnell 2001). Our
previous study showed that dopaminergic function, especially
dopamine-D1 receptor signaling, is critical for the regulation
of NMDA-Ca2+/calmodulin kinase II (CaMK II) signaling in
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the PFc of PCP-treated mice (Aoyama et al. 2014; Mouri et al.
2007b). Thus, disturbance in the dopamine-glutamate system
in the PFc induced by psychological stress may lead to adult
behavioral deficits relevant to psychiatric disorders.

We previously reported that psychosocial stress imposed dur-
ing adolescence in the presence of a genetic risk affects the
mesocortical projection of dopaminergic neurons, which is asso-
ciated with behavioral deficits, such as increased immobility in
forced swim test, impairment of prepulse inhibition, and aberrant
locomotor activity in adulthood (Niwa et al. 2013). Furthermore,
we have recently reported that the first 1-week period during
stress regimen in the adolescence may correspond specifically
to the timing of maturation and function of mesocortical dopa-
minergic neurons and their sensitivity to glucocorticoids (Niwa
et al. 2016b).

Nonetheless, there are at least three crucial but unanswered
questions related to the model reported in our previous publi-
cations (Niwa et al. 2013, 2016b). First, it has not been deter-
mined whether adult sociability, learning, and memory are
altered by adolescent stress in the model. Second, it also re-
mains unknown how dopaminergic disturbance affects other
neuronal systems such as glutamatergic neurons in the PFc in
genetically vulnerable mice. Third, we have not yet identified
which antipsychotic drugs can ameliorate the behavioral def-
icits and neurochemical changes in the model. The present
study was designed to address these questions in order to
enhance our understanding of neuronal, stress-associated dis-
turbances, especially those affecting glutamatergic and dopa-
minergic neurons that have been frequently reported in psy-
chiatric disorders. In the present study, we designated the
model as disease model (DM).

Materials and methods

Animals

Disrupted-in-Schizophrenia 1 (DISC1) dominant-negative trans-
genic mice under control of the prion protein promoter (DISC1-
DN-Tg-PrP) were generated at the Transgenic Core Laboratory
of Johns Hopkins University. Heterozygous transgenic line 51
mice and wild-type littermates established by mating with
C57BL6 mice maintaining the purity of the genetic background
were compared in the present experiments. Our group and others
previously reported that DISC1, one of the most popular leads to
explore molecular pathways underlying the pathophysiology of
psychiatric disorders, has crucial roles in brain maturation and
adult behaviors (Brandon and Sawa 2011; Callicott et al. 2005;
Furukubo-Tokunaga et al. 2016; Hamshere et al. 2005;
Hashimoto et al. 2006; Hennah et al. 2003; Hodgkinson et al.
2004; Ibi et al. 2010; Ishizuka et al. 2011; Jaaro-Peled et al. 2016;
Jaaro-Peled et al. 2013; Kamiya et al. 2005; Kilpinen et al. 2008;
Nagai et al. 2011; Niwa et al. 2010, 2013, 2016b; O’Tuathaigh

et al. 2017; Saito et al. 2016; Seshadri et al. 2015; Sullivan 2013;
Trossbach et al. 2016).We selected further research on the bright
promise ofDISC1 protein as amolecular driver for the biology of
the psychiatric disorders including schizophrenia (Niwa et al.
2016a).

For the control (CTL) group, wild-type littermate mice were
housed in groups in wire-topped clear plastic cages
(21 × 32 × 13 cm) until sampling after behavioral tests at 8 weeks
of age, under a controlled environment (23 ± 1 °C; 50 ± 5%
humidity; light and dark cycles starting at 8 am and 8 pm, re-
spectively) with free access to food andwater. For theDMgroup,
DISC1-DN-Tg-PrP mice were isolated from 5 to 8 weeks of age
in individual wire-topped opaque polypropylene cages
(12.5 × 20 × 11 cm), and maintained until sampling after behav-
ioral tests. Mild isolation stress during late adolescence causes no
endocrinological, neurochemical, and behavioral changes (Niwa
et al. 2013), although we acknowledge effects of adolescent iso-
lation stress during different periods on behaviors (Hong et al.
2012; Kercmar et al. 2011; Leussis and Andersen 2008;
Mathews et al. 2008; Niwa et al. 2011; Weiss et al. 2004). All
animal procedures were in accordance with guidelines for the
care and use of laboratory animals issued by the National
Institutes of Health, Japanese Pharmacological Society, and
Meijo University.

We reported similar changes in the phenotypes between male
and female mice in a previously published study (Niwa et al.
2013), although we acknowledge sex-specific effects of DISC1
and adolescent stress in the other animal models (Abazyan et al.
2014; Ayhan et al. 2011; Holley et al. 2013; Hong et al. 2012;
Kuroda et al. 2011; Leussis and Andersen 2008; Nakai et al.
2014; Pletnikov et al. 2008; Weiss et al. 2004). The other labs
also reported no sex-specific findings in theDISC1 animalmodel
(Clapcote et al. 2007; Koike et al. 2006). Furthermore, in our
experimental conditions, we did not observe any significant dif-
ferences among the unstressed wild-type, isolated wild-type, and
unstressed DISC1 mutant mice in behavioral tests, neurochemi-
cal analyses, and assessment of corticosterone levels in our pre-
vious study (Niwa et al. 2013). We used the same mouse model
and followed the same protocol in our previous published studies
(Niwa et al. 2013, 2016b). Furthermore, we confirmed that there
are no differences among unstressed wild-type, stressed wild-
type, and unstressed DISC1 mutant mice under our current ex-
perimental conditions. Therefore, we used only male mice, and
defined the CTL and CTL + Veh groups as BControl^ in the
present study.

Drug treatment

D-cycloserine (DCS; Sigma-Aldrich, MO, USA, 30 mg/kg,
subcutaneously (s.c.)), methamphetamine (METH; 1 mg/kg,
intraperitoneally (i.p.)), and SKF81297 (SKF; Sigma-Aldrich,
10 nmol/bilaterally) were dissolved in saline. DL-threo-β-
benzyloxyaspartate (TBOA; Tocris, MO, USA, 10 nmol/
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unilaterally or bilaterally) was prepared as a stock solution of
100 mM in 50% dimethyl sulfoxide and 100 mM NaOH, and
dissolved in phosphate-buffered saline (PBS) before the ex-
periments. 5-Methylpyrazole-3-carboxylic acid (MPC;
Sigma-Aldrich, 100 pmol/bilaterally) was dissolved in PBS
(Ogaya et al. 2010). Clozapine (CLZ; Sigma-Aldrich,
3 mg/kg, i.p.) was dissolved in 0.3% carboxymethyl cellulose
sodium salt-saline. The dose of CLZ (3 mg/kg, i.p.) used in
this experiment was the maximal concentration that did not
cause marked sedation in mice administered acutely (Niwa
et al. 2010, 2011). RU486 (mifepristone: 17-hydroxy-11-(4-
dimethylamino-phenyl)-17-(prop-1-ynyl)-estra-4, 9-dien-3-
one) was dissolved in saline with 2% ethanol. Mice were
administered RU486 (20 mg/kg, s.c., once per day) from
5 weeks until decapitation after the behavioral experiments
(Niwa et al. 2013, 2016b).

The mice were administered DCS, TBOA, MPC, and CLZ
or SKF 30 and 10 min before behavioral test and training,
respectively. TBOA, MPC, and SKF were microinjected into
the PFc (15° angle from anteroposterior (AP) +1.7 mm,
mediolateral (ML) ±1.0 mm from the bregma, dorsoventral
(DV) −2.0 mm from the dura) according to the atlas of
Franklin and Paxinos (2007). Microinjection cannulas at-
tached to tubing were inserted through the stainless pipe.
The other end of the tubing was connected to a 10-μl
Hamilton syringe. The volumes of 1 μl/unilaterally of
TBOA,MPC, and SKFwere injected over a period of approx-
imately 30 s, and the injector was left in place for 1 min to
allow diffusion. The compounds injected i.p. or s.c. were ad-
ministered as a volume of 0.1 ml/10 g body weight.

Behavioral analyses

Two cohorts of mice were used. The first one was tested for
locomotor activity, social interaction, novelty preference, and
prepulse inhibition, while the second one was subjected to the
forced swim test.

Locomotor activity test

To measure novel environment-induced locomotor activity,
mice were placed in a transparent acrylic cage, and locomo-
tion and rearing were measured every 5 min for 2 h by using
digital counters with infrared sensors (Scanet SV-10;
Merquest), as described previously (Coitinho et al. 2002;
Huang et al. 2015; Mizoguchi et al. 2010; Nakajima et al.
2004; Niwa et al. 2007, 2011, 2013; Reynolds 2003;
Takamatsu et al. 2006; Toriumi et al. 2014) with minor mod-
ifications. To measure novel environment-, saline-, and
METH (1mg/kg, i.p.)-induced locomotor activity, locomotion
was measured every 5 min for 6 h (habituation session for 2 h;
saline session for 2 h; METH session for 2 h) (Fig. S4). The
respective locomotion over time graphs show that the mice

were habituated at the end of the habituation session and re-
covered from the saline injection before the METH injection.

Forced swim test

Each mouse was placed in a transparent glass cylinder (8 cm
in diameter × 20 cm high), containing water at 22–23 °C to a
depth of 15 cm, and forced to swim for 10 min. The duration
of immobility was measured using digital counters with infra-
red sensors (Mouri et al. 2012). The time spent in immobility
was calculated as follows: 600 (s) − swimming time
(s) = immobility time (s).

Social interaction test

The apparatus used for the social interaction test comprised a
square open arena (25 × 25 × 30 cm) with no top, made of gray
non-reflecting acrylics, illuminated with lamps that were not
directly visible to the mice. The light was diffused tominimize
shadows in the arena. Each mouse was placed alone in the test
box for 10 min for two consecutive days for habituation to the
apparatus before the social interaction test. On the testing day,
the mouse was randomly assigned to a same sex 8-week-old
C57BL6 mouse in a different home cage as the unfamiliar
partner. The mouse and its unfamiliar partner were left in this
box for 10 min. The duration of social interaction (sniffing,
grooming, following, mounting, and crawling except for ag-
gressive behavior) were measured using a stopwatch after
being recorded on a videotape. It must be emphasized that
passive contact (sitting or lying with bodies in contact) was
not considered as social interaction.

Novelty preference test

The novelty preference test was carried out as described previ-
ously (Ano et al. 2017; Mouri et al. 2007a; Nagai et al. 2003;
Niwa et al. 2011; Sanna et al. 2017; Tang et al. 1999;Wang et al.
2017) with minor modifications. The experimental apparatus
consisted of a Plexiglas open field box (30 × 30 × 35 cm), with
the floor covered in sawdust. The test procedure consisted of
three sessions: habituation, training, and retention. Each mouse
was individually habituated to the box, with 10 min of explora-
tion in the absence of objects each day for three consecutive
days (habituation session). On day 4, two novel objects were
symmetrically fixed to the floor of the box, 8 cm from the walls,
and each animal was allowed to explore the box for 10 min
(training session). The objects were different in shape and color,
but similar in size. An animal was considered as exploring the
object when its head was facing the object or it was touching or
sniffing the object. After training sessions, the mice were imme-
diately returned to their home cages. Even if we used the two
separated objects in the training session, we did not see any
differences in the exploratory preference (Fig. 1d, 6d, S1E,
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S1F, and S5D left-hand columns), suggesting that there was no
biased exploratory preference in either group. Twenty-four
hours following the training sessions, the animals were placed
back into the same box with one of the familiar object from the
training session and one novel object. The animals were allowed
to explore freely for 10 min, and the time spent exploring each
object was recorded on a videotape.

Prepulse inhibition test

Mice were subjected to startle trials with three conditions: (i) a
120-dB noise burst presented alone; (ii) a prepulse that was 4, 8,
or 16 dB above background noise (i.e., 74, 78, or 86 dB) follow-
ed by a 120 dB noise burst; or (iii) no stimulus (background noise
alone), which was used to measure baseline movements in the
startle chamber (SR-Laboratory Systems, San Diego
Instruments). Percent prepulse inhibition of a startle response
was calculated as:

100‐ startle response on prepulseþ startle pulseð Þ
.

startle response on startle pulseð Þ

2
4

3
5� 100:

Neurochemical and biochemical analyses

Western blotting

Western blotting was performed as described previously
(Niwa et al. 2013) with a minor modification. The PFc was

dissected out according to the atlas of Franklin and Paxinos
(2007). Rabbit anti-phospho- NMDA receptor subunit 1 (p-
NR1; 1:500, Millipore), goat anti-total-NR1 (t-NR1; 1:500,
Santa Cruz Biotechnology), rabbit anti- phospho-CaMK II
(p-CaMK II; 1:1000, Millipore), rabbit anti-total-CaMK II
(t-CaMK II; 1:1000, Sigma-Aldrich), guinea-pig anti-
GLAST (1:1000, Millipore), guinea-pig anti-GLT-1 (1:1000,
Millipore), mouse anti-tyrosine hydroxylase (TH; 1:1000,
Millipore), rabbit anti- dopamine D2 receptor (D2R; 1:500,
Millipore), and goat anti-β-actin (1:500, Santa Cruz
Biotechnology) antibodies were used as primary antibodies.
Horseradish peroxidase-conjugated anti-rabbit, anti-goat, anti-
guinea-pig, and anti-mouse IgG (1:2000, Kierkegaard& Perry
Laboratories) were used as secondary antibodies. These bio-
chemical assessments were made using the brains of mice
isolated immediately after the forced swim test or 24 h after
the last RU486 treatment.

In vivo microdialysis

Microdialysis was carried out as previously described (Murai
et al. 2007; Niwa et al. 2013), with a minor modification. A
guide cannula was implanted into the PFc (15° angle from AP
+1.7 mm, ML −1.0 mm from the bregma, DV −2.0 mm from
the dura) or nucleus accumbens (NAc; AP +1.7 mm, ML
−0.8 mm from the bregma, DV −4.0 mm from the dura) ac-
cording to the atlas of Franklin and Paxinos (2007). Artificial
cerebrospinal fluid (147 mM NaCl, 2.8 mM KCl, 1.2 mM
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CaCl2, and 1.2 mM MgCl2) was perfused at a flow rate of
1.0 μl/min. The dialysates were collected every 10 min and
analyzed by a high-performance liquid chromatography
(HPLC) system. Three or six samples were taken to establish
the baseline levels of extracellular glutamate or dopamine,
respectively.

The extracellular levels of glutamate upon potassium stim-
ulation (50 mMKCl-containing Ringer solutionwas delivered
through the dialysis probe for 30 min) or dopamine upon
METH challenge (1 mg/kg, i.p.) were measured in the PFc
and NAc, to clarify tonic and phasic responses in mesocortical
and mesolimbic dopaminergic neurons, respectively (Grace
1991). For the rescue study with TBOA, a dialysis probe
equipped with a microinjection tube was used. After the col-
lection of baseline fractions, 10 nmol of TBOA dissolved in
1 μl of PBS were injected bilaterally during a 10-min period
through the microinjection tube into the PFc.

High-performance liquid chromatography condition

Fluorescent derivatization of d-serine in rat microdialysis sam-
ple was carried out according to our previously published
method with minor modifications (Fukushima et al. 2004).
The HPLC system consists of an auto-sampler AS-2057
(Jasco Corporation, Tokyo, Japan); two pumps PU-2080
Plus (Jasco) and L-6200 (Hitachi, Tokyo, Japan); two fluores-
cence detectors L-7480 (Hitachi) and X-LCTM 3120FP
(Jasco); two integrators, both Chromato-integrator D-7500s
(Hitachi); and a six-port valve HV-2080-01 (Jasco) equipped
with 100μL of the sample loop. The column-switching HPLC
method was carried out according to previously published
studies with slight modifications (Fukushima et al. 2004).
First, the peak of NBD-serine was separated from the peaks
of other endogenous amino acids on the C18 column. The
time program of mobile phase 1 was as follows: [CH3CN-
0.1% TFA in H2O (10:90)]: [CH3CN-0.1% TFA in H2O
(90:10)] (92:8) was isocratically eluted from 0 to 25 min at a
flow rate of 0.8 mL/min, then CH3CN-0.1% TFA in H2O
(90:10) from 25.1 to 35 min at 0.8 mL/min, and finally,
[CH3CN-0.1% TFA in H2O (10:90)]: [CH3CN-0.1% TFA in
H2O (90:10)] (92:8) from 35.1 to 45min at 0.8 mL/min to start
the C18 column. The fluorescence detector wavelength was
set at 540 nm with an excitation wavelength of 470 nm. Both
C18 (TSKgel ODS-80Ts) with a guard column (TSKguardgel
ODS-80Ts) and a tandem series of two chiral columns
(Sumichiral OA-2500(S)) were kept at 40 °C in a column oven
CO-2065 Plus (Jasco).

Real-time reverse transcription polymerase chain reaction

Total RNAwas isolated using an RNeasy Kit (Qiagen, Hilden,
Germany) and converted into cDNA using a SuperScript™ III
First-Strand System for reverse transcription polymerase

chain reaction (RT-PCR) Kit (Invitrogen). The levels of serine
racemase and d-amino acid oxidase mRNAwere determined
by real-time RT-PCR using a TaqMan probe. β-Actin mRNA
was used as the internal control. The serine racemase primers
used for real-time RT-PCR were as follows: 5′-CTGG
ACAAGGAACAATTG-3 ′ (forward) and 5 ′-GGGC
CTTAATTGTAATGG-3′ (reverse), and the TaqMan probe
was 5′-CAACCATTCCTCCTCCTCCTACTG-3′ (probe).
The d-amino acid oxidase primers used for real-time RT-
PCR were as follows: 5′-CTGAGAGGTTAACTGAGA-3′
(forward) and 5′-GTGCAGTTGATAATCACA-3′ (reverse),
and the TaqMan probe was 5′-ACTCCTCTTGCCAC
CTCTTCG-3′ (probe). The β-actin primers used for real-
time RT-PCR were as follows: 5′-GGGCTATGCTCTCC
CTCACG-3′ (forward) and 5′-GTCACGCACGATTT
CCCTCTC-3′ (reverse), and the TaqMan probe was 5′-
CCTGCGTCTGGACCTGGCTGGC-3′ (probe). The ampli-
fication consisted of an initial step (95 °C for 3 min) followed
by 40 cycles of denaturation for 1 min at 95 °C, annealing for
1 min at 55 °C, and the extension time for 1 min at 72 °C in an
iCycle iQ Detection System (Bio-Rad Laboratories, Inc., CA,
USA). The expression levels were calculated as described
previously (Niwa et al. 2007).

Statistical analyses

All data were expressed as means ± SE. Statistical analyses
were performed using the commercial software (IBM SPSS
statistics 23, IBM). Statistical differences between two groups
were calculated using Student’s t test. Statistical differences
among three groups/factors or more were determined using a
one-way analysis of variance (ANOVA) and a two-way
ANOVA with repeated measures, followed by the
Bonferroni post hoc tests. Corrections for multiple compari-
sons were made when appropriate. Statistical significance was
*P < 0.05.

Results

Behavioral deficits in the DM

The DM animals showed robust deficits in the novelty-
induced locomotor activity (Fig. 1a), forced swim
(Fig. 1b), and prepulse inhibition (Fig. 6e) tests, which
was consistent with our previous findings (Niwa et al.
2013, 2016b). In this study, to examine the roles of psy-
chosocial stress in sociability, learning, and memory in our
model, we performed social interaction and novelty pref-
erence tests. The DM animals showed significant de-
creases in social interaction than the CTL did (Fig. 1c),
suggesting that adolescent stress leads to deficits in socia-
bility in adulthood. As shown in Fig. 1d, there were no
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significant differences in the exploratory preference be-
tween two objects during the training session (Fig. 1d,
two left-hand columns), suggesting that there was no bi-
ased exploratory preference in either group. However, for
the retention session, the levels of exploratory preference
for the novel objects in the DM significantly decreased
compared to those in CTL (Fig. 1d, two right-hand col-
umns), suggesting impaired learning and memory in DM
animals.

Role of glucocorticoids in the behavioral deficits observed
in the DM

In our previous studies, the DM showed a significant in-
crease in levels of corticosterone (Niwa et al. 2013,
2016b). A glucocorticoid receptor antagonist, RU486, nor-
malized mesocortical dopaminergic disturbance and ame-
liorated behavioral deficits observed in the DM (Niwa
et al. 2013, 2016b). Thus, we next investigated whether
RU486 also ameliorates the behavioral deficits observed in
the present experiments. We first confirmed our previous
data that RU486 significantly ameliorates the impaired per-
formance in locomotor activity in the DM animals (Fig.
S1A). We examined whether RU486 ameliorates the im-
pairment of performance in the social interaction and nov-
elty preference tests. Treatment with RU486 significantly
ameliorated the decrease in the exploratory preference dur-
ing the novelty preference test in the DM (Fig. S1E).
Moreover, the treatment with RU486 tended to ameliorate
the impaired performance in the social interaction test in
the DM (Fig. S1C). However, RU486 had no effect on
behavioral scores in CTL (Fig. S1B, D, and F). These
results suggest that elevation in the levels of corticoste-
rone, a rodent glucocorticoid, could underlie the behavioral
deficits in the DM.

Alterations of glutamatergic neurons in the PFc of the DM

We have previously reported a hypofunction of the
mesocortical dopaminergic neuron in the DM (Niwa et al.
2013). Increasing evidence suggests that dopaminergic neu-
rons regulate glutamatergic neurons in the PFc (Aoyama et al.
2014; Mouri et al. 2007b; Swerdlow et al. 2001; Warden et al.
2012). Thus, we examined glutamatergic alterations underly-
ing the behavioral deficits in the DM. We investigated the
changes in the activation of CaMK II signaling via NMDA
receptors in the PFc after the forced swim test, since we had
previously reported that the phosphorylation levels of NR1, a
subunit of NMDA receptors, and CaMK II in the PFc de-
creased in PCP-treated mice, showing increased immobility
after the forced swim test (Murai et al. 2007). The phosphor-
ylation levels of NR1 and CaMK II in the DM significantly
decreased compared with those of CTL (Fig. 2a, b). No

difference in the expression levels of total NR1 and CaMK
II was observed between the two groups (data not shown).

To investigate the mechanisms underlying the decrease in
the levels of p-NR1 and p-CaMK II in the DM, we examined
the extracellular levels of glutamate in the PFc of the DM by
using an in vivo microdialysis technique. After the basal ex-
tracellular levels of glutamate reached a steady state, they
were monitored during 30 min of dialysis. The DM animals
showed dramatically decreased extracellular levels of gluta-
mate at baseline in the PFc (DM 4.21 ± 0.35 pmol/30 min,
CTL 16.03 ± 1.22 pmol/30 min) (Fig. 2c). We investigated the
effect of high potassium (high K+) (50 mM) stimulation in the
PFc on the extracellular levels of glutamate in the DM. The
extracellular levels of glutamate in the PFc of the DM were
significantly lower than those in CTL (Fig. 2d).

Glial glutamate transporters, i.e., GLAST and GLT-1,
play an important role in regulating glutamate transmission
by rapidly clearing glutamate from extracellular fluid. To
examine whether the decrease in the extracellular levels of
glutamate was due to changes in the expression levels of
glutamate transporters, we investigated the levels of glial
glutamate transporters in the PFc of the DM by immuno-
blotting. The levels of GLAST and GLT-1 significantly
increased in the DM compared with those in CTL
(Fig. 2e, f). These results suggest that glutamatergic sig-
naling is altered in the DM and that the increase in the
expression levels of glutamate transporters may be respon-
sible for decreased extracellular levels of glutamate, both
at baseline and upon K+-stimulation, and decreased phos-
phorylation of NR1 and CaMK II.

Role of glutamate transporters in the behavioral deficits
and impairment of CaMK II activation in the DM

GLAST and GLT-1 mediate glutamate uptake by astrocytes
(Pines et al. 1992; Storck et al. 1992), and the ability of
excitatory amino acid transporters to rapidly and efficiently
clear synaptic glutamate is integral to physiological excit-
atory neurotransmission (Chawla et al. 2017; Haydon and
Carmignoto 2006; Rosenberg and Aizenman 1989). It has
been suggested that the disturbance of the glutamatergic
system shown in this experiment is due to an increased
expression of glial glutamate transporters (Murai et al.
2007). We investigated whether a competitive glutamate
transport inhibitor TBOA would ameliorate the behavioral
deficits and glutamatergic disturbance in the DM. As
shown in Fig. 3a, the treatment with TBOA in the PFc
significantly ameliorated the increased immobility time in
the DM. TBOA also significantly ameliorated the decreased
basal extracellular levels of glutamate in the PFc of the DM
(Fig. 3b). Furthermore, TBOA significantly ameliorated the
decreased phosphorylation levels of CaMK II in the PFc of
the DM (Fig. 3c). However, TBOA had no effect on
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behavioral and neurochemical measurements in CTL
(Fig. S2). These results suggest that the increase in the
expression levels of glial glutamate transporter may be re-
lated to a decrease in the extracellular levels of glutamate
in the PFc of the DM.

Changes of the serine system in the PFc of the DM

D-serine modulates glutamatergic neuronal function as an en-
dogenous co-agonist of NMDA receptors. Therefore, we

investigated whether levels of d-serine and its synthetizing/
degradation enzymes were altered in the DM. As shown in
Fig. 4, the concentration of d-serine significantly decreased in
the DM (Fig. 4a). Further, in the DM animals, the mRNA
expression levels of serine racemase, a synthetizing enzyme
of d-serine, significantly decreased (Fig. 4b), whereas the
mRNA expression levels of its degradation enzyme d-amino
acid oxidase significantly increased (Fig. 4c). These results
suggest that the aberrant d-serine system may, at least in part,
decrease glutamatergic neuronal activity in the PFc of the DM.

GLT-1
β-actin

GLAST
β-actin

p-CaMK II
t-CaMK II

a b

c d

e f

0

100

200

G
LA

ST
/β

-a
ct

in
 (%

 o
f c

on
tr

ol
) CTL

DM

*

0

100

200

G
LT

-1
/β

-a
ct

in
 (%

 o
f c

on
tr

ol
) CTL

DM

*

0

10

20

B
as

al
 e

xt
ra

ce
llu

la
r g

lu
ta

m
at

e
(p

m
ol

/3
0 

m
in

)

Ex
tr

ac
el

lu
la

r g
lu

ta
m

at
e

(%
 o

f b
as

el
in

e)

Time (min)

CTL
DM

*

0

100

200

300

400

-20 0 20 40 60

CTL

DM *

High K+

0

50

100

150

p-
N

R
1 

/ t
-N

R
1 

(%
 o

f c
on

tr
ol

)

CTL
DM

*

0

50

100

150

p-
C

aM
K

II 
/ t

-C
aM

K
II 

(%
 o

f c
on

tr
ol

)

CTL
DM

*

p-NR1
t-NR1

Fig. 2 Glutamatergic
disturbances in the DM. a Levels
of phospho-NR1/total-NR1 in the
PFc. b Levels of phospho-CaMK
II/total-CaMK II in the PFc. c
Extracellular levels of glutamate
at baseline in the PFc. d
Extracellular levels of glutamate
upon high K+ stimulation in the
PFc. Extracellular levels of
glutamate were measured by
in vivo microdialysis. e Levels of
GLAST in the PFc. f Levels of
GLT-1 in the PFc. p- phospho-, t-
total-. N = 7 for a, b, e, and f;
N = 6–7 for c and d. Values are
means ± SE. Statistical
differences were determined
using the t test for a, b, c, e, and f,
and the two-way ANOVAwith
repeated measures (group, F(1,
12) = 12.39, P < 0.05 for d),
(*P < 0.05)

3062 Psychopharmacology (2017) 234:3055–3074



Roles of the NMDA receptor and serine system
in the behavioral deficits and impairment of CaMK II
activation in the DM

To investigate the relationship between behavioral deficits and
glutamatergic disturbance, the effects of DCS, a partial
NMDA receptor glycine-site agonist, on impaired perfor-
mance in the forced swim test and changes in CaMK II acti-
vation in the DM were examined. As shown in Fig. 5a, acute
treatment with DCS in the PFc significantly ameliorated the
increased immobility time in the forced swim test in the DM.
Moreover, the treatment with DCS significantly ameliorated
the decreased phosphorylation levels of CaMK II in the PFc of
the DM (Fig. 5b). However, DCS had no effect on behavioral
and neurochemical measurements in CTL (Fig. S3A, B).
These results suggest that the impairment of NMDA-CaMK
II signaling in the PFc may be, at least in part, involved in the
behavioral deficits in the DM.

To investigate the relationship between behavioral deficits
and abnormalities in the serine system, the effects of MPC, an
inhibitor of d-amino acid oxidase, on the forced swim test,
impairments of CaMK II activation, and the serine system in
the DM were examined. As shown in Fig. 5c, acute treatment

with MPC in the PFc significantly ameliorated the increased
immobility time during the forced swim test in the DM.
Moreover, the treatment with MPC significantly ameliorated
decreased phosphorylation levels of CaMK II in the PFc of the
DM (Fig. 5d). Furthermore, MPC tended to normalize the
decreased concentration of d-serine in the PFc of the DM
(Fig. 5e). However, MPC had no effect on behavioral and
neurochemical measurements in CTL (Fig. S3C to E). These
results suggest that abnormalities in the serine system in the
PFc may be, at least in part, involved in behavioral deficits in
the DM via changes in NMDA-CaMK II signaling.

Effects of CLZ on the behavioral deficits and impairment
of CaMK II activation in the DM

We have reported that CLZ, an atypical antipsychotic drug,
ameliorated the behavioral deficits and impairment of CaMK
II activation in the PCP animal model (Aoyama et al. 2014;
Mouri et al. 2007b). Therefore, we investigated whether CLZ
ameliorates the behavioral deficits and glutamatergic distur-
bance in the DM. The treatment with CLZ significantly ame-
liorated the increased locomotor activity, especially the first
30 min of the test session, in the DM (Fig. 6a). We next
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examined the effects of CLZ on novelty-, saline-, and METH-
induced hyperactivity observed in the DM. Although the DM
displayed hyperlocomotion compared to CTL, the treatment
with CLZ significantly improved their hyperactivity
(Fig. S4A). CLZ also significantly attenuated METH-
induced hyperactivity in the DM. Furthermore, treatment with
CLZ significantly ameliorated the increased immobility in the
forced swim test in the DM (Fig. 6b). Moreover, CLZ signif-
icantly ameliorated not only the decrease of social interaction
in the social interaction test, but also the decrease of explor-
atory preference in the novelty preference test in the DM (Fig.
6c, d). We also examined whether the deficit in sensory motor
gating in the DM was reversed by CLZ. Although the DM
showed decreased prepulse inhibition compared to CTL, the
treatment with CLZ significantly improved the decreased
prepulse inhibition in these animals (Fig. 6e). There were no
significant differences in startle responses (data not shown).
Further, CLZ significantly ameliorated the decreased phos-
phorylation levels of CaMK II in the PFc of the DM
(Fig. 6f). However, CLZ had no effect on behavioral and
neurochemical measurements in CTL (Fig. S4B, S5). These
results suggest that CLZ may ameliorate behavioral deficits in

the DM by normalizing altered NMDA-CaMK II signaling in
the PFc.

The effects of CLZ on the dopaminergic disturbances
in the DM

The following data from the present study support our previ-
ous findings regarding dopaminergic disturbance in the DM
(Niwa et al. 2013, 2016b): (1) The extracellular levels of do-
pamine at baseline significantly decreased in the PFc but not
in the NAc of the DM (Fig. 7a, c) compared with the CTL
group. (2) The DM animals showed increased extracellular
levels of dopamine upon METH challenge in the NAc but
not in the PFc (Fig. 7b, d). (3) The DM animals showed
changes in the expression levels of TH and D2R in the PFc.
We investigated whether CLZ ameliorates these dopaminergic
disturbances. CLZ normalized the dopamine-related abnor-
malities including basal and METH-induced extracellular
levels of dopamine, but not the expression levels of TH and
D2R in the DM (Fig. 7b, c, e, f). However, CLZ had no effect
on neurochemical measurements in CTL (Fig. S6). These re-
sults suggest that CLZ may normalize dopaminergic
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disturbances and subsequent behavioral deficits by increasing
basal extracellular levels of dopamine in the DM.

Role of D1 receptor in the behavioral deficits
and impairment of NR1 and CaMK II activation
in the DM

We have reported that CLZ ameliorated the behavioral def-
icits and impairment of CaMK II activation through the
activation of the dopamine D1 receptor in the PCP animal
model (Aoyama et al. 2014; Mouri et al. 2007b). In addi-
tion, the infusion of a dopamine-D1 receptor agonist into
the PFc attenuates the impairment of latent learning and the
decrease of learning-associated NR1 phosphorylation, sug-
gesting a functional linkage between glutamatergic and

dopaminergic signaling (Aoyama et al. 2014; Hida et al.
2015; Mouri et al. 2007b). Thus, we investigated whether
SKF, a dopamine-D1 receptor agonist, ameliorates the
behavioral deficits and impairment of NR1 and CaMK II
activation in the PFc of the DM. As shown in Fig. 8a,
acute treatment with SKF in the PFc significantly amelio-
rated the increased immobility time in the DM. Moreover,
treatment with SKF significantly ameliorated the decreased
levels of phospho-NR1 and phospho-CaMK II in the DM
(Fig. 8b, c). However, SKF had no effect on behavioral
and neurochemical measurements in CTL (Fig. S7).
These results suggest that abnormal behaviors in the DM
resulting from the alterations of NMDA-CaMK II signaling
in the PFc may be associated with a disturbance in
dopaminergic function.
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Discussion

The ultimate goal of our research is to determine how neuro-
endocrinological changes induced by psychosocial stress alter
neuronal function and connectivity in the brain, and dissect
the mechanisms from the cellular level to circuitry and behav-
ior. In this exploratory study, we aimed to address three unan-
swered questions related to the use of previously described
genetically vulnerable mice exposed to late adolescent stress
(Hayashi et al. 2016; Niwa et al. 2013, 2016b).

First, we aimed to determine whether sociability, learn-
ing, and memory were altered in the DM. Deficits in

sociability in addition to impaired learning and memory
are the key clinical features of several mental disorders
including schizophrenia, and are attributed to alterations
in neural systems (Gunaydin et al. 2014; Hayashi et al.
2016; Nagai et al. 2011; Tomoda et al. 2016). We ob-
served impaired social interaction and novelty preference
for object recognition memory in addition to dopaminergic
and glutamatergic disturbances in the DM. These behav-
ioral and neurochemical deficits were prevented by the
treatment with CLZ, one of the atypical antipsychotics,
which is coincident with clinical reports of psychiatric
disorders including schizophrenia (Lee et al. 1999; Owen
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et al. 2016). It has been reported that dopaminergic
hypofunction in the PFc is, at least in part, related to
deficits in sociability, and learning and memory impair-
ments in psychiatric disorders including schizophrenia
(Coura et al. 2013; Hultman et al. 2016; Niwa et al.
2010, 2011). CLZ preferentially increases dopamine re-
lease in the PFc compared with that in the NAc (Kuroki
et al. 2008; Nagai et al. 2011; Youngren et al. 1999). Our

results have therefore confirmed previously published find-
ings. In addition, a D1R agonist SKF also ameliorated
both behavioral and neurochemical abnormalities.
Therefore, we propose that the beneficial effect of CLZ
on behavioral deficits may be related to the enhancement
of baseline dopamine transmission in the PFc (Fig. 9).

Second, we aimed to elucidate whether the glutamatergic
system was altered by the disturbance of dopaminergic
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differences were determined
using a two-way ANOVAwith
repeated measures (group, F(2,

18) = 3.25, P > 0.05 for b; F(2,

19) = 0.39, P > 0.05 for d), and a
one-way ANOVA (group, F(2,
18) = 0.50, P > 0.05 for a; group,
F(2, 19) = 6.25, P < 0.05 for c; F(2,
15) = 8.49, P < 0.05 for e; F(2,
15) = 26.83, P < 0.05 for f),
followed by Bonferroni post hoc
tests (*P < 0.05)
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signaling in the PFc of the DM. Disturbances in the gluta-
matergic neuronal system, such as the reduction in the
numbers of dendritic spines observed in the autopsied
brains and morphological changes of the dendritic spine
that directly correlate with its functional deficits, underlie
psychiatric disorders including schizophrenia (Goff and
Coyle 2001; Hayashi-Takagi et al. 2010; McCullumsmith
et al. 2004; Moghaddam 2003). D-serine, an NMDA recep-
tor co-agonist, plays a crucial role in NMDA-dependent
neurotransmission and is associated with a range of neuro-
psychiatric disorders (Onozato et al. 2016). The levels of d-
serine were lower in the plasma and cerebrospinal fluid of
patients with psychiatric disease including schizophrenia
(Fukushima et al. 2014; Hashimoto et al. 2005; Van Horn
et al. 2013). The genes encoding serine racemase, the
synthetizing enzyme of d-serine, and d-amino acid oxidase,
the degradation enzyme of d-serine, are some of the prom-
ising candidates that may underlie the susceptibility to

psychiatric disorders including schizophrenia and bipolar
affective disorder (Schumacher et al. 2004). These results
are coincident with clinical reports of psychiatric disease in
which alterations in the levels of glutamate and d-serine
and a reduction in NMDA activation were observed
(Pilowsky et al. 2006; Steen et al. 2005). Our results
showed an upregulation of glial transporters, a reduction
in the basal levels of extracellular glutamate and dopamine,
and changes in the levels of serine racemase and d-amino
acid oxidase, which lead to altered glutamatergic abnormal-
ities via NMDA-CaMK II signaling in the PFc and subse-
quent behavioral deficits (Fig. 9). Furthermore, these neu-
ronal and behavioral deficits were ameliorated by a partial
NMDA receptor glycine-site agonist DSC, an inhibitor of
d-amino acid oxidase MPC, a competitive glutamate trans-
port inhibitor TBOA, and a dopamine-D1 receptor agonist
SKF (Fig. 9). We speculate that prolonged exposure to
stress affects glutamatergic neurotransmission through
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Fig. 8 Effects of a dopamine-D1
receptor agonist SKF on
behavioral and neurochemical
abnormalities in the DM. a
Effects of SKF on impaired
performance in the forced swim
test. b Effects of SKF on the
decreased NR1 phosphorylation
in the PFc of the DM after the
forced swim test. c Normalization
effect of SKF on the decreased
CaMK II phosphorylation in the
PFc of the DM after the forced
swim test. Veh treated with
vehicle, SKF treated with
SKF81297. N = 8–10 for a, N = 7
for b, N = 8 for c. Values are
means ± SE. Statistical
differences were determined
using a one-way ANOVA (group,
F(2, 27) = 12.75, P < 0.05 for a;
F(2, 18) = 13.94, P < 0.05 for b;
F(2, 21) = 15.85, P < 0.05 for c),
followed by Bonferroni post hoc
tests (*P < 0.05)
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dopaminergic alterations in the PFc and subsequently con-
tributes to behavioral changes, since SKF ameliorated both
dopaminergic and glutamatergic disturbance.

Third, we aimed to determine the effects of antipsychotics
on behavioral deficits and neurochemical abnormalities in
the DM. We showed that CLZ significantly ameliorated
the impaired performance in locomotor activity, forced
swim, social interaction, novelty preference, and prepulse
inhibition tests in the DM. CLZ also normalized the gluta-
matergic and dopaminergic abnormalities studied in the DM,
including activation of CaMK II and levels of basal and
METH-induced extracellular dopamine. Although it has
been reported that administration of CLZ increases the ex-
tracellular levels of dopamine in PFc and NAc of rats
(Bortolozzi et al. 2010; Kuroki et al. 1999; Li et al. 2005;
Moghaddam and Bunney 1990; Tanda et al. 2015), our data
are compatible with the previous reports that CLZ restores
the changes in the overflow of dopamine in the PFc of mice
and phosphorylated CaMK II in a dopamine D1 receptor-
dependent manner (Aoyama et al. 2014; Mouri et al. 2007b;
Niwa et al. 2010). These findings suggest that dopamine

modulates the increase of NMDA-mediated excitability in
the prefrontal cortical neurons. Therefore, we propose that
behavioral deficits in the DM implicate glutamatergic neu-
ron alterations via NMDA-CaMK II signaling through a
dopaminergic disturbance in the PFc.

Many epidemiological studies have indicated that initial
and major risks for the psychiatric disease occur during
neurodevelopment, although the onset of the disease occurs
in juveniles and young adults. Therefore, it is important to
address the mechanisms that can explain such onset of psy-
chiatric disorders. Glutamatergic neurons undergo dynamic
changes during postnatal brain maturation, particularly in late
childhood and early adolescence (Jaaro-Peled et al. 2009;
Owen et al. 2016). Deficits in postnatal modifications of glu-
tamatergic neurons that occur just before the onset of the
disease have been hypothesized as a potential mechanism
(Hayashi-Takagi et al. 2010; Owen et al. 2016). We induced
adverse experiences (e.g., social isolation in combination with
a genetic risk in this case) during the period at which neuronal
development was actively taking place (Niwa et al. 2013,
2016b). It is therefore possible that disturbances in the
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Fig. 9 Adolescent stress leads to glutamatergic disturbance through
alterations in dopaminergic signaling in the prefrontal cortex of the
DM. Our results suggest that presynaptic and postsynaptic glutamate
and dopamine transmissions in the PFc are impaired by adolescent
stress in genetically susceptible animals. In the presynaptic glutamate
transmission in the PFc, (1) the upregulation of glial glutamate
transporters (GLAST, GLT-1), and (2) the decreased extracellular levels
of dopamine and glutamate are observed. In the postsynaptic glutamate
transmission in the PFc, (3) the functions of the NMDA receptor and

serine system are impaired. These abnormalities of glutamate and
dopamine transmissions, and a disturbance of the serine system induced
(4) the abnormality of NMDA-CaMK II signaling via dopamine D1
receptor and (5) behavioral def ic i ts . TBOA DL - threo-β -
benzyloxyaspartate (a competitive glutamate transport inhibitor), DCS
D-cycloserine (a partial NMDA receptor glycine-site agonist), CLZ
clozapine (an atypical antipsychotic drug), SKF SKF81297 (a
dopamine-D1 receptor agonist), MPC 5-methylpyrazole-3-carboxylic
acid (an inhibitor of d-amino acid oxidase), DAO d-amino acid oxidase
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prefrontal glutamatergic and dopaminergic neurotransmission
elicited by adolescent stress may contribute to the juvenile
onset of the diseases. Further studies of the effects of psycho-
social stress at different time points, including adulthood,
are needed to enhance the importance of adolescence
vulnerability.

In conclusion, we provide a potential mechanism underly-
ing the link between adolescent stress and the onset of the
disease during young adulthood by showing that (1) adoles-
cent stress in combination with genetic vulnerability induces
deficits in sociability and impaired learning and memory in
adulthood, (2) prolonged exposure to stress affects glutamater-
gic neurotransmission through dopaminergic disturbance in
the PFc and subsequently contributes to the behavioral defi-
cits, and (3) antipsychotic drugs significantly ameliorate the
behavioral deficits and neurochemical abnormalities (Fig. 9).
The DM model may be useful to study the biology of the
psychiatric disorders including schizophrenia. Further eluci-
dation of such mechanisms would allow us to explore novel
therapeutic strategies and provide a good template for prophy-
lactic environmental readjustment, which is crucially impor-
tant in clinical psychiatry and public health.
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