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Abstract
Rationale Preclinical studies report that free access to a high-
fat diet (HFD) alters the response to psychostimulants.
Objectives The aim of the present study was to examine how
HFD exposure during adolescence modifies cocaine effects.
Gene expression of CB1 and mu-opioid receptors (MOr) in
the nucleus accumbens (N Acc) and prefrontal cortex (PFC)
and ghrelin receptor (GHSR) in the ventral tegmental area
(VTA) were assessed.
Methods Mice were allowed continuous access to fat from
PND 29, and the locomotor (10 mg/kg) and reinforcing effects
of cocaine (1 and 6 mg/kg) on conditioned place preference
(CPP) were evaluated on PND 69. Another group of mice was
exposed to a standard diet until the day of post-conditioning,
on which free access to the HFD began.
Results HFD induced an increase of MOr gene expression in
the N Acc, but decreased CB1 receptor in the N Acc and PFC.
After fat withdrawal, the reduction of CB1 receptor in the N
Acc was maintained. Gene expression of GHSR in the VTA
decreased during the HFD and increased after withdrawal.
Following fat discontinuation, mice exhibited increased anxi-
ety, augmented locomotor response to cocaine, and developed
CPP for 1 mg/kg cocaine. HFD reduced the number of ses-
sions required to extinguish the preference and decreased sen-
sitivity to drug priming-induced reinstatement.

Conclusion Our results suggest that consumption of a HFD
during adolescence induces neurobiochemical changes that
increased sensitivity to cocaine when fat is withdrawn, acting
as an alternative reward.

Keywords Cocaine . High-fat diet . Conditioned place
preference . CB1 .Mu-opioid receptor

Introduction

Among the factors that contribute to increased vulnerability to
drug use, dietary conditions might play a greater role than
previously thought (Baladi et al. 2012; Daws et al. 2011;
Spear 2000). Currently, there is an increasingly high-fat,
Bfast-food^ culture and a rising prevalence of obesity in de-
veloped countries, particularly among adolescents (Baladi
et al. 2012; Herpertz-Dahlmann 2015; Volkow et al. 2013).
Drug addiction and overeating cause high comorbidity
(Swanson et al. 2011), and several studies have highlighted
that palatable food increases vulnerability to psychostimulant
use. The acute locomotor response to cocaine is enhanced in
mice that consume a continuous diet high in fat and/or sucrose
(Collins et al. 2015), and two recent reports described the
development of locomotor sensitization to cocaine in adoles-
cent mice exposed to a restricted or continuous high-fat diet
(Baladi et al. 2015; Serafine et al. 2015). In contrast, several
reports, most of them performed in adult animals, suggest that
continuous access to fat diminishes the reinforcing efficacy of
cocaine (Davis et al. 2008; Morales et al. 2012; Thanos et al.
2010; Wellman et al. 2007).

Like drugs of abuse, food presents intense reinforcing
properties, and both share common mechanisms in the brain
reward system (DiLeone et al. 2012). Preclinical studies pro-
vided robust evidence confirming that free access to a high-fat
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diet (HFD) has considerable effects on the brain reward sys-
tem, producing changes in the dopaminergic system.
Ingestion of palatable foods activates dopaminergic neurons
within the nucleus accumbens (N Acc) and other reward cen-
ters (Kelley et al. 2005; Rada et al. 2005; Narayanaswami
et al. 2013), thereby decreasing DAT density (Huang et al.
2006). Over time, striatal DA D2 receptors become downreg-
ulated in obese rats (Davis et al. 2008; Johnson and Kenny
2010). Cone et al. (2010) observed that cocaine caused a dra-
matic increase in evoked DA in low-fat diet rats, but a much
smaller increase in HFD animals. Besides DA, the opioid and
the endocannabinoid systems also play important roles in the
reward process (de Macedo et al. 2016).

DA release in the N Acc is generally associated with the
reinforcing effects of food, whereas opioid signaling in this
area regulates its palatability and hedonic properties (Cota
et al. 2006; Esch and Stefano 2004). The MOr pathway plays
a major role in the stimulatory effect of high reward food on
the mesolimbic DA system (Tanda and Di Chiara 1998), and
MOr agonists in the VTA stimulate feeding behavior
(Figlewicz and Sipols 2010). Several studies show that palat-
able food increases DA release in the N Acc via activation of
the mu-opioid receptor pathway in the VTA (Kawahara et al.
2013; Pitman and Borgland 2015).

On the other hand, the endocannabinoid system (ECS)
plays a pivotal role in reward/reinforcement circuits of the
mesolimbic system (Cristino et al. 2014). The CB1 receptor
agonist raises extracellular DA, leading to an increase in the
frequency and amplitude of rapid dopamine transients in the N
Acc (Cheer et al. 2004). High-fat diets upregulate hippocam-
pal endocannabinoid system levels and hypothalamic 2-
Arachidonylglycerol (2-AG), indicating that highly palatable
foods may be more satisfying under these conditions (Massa
et al. 2010; Higuchi et al. 2012). Accordingly, CB1r antago-
nists reduce binge-like intake (Parylak et al. 2012) and the
increase in extracellular DA release in the N Acc mediated
by a novel intake of highly palatable food (Mellis et al. 2007).

In light of the aforementioned neuroadaptations, the con-
cept of food addiction has been suggested in recent years
(Volkow et al. 2013). Moreover, similarly to drugs of abuse,
withdrawal from and craving for specific kinds of foods have
also been observed andmeasured in humans (Rogers and Smit
2000). Several studies showed that sugar consumption leads
to a withdrawal syndrome similar to that which occurs under
opiate withdrawal (Avena et al. 2009). While the same has not
been confirmed with respect to high-fat food (Bocarsly et al.
2011), Teegarden and Bale (2007) did confirm that discontin-
uation of a high-fat diet led to an increased stress response and
the drive to seek palatable food.

To summarize, the literature shows that ingestion of a HFD
induces neuroadaptations that alter the reward system, affect-
ing dopaminergic, opioidergic, and endocannabinoid path-
ways, which modifies the response of animals to the effects

of drugs of abuse. The aim of the present study was to evaluate
how exposure to a HFD during adolescence interacts with the
motor and conditioned rewarding effects of cocaine. As no
studies have previously tested if sensitivity to the rewarding
effects of cocaine is altered after cessation of a HFD, we also
evaluated whether withdrawal of fat intake modifies these
effects. In a first experiment, we assessed the biochemical
effects of HFD exposure during adolescence, confirming if,
as expected (Ahrén and Scheurink 1998; Lin et al. 2000), fat
induced increases in serum leptin and decreases in ghrelin
levels, with a return to normal levels after 2 weeks of fat
abstinence. In addition, we determined CB1 receptor gene
expression in the N Acc and prefrontal cortex (PFC), μ recep-
tor gene expression in the N Acc, and ghrelin receptor gene
expression in the VTA. As expected, fat exposure during
adolescence increased leptin and ghrelin plasmatic levels,
while withdrawal from fat normalized them. Equally, with-
drawal of the HFD normalized several of the fat-induced
changes in CB1r and MOr gene expression. These results
confirm that HFD induces biochemical changes in brain
reward structures that can modify cocaine-induced motor
and rewarding responses. Based on the literature, our first
behavioral hypothesis was that continuous exposure to a
HFD would reduce the conditioned rewarding effects of
cocaine. To test this hypothesis, we induced CPP with an
effective dose of cocaine (6 mg/kg). The lack of effect dur-
ing both HFD ingestion and withdrawal suggested that HFD
exposure during adolescence did not undermine the reward-
ing effects of cocaine. Subsequently, we induced CPPwith a
subthreshold, noneffective dose of cocaine (1 mg/kg) to test
an increase in CPP sensitivity. Although no effect was de-
tected while the HFD was maintained, during fat withdraw-
al, an increased sensitivity to the conditioned rewarding and
motor effects of cocaine was observed. These results sug-
gest that continuous exposure to fat during adolescence in-
duces neuroadaptations that will be expressed after cessa-
tion of fat consumption and which will increase anxiety
levels. Therefore, our results support the hypothesis that
high-fat food presents addictive properties. Our last exper-
iment, based on this endorsement of our original hypothesis,
aimed to test if a HFD acts as an alternative reinforcer that
competes with cocaine to decrease drug priming-induced
reinstatement of CPP.

Several human studies report that cessation of drug abuse
following a period of chronic intake is related to hyperpha-
gia and weight gain (Edge and Gold 2011). However, there
are no preclinical studies which confirm that food helps
people to quit drugs. Only Orsini et al. (2014) recently re-
ported that rats with a history of chronic amphetamine ex-
posure increased their consumption of palatable food. Our
results confirm that fat can act as an alternative reinforcer, as
reinstatement of cocaine-induced CPP was decreased in
mice exposed to HFD.
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Materials and methods

Subjects

A total of 179 male mice of the OF1 outbred strain were
acquired commercially from Charles River (Barcelona,
Spain). Animals were 21 days old on arrival at the laboratory
and were all housed under standard conditions in groups of 4
(cage size 28 × 28 × 14.5 cm) for 8 days prior to initiating the
experimental feeding condition, at a constant temperature
(21 ± 2 °C), with a reversed light schedule (white lights on
19:30–7:30 hours) and food and water available ad libitum
(except during the behavioral tests). All procedures involving
mice and their care complied with national, regional, and local
laws and regulations, which are in accordance with Directive
2010/63/EU of the European Parliament and the council of
September 22, 2010, on the protection of animals used for
scientific purposes. The Animal Use and Care Committee of
the University of Valencia approved the study.

Feeding conditions

Two different types of diet were used in this study. The control
group was fed with a standard diet (Teklad Global Diet 2014,
13 kcal % fat, 67 kcal % carbohydrates, and 20% kcal protein;
2.9 kcal/g) and the high-fat diet group with a high-fat diet
(TD.06415, 45 kcal % fat, 36 kcal % carbohydrates, and
19% kcal protein; 4.6 kcal/g). Both diets were supplied by
Harlan Laboratories Models, S. L. (Barcelona, Spain) and will
be referred to as the standard diet (control) and the HFD from
this point forward.

Mice were acclimated for 8 days before initiating experi-
ments. They were then randomly divided into groups with
similar average bodyweight (25–26 g) and assigned either
the control (C) or HFD.Water was freely available at all times.

Drug treatment

For CPP, animals were injected i.p. with 1, 6, or 25 mg/kg of
cocaine hydrochloride (Laboratorios Alcaliber S. A., Madrid,
Spain) diluted in physiological saline. The dose of 1 mg/kg
cocaine used to induce CPP was based on previous studies
(Vidal-Infer et al. 2012; Maldonado et al. 2006) in which it
was shown to be a subthreshold dose. The dose of 6 mg/kg
cocaine has been demonstrated to be effective for inducing
CPP but not reinstatement (Maldonado et al. 2006). For the
acute response to the motor effects of cocaine, naive animals
were injected with 10 mg/kg cocaine. The highest dose of
cocaine employed (25 m/kg) induced strong CPP and rein-
statement of the preference with progressively lower priming
doses (Ribeiro Do Couto et al. 2009).

Apparatus and procedure

Experimental design

An overall and more detailed description of the experimental
procedure of each experiment is provided in Table 1. In the
first experiment, animals were divided into three groups: con-
trol, fed the standard diet; continuous HFD, with access to fat
throughout the whole study; and HFD, 15-day withdrawal
(HFD 15W) which had access to fat until 15 days before the
initiation of behavioral tests. Both HFD groups were fed fat
for 40 days (from PND 29 until PND 69), while the HFD
group continued to consume the diet until the end of the be-
havioral studies. Mice in the HFD 15W group arrived at the
laboratory 15 days before control and HFD groups. They were
exposed to the same experimental procedures but were
switched on PND 69 to a standard diet and remained undis-
turbed in their home cages until PND 84, when the CPP pro-
cedure was initiated.

One set of animals (n = 10/condition) was employed to
extract blood samples and brains on PND 69 to carry out gene
expression studies with real-time PCR analyses and to deter-
mine circulating leptin and ghrelin levels. In another set of
mice, behavioral tests started on PND 69 for control and
HFD groups or on PND 84 for the HFD 15W group. A first
set of animals was conditioned with 6 mg/kg cocaine in the
CPP (control n = 12; HFD n = 14; HFD 15W n = 9). A second
set of animals performed the elevated plus maze (EPM) and
then underwent 1 mg/kg cocaine-induced CPP (control n = 11;
HFD n = 13; HFD 15W n = 15). Finally, a third set of mice
(n = 15/condition) was challenged with an effective dose of
cocaine (10 mg/kg) and locomotor activity was measured in
the open field.

In the second experiment, only two groups of mice—con-
trol and HFD condition (n = 15 in both groups)—were ex-
posed to a standard diet until the day of post-conditioning on
which HFD animals began to have free access to high-fat food
in order to evaluate its effects on the extinction of the
preference.

Determination of plasma leptin and ghrelin concentrations

Plasma leptin concentrations were measured with an ELISA
kit from B-Bridge International (Cupertino, CA, USA) and
from Sigma-Aldrich (San Louis, EEUU) for ghrelin following
the manufacturer’s instructions. The sensitivity of the test is
0.2. All samples were run in duplicate.

Gene expression analyses: real-time PCR

For gene expression analyses, the protocol described previ-
ously (Rodriguez‐Arias et al. 2016) was followed. Brain sec-
tions were cut (500 μm) in a cryostat (−10 °C) at levels
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containing the regions of interest according to Paxinos and
Franklin (2001), mounted onto slides, and stored at −80 °C.
Sections were dissected following the method described by
Palkovits (1983). Total RNA was isolated from brain tissue
micropunches using TRI Reagent® (Ambion) and subse-
quently retrotranscribed to cDNA. Quantitative analysis of
the relative abundance of CB1, mu-opioid receptor and
GHSR gene expressions was performed with the Step One
Real Time PCR System (Life Technologies, Madrid, Spain).
All reagents were obtained from Applied Biosystems, and
manufacturer’s protocols were followed. The reference gene
used was 18S rRNA, detected using Taqman® ribosomal
RNA control reagents. The data for each target gene were
normalized to the endogenous reference gene, and the fold
change in target gene mRNA abundance was determined
using the 2(−ΔΔCt) method (Livak and Schmittgen 2001).

Conditioned place preference

For place conditioning, we employed 12 identical Plexiglas
boxes with two equally sized compartments (30.7 cm
length × 31.5 cm width × 34.5 cm height) separated by a gray
central area (13.8 cm length × 31.5 cm width × 34.5 cm
height). The compartments have different colored walls (black
vs white) and distinct floor textures (fine grid in the black
compartment and wide grid in the white one). Four infrared
light beams in each compartment of the box and six in the
central area allowed the recording of the position of the animal
and its crossings from one compartment to the other. The
equipment was controlled by two IBM PC computers using
MONPRE 2Z software (CIBERTEC S.A., Spain).

The place conditioning procedure, unbiased in terms of
initial spontaneous preference, was performed as described
previously (Maldonado et al. 2006) and consisted of three

phases. To summarize, in the first phase, known as precon-
ditioning (Pre-C), mice of 69 PND (and 84 PND in the case
of the withdrawal groups) were allowed access to both com-
partments of the apparatus for 15 min (900 s) per day on
3 days. On day 3, the time spent in each compartment during
a 900-s period was recorded, and animals showing a strong
unconditioned aversion (less than 33% of the session time)
or preference (more than 67%) for any compartment were
excluded from the experiment (the total number of animals
excluded in the three CPP studies was 16). Half the animals
in each group received the drug or vehicle in one compart-
ment, and the other half in the other compartment. After
assigning the compartments, no significant differences were
detected between the time spent in the drug-paired vs
vehicle-paired compartment during the preconditioning
phase. In the second phase (conditioning), which lasted
4 days, animals received an injection of physiological saline
immediately before being confined to the vehicle-paired
compartment for 30 min. After an interval of 4 h, they re-
ceived an injection of cocaine immediately before being
confined to the drug-paired compartment for 30 min.
Confinement was carried out in both cases by closing the
guillotine door that separated the two compartments, mak-
ing the central area inaccessible. During the third phase,
known as postconditioning (Post-C), the guillotine door
separating the two compartments was removed (day 8) and
the time spent by the untreated mice in each compartment
during a 900-s observation period was recorded. The differ-
ence in seconds between the time spent in the drug-paired
compartment during the Post-C test and the Pre-C phase is a
measure of the degree of conditioning induced by the drug.
If this difference is positive, then the drug has induced a
preference for the drug-paired compartment, while the op-
posite indicates that an aversion has developed.

Table 1 Experimental design

PND 29–68 69 70–77 78

84–91 (HFD 15W) 92 (HFD 15W)

Experiment 1, n = 149 Standard diet Control

High-fat diet HFD

High-fat diet HFD 15W

n = 30 Blood and
brain samples

n = 35 CPP (6 mg/kg) Extinction and
reinstatement tests

n = 39 Elevated plus maze CPP (1 mg/kg)

n = 45 Motor activity

PND 29–69 70–77 78–141

Experiment 2, n = 30 Standard diet Control

Standard diet High-fat diet HFD
CPP (25 mg/kg) Extinction and reinstatement tests
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Extinction of CPP All groups in which preference for the
drug-paired compartment had been established underwent a
weekly extinction session that consisted of placing the animals
in the apparatus (without the guillotine doors separating the
compartments) for 15 min. The extinction condition was ful-
filled when there was a lack of significant differences between
CPP scores in the extinction sessions and Pre-C test values in
two consecutive sessions.

Reinstatement of CPP Twenty-four hours after extinction
had been confirmed, the effects of a priming dose of cocaine
were evaluated. Reinstatement tests were the same as those
carried out in Post-C (free ambulation for 15 min), except that
animals were tested 15 min after administration of the respec-
tive dose of cocaine. When reinstatement of the preference
was achieved, and after a subsequent weekly extinction pro-
cess, a new reinstatement test was conducted with progres-
sively lower doses of the drug, until the CPP was completely
extinguished. This procedure of extinction-reinstatement was
repeated with decreasing doses (half the previous dose) until a
priming dose was confirmed to be ineffective. Priming injec-
tions were administered in the vivarium, which constituted a
noncontingent place to that of the previous conditioning
procedure.

Acute locomotor response to cocaine

Acute locomotor response to 10 mg/kg of cocaine was
assessed in an open field for a period of 30 min. The open
field test was performed in an opaque plastic box
(30 × 30 × 15 cm) opened at the top. The animal was placed
in the box 30 min before the injection to become habituated
and was subsequently injected i.p. with 10 mg/kg of cocaine.
Locomotor activity was then recorded for 30 min by an auto-
mated tracking control (EthoVision 3.1; Noldus Information
Technology, Leesburg, VA). The parameter studied was total
distance traveled (cm).

Elevated plus maze

The EPM consisted of two open arms (30 × 5 × 0.25 cm) and
two enclosed arms (30 × 5 × 15 cm). The junction of the four
arms formed a central platform (5 × 5 cm). The floor of the
maze was made of black Plexiglas, and the walls of the
enclosed arms of clear Plexiglas. The open arms had a small
edge (0.25 cm) to provide additional grip for the animals. The
entire apparatus was elevated 45 cm above floor level. In order
to facilitate adaptation, mice were transported to the dimly
illuminated laboratory 1 h prior to testing. At the beginning
of each trial, subjects were placed on the central platform so
that they were facing an open arm and were allowed to explore
for 5 min. The maze was thoroughly cleaned with a damp
cloth after each trial. The behavior displayed by the mice

was recorded automatically by an automated tracking control
(EthoVision 3.1; Noldus Information Technology, Leesburg,
VA). The measurements recorded during the test period were
frequency of entries and time and percentage of time spent in
each section of the apparatus (open arms, closed arms, central
platform). An arm was considered to have been visited when
the animal placed all four paws on it. Number of open arm
entries, time spent in open arms and percentage of open arm
entries are generally used to characterize the anxiolytic effects
of drugs (Pellow and File 1986; Rodgers et al. 1997).

Statistics

Data related to body weight in the first experiment were ana-
lyzed by a one-way analysis of variance (ANOVA) with a
within variable PND with nine levels—PND 29, 36, 43, 50,
57, 64, 69, 76, and 78. In experiment 2, bodyweight and food
intake were analyzed by a one-way ANOVA with a within
variable PND with 14 levels—PND 29, 36, 43, 50, 57, 64,
69, 76, 78, 82, 89, 96, 101, and 107. The EPM data were
analyzed by a one-way ANOVA with a between variable—
BDiet^—with three levels: control, HFD, and HFD 15W.

For CPP, the time spent in the drug-paired compartment
was analyzed bymeans of a mixed ANOVAwith one between
variable—Diet, with three levels (control, HFD, HFD
15W)—and a within variable—days, with two levels (Pre-C
and Post-C). Data related to extinction and reinstatement
values in the groups showing CPP were analyzed by means
of Student’s t-tests. Leptin and ghrelin levels were analyzed by
one-way ANOVAwith a between variable—Diet—with three
levels (control, HFD, HFD 15W). Gene expression values
were analyzed by a one-way ANOVA.

Results

Experiment 1: effects of HFD during adolescence
on the motor and the conditioned rewarding effects
of cocaine

Body weight and food intake

As seen in Fig. 1a, the ANOVA for body weight revealed a
significant difference of the variable Days [F(8.336) = 655.873;
p < 0.001], as all animals exhibited an increase in body weight
throughout the duration of the experiment. There was also an
effect of the variable Diet [F(2.42) = 13.461; p < 0.001] and the
interaction Days × Diet [F(16.336) = 9.856; p < 0.001). Both
groups of mice exposed to fat (HFD and HFD 15W) displayed
significantly higher weight with respect to the control group on
days 36, 43, 50, 57, 64, 69, 76, and 78 (p < 0.01).

With respect to daily food intake (see Fig. 1b, c), the
ANOVA of the grams and kcal of food intake revealed an
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effect of the variable Diet [F(2.9) = 17.388; p < 0.001] and
[F(2.9) = 8.567; p < 0.01] and the interaction Days × Diet
[F(16.72) = 9.394; p < 0.001] and [F(16.72) = 3.713;
p < 0.001]. Animals in both HFD groups showed a decrease
in grams of food intake from PND 29 to PND 69 and also on
PND 78 with respect to the control group. On PND 76, after
7 days without access to fat, animals in the HFD 15W group
increased their intake in grams of standard foodwith respect to
the HFD group (p < 0.01). In terms of intake of kcal, animals
in both HFD groups showed an increase with respect to the
control group on PND 29 (p < 0.001), 36 and 43 (p < 0.01),
and PND 78 (only HFD group, p < 0.05).

Effects of a HFD on circulating leptin and ghrelin levels
and MOr, CB1r, and GHSR gene expression

With respect to circulating leptin levels (Table 2), the ANOVA
revealed [F(2.27) = 4.59; p < 0.05] that animals in the HFD
group showed an increase with respect to those in the standard
diet group (p < 0.05).With respect to circulating ghrelin levels
(Table 2), the ANOVA [F(2.27) = 4.294; p < 0.05] revealed a
decrease in the HFD group (p < 0.05).

On the other hand, real-time PCR analyses (Fig. 2.) showed
an effect of the variable Diet in the CB1r expression in N Acc
[F(2.27) = 7234; p < 0.01] and PFC [F(2.27) = 6364;

p < 0.01], MOr gene expression [F(2.27) = 4641; p < 0.01]
and GHSR expression [F(2.27) = 16,019; p < 0.001].
Bonferroni post hoc analyses indicated that exposure to a
HFD during adolescence decreased CB1 receptor gene ex-
pression in the N Acc (p < 0.05) and PFC (p < 0.01)
(Fig. 2a, b). Although animals in the HFD 15W group also
exhibited decreased expression of the CB1 receptor in the N
Acc with respect to the control (p < 0.001) group, expression
levels in the PFC became normalized, showing a decrease
when compared to the HFD group (p < 0.05). In relation to
MOr gene expression, values in the HFD group were in-
creased in the N Acc with respect to the control group
(p < 0.01) (Fig. 2c), but became normalized in the HFD
15W (p < 0.05 with respect HFD group). Finally, regarding
GHSR gene expression (Fig. 2d), animals in the HFD group
presented decreased gene expression with respect to controls
(p < 0.01). However, the HFD 15W group showed a signifi-
cant increase with respect to the control and HFD groups
(p < 0.001).

Conditioned place preference induced by 1 and 6 mg/kg
of cocaine

The ANOVA for the 6 mg/kg of cocaine-induced CPP
(Fig. 3a) revealed a significant effect of the variable Days
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Fig. 1 aBodyweight (measured weekly) of animals in the control group,
the HFD group, and the HFD 15W group. b Food intake in grams during
the whole procedure. c Food intake in kcal during the whole procedure.
Data are represented as the mean (± SEM) amount of body weight

measured weekly. HFD and HFD 15W groups showed a significant
difference with respect to the control group, *p < 0.05; **p < 0.01;
***p < 0.001
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[F(1.32) = 34.148; p < 0.001], as all the groups spent more
time in the drug-paired compartment in the Post-C test than in
the Pre-C test (p < 0.001). The Kaplan-Meier test showed no
differences between groups in the time required to achieve
extinction (control required 4 sessions, HFD required 5.7 ses-
sions, and HFD 15W required 6.25 sessions). No reinstate-
ment of the preference was achieved with a priming dose of
3 mg/kg of cocaine.

Results obtained for 1 mg/kg cocaine-induced CPP are
presented in Fig. 3b. The ANOVA revealed an effect of the
interaction of Days × Diet [F(2.36) = 4.204; p < 0.05]. CPP
developed only in the HFD 15W group, which spent more
time in the drug-paired compartment in Post-C than in Pre-C
(p < 0.01).

Acute response to 10 mg/kg cocaine

The ANOVA (see Fig. 3c) of the locomotor response to
10 mg/kg cocaine presented an effect of the variable Diet
[F(2.42) = 3.622; p < 0.05], showing that, after a single injec-
tion of 10 mg/kg cocaine, animals of the HFD 15Wexhibited
an increased locomotor response to cocaine when compared to
control mice (p < 0.05).

Effects of exposure to a continuous HFD during adolescence
on performance in the elevated plus maze in adulthood

In order to evaluate if cessation of fat administration produces
withdrawal symptoms, the behavior in the EPMwas tested on
PND 68. Mice undergoing fat withdrawal (HFD 15W)
showed a higher anxiogenic profile than control and HFD
groups (see Table 3), spending less time [F(2.42) = 11.901;
p < 0.001] and percentage of time [F(2.42) = 12.957;
p < 0.001] in the open arms of the maze (p < 0.001 in all
cases); performing a lower number [F(2.42) = 5.456;
p < 0.01] (p < 0.01 with respect to control), and percentage
[F(2.42) = 7.938 p < 0.001) of open arm entries (p < 0.01 in all
cases); and spending more time in the closed arms of the maze
[F(2.42) = 6.929; p < 0.01] (p < 0.01 with respect to control).

Experiment 2: effects of a high-fat diet
during the extinction and reinstatement of a 25 mg/kg
cocaine-induced CPP

Body weight and food intake

As seen in Fig. 4a, the ANOVA for body weight revealed no
significant differences between groups. There was an effect of
the variable Days [F(12.336) = 403.640; p < 0.001], as mice in
both groups showed an increase in body weight throughout
the study.

With respect to daily food intake (see Fig. 4b, c), the
ANOVA of the grams and kcal of food intake revealed an
effect of the variable Days [F(12.72) = 23.208; p < 0,001]
and [F(12.72) = 41.445; p < 0.001], and the interaction Days
× Diet [F(12.72) = 15.584; p < 0.001] and [F(12.72) = 38.155;
p < 0.001]. Animals of the HFD group showed a decrease of
food intake in grams (Fig. 4b) on PND 96, 101, and 107 with
respect to the control group (p < 0.05 and p < 0.01). The intake
in kcal (Fig. 4c) showed that animals in the HFD group ex-
hibited an increase in their kcal intake on PND 82 (p < 0.001),
PND 89 (p < 0.01), and PND 96 (p < 0.05) with respect to the
control group.

Extinction and reinstatement of 25 mg/kg cocaine-induced
CPP

The ANOVA revealed a significant effect of the variable Days
[F(1.26) = 21.527; p < 0.001]. Both groups spent more time in
the drug-paired compartment in the Post-C than in the Pre-C
test (p < 0.01) (see Fig. 5), and required five (control) and two
(HFD) sessions, respectively, to achieve extinction after Post-
C. The Kaplan-Meier test confirmed that the HFD group re-
quired significantly fewer sessions to achieve extinction
(χ2 = 20.648; p < 0.001). A Student’s t-test showed that a
priming dose of 12.5 mg/kg of cocaine reinstated the prefer-
ence in both control (p < 0.01) and HFD (p < 0.05) groups.
After this, animals in both groups required one session to
achieve extinction. No further reinstatement with 6.25 mg/kg
was obtained in the HFD group. However, once extinction
was achieved in the control group, the preference was reinstated
with 6.25 mg/kg (p < 0.05) and 3.125 mg/kg (p < 0.01). No
further reinstatement was achieved.

Discussion

Our results confirm that continuous exposure to a HFD during
adolescence induces neurobiological alterations that only par-
tially return to normal after fat withdrawal. We show that
prolonged consumption of a HFD during adolescence deeply
alters endogenous cannabinoid and opioid systems, leading to
a decreased CB1 receptors gene expression in the N Acc and

Table 2 Effects of a continuous HFDduring adolescence on circulating
leptin (ng/ml) and ghrelin (pg/ml) levels in controls and the HFD group
on PND 69, and in the HFD 15W group on PND 84

Plasma leptin (ng/ml) Ghrelin (pg/ml)

Control 2,3 ± 0,4 560 ± 65

HFD 5,5 ± 1,2 * 401 ± 18 *

HFD 15W 2,9 ± 1,3 488 ± 29

Data are presented as mean values ± SEM (ng/ml)

**p < 0.01; *p < 0.05 with respect to the control group
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PFC and increased mu-opioid receptor gene expression in the
N Acc. After withdrawal from fat, these changes return to
control levels, with the exception of CB1 receptor gene ex-
pression in N Acc, which continues to be decreased. Equally,
plasmatic concentrations of leptin and ghrelin are altered dur-
ing fat ingestion, normalizing after cessation of fat ingestion.
However, GHSR gene expression in the VTA, which de-
creases during fat diet, increases during withdrawal. These
neuroadaptations are accompanied by alterations in the condi-
tioned rewarding effects of cocaine. Although no changes in
cocaine-induced CPP were observed when our animals con-
tinued to consume the HFD, there was an increase in the
rewarding and motor effects of cocaine after cessation of said
diet. Finally, we demonstrate that continuous exposure to a
HFD during the extinction period of cocaine-induced CPP
reduces the time required to achieve extinction and diminishes
reinstatement of the preference induced by a priming dose of
cocaine, which confirms the ability of fat ingestion to act as a
reinforcer.

In agreement with previous reports, our model of continu-
ous access to fat induced significant differences in body
weight between the standard diet and the HFD groups
(Wellman et al. 2007; Morales et al. 2012). Hence, our data
suggest that a HFD during adolescence induces a more
marked progressive weight gain than that observed in control
mice, which eventually leads to obesity in adulthood. As

expected, animals in the HFD group showed increased leptin
plasma concentrations with respect to the standard diet group
(Ahrén and Scheurink 1998; Lin et al. 2000). As we have
previously reported in mice exposed to a high-fat binge, plas-
matic ghrelin concentrations were significantly lower in mice
on the HFD (Blanco-Gandia et al. 2017). Ghrelin plays an
important role in nutritional homeostasis (Schellekens et al.
2013), and most reports show that ghrelin secretion is down-
regulated by a HFD (Beck et al. 2002; Lindqvist et al. 2005;
Bello et al. 2009), suggesting a deficit in satiety signals as a
result of exposure to such diets. Cessation of HFD ingestion
tended to normalize leptin and ghrelin in the HFD 15W group,
which did not differ from controls. These results suggest that
after 2 weeks of withdrawal of HFD intake, there is an ongo-
ing normalization process of the hormonal disturbances.

Reward-driven overeating is characterized by repeated cy-
cles of abstinence and craving, turning obesity into a chronic
condition (Alsiö et al. 2012), and its dopaminergic phenotype
is comparable to that of drug addicts. Obese subjects display
significantly less D2 binding than healthy normal weight sub-
jects (Wang et al. 2001) and numerous studies in animal
models confirm these data. Chronic intake of fat induces lower
basal DA levels in the N Acc and VTA (Geiger et al. 2007,
2009; Cone et al. 2010; Rada et al. 2010), lower DA turnover
(Davis et al. 2008), lower DA release (York et al. 2010), and
reduced DA clearance in the N Acc (Speed et al. 2011).
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Fig. 2 Real-time PCR CB1 receptor relative gene expression evaluation
in the N Acc (a) and PFC (b) brain regions of control, HFD, and HFD
15Wanimals on PND 69 (control and HFD) and PND 84 (15Wanimals)
(n = 10 per group). c MOr relative gene expression evaluation in the N
Acc brain region of control, HFD, and HFD 15W animals on PND 69
(control and HFD) and PND 84 (15W animals) (n = 10 per group). d
GHSR relative gene expression evaluation in the VTA brain region of

control, HFD, and HFD 15Wanimals on PND 69 (control and HFD) and
PND 84 (15W animals). The columns represent means and the vertical
lines ± SEM of relative (2−ΔΔCtmethod) gene expression in the PFC, N
Acc, and VTA of OF1 mice. *, **, *** represent the values that differ
significantly (p < 0.05, p < 0.01, and p < 0.001) from those of their
corresponding control mice. +, +++ represent the values that differ from
the HFD group (p < 0.05 and p < 0.001)
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Endogenous opioid and endocannabinoid systems interact
very closely with DA, modulating the reward system. The
endogenous opioid system is strongly implicated in the regu-
lation of appetite, and specifically in fat consumption

(Sakamoto et al. 2015). We have observed that exposure to a
HFD during adolescence increases MOr gene expression in
the N Acc of animals on a HFD. In line with our results, MOr
binding has been reported to be increased in reward-related
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Fig. 3 a CPP induced by 6 mg/kg of cocaine in mice exposed to a
continuous HFD. Bars represent the time (± SEM) in seconds spent in
the drug-paired compartment before conditioning sessions in the
preconditioning test (white bars), after conditioning sessions in the
postconditioning test (black bars), in the last extinction session (light
gray bars) and during the reinstatement test (dark gray bars). The
reinstatement test was evaluated 15 min after a priming dose of
3 mg/kg cocaine. **p < 0.01, ***p < 0.001 significant difference in the
time spent in Post-C vs Pre-C sessions. b CPP induced by 1 mg/kg of

cocaine in mice exposed to a continuousHFD. Bars represent the mean (±
SEM) time in seconds spent in the drug-paired compartment before
conditioning sessions in the preconditioning test (white bars), after
conditioning sessions in the postconditioning test (black bars).
**p < 0.01 with respect to the Pre-C day. c Acute locomotor response
to cocaine. The bars represent the mean value (± SEM) of the total
distance (cm) in a period of 10 min after the cocaine injection
(10 mg/kg). *p < 0.05 with respect to control

Table 3 Effects of a HFD on the
performance of adolescent mice
in the elevated plus maze

Control HFD HFD 15w

Time in open arms 124.6 ± 12.9 129.8 ± 11.3 54.9 ± 13.4***+++

% Time in open arms 53.5 ± 4.7 59.3 ± 3.9 27.4 ± 5.9***+++

Time in central platform 59.5 ± 5.7 75.6 ± 6.2 90.2 ± 11.7

Time in closed arms 104.5 ± 10 83.8 ± 5.5 140.1 ± 15.7++

Entries in open arms 26.8 ± 2.6 35.3 ± 2.7 20.5 ± 4.2++

% Open entries 63.2 ± 4.7 64.8 ± 3.7 43.6 ± 4.5**++

Entries in closed arms 15.3 ± 2 21.7 ± 4.9 23.7 ± 3.2

Total entries 42.1 ± 2.4 57 ± 6.3 44,3 ± 6,8

. Data are presented as mean values ± SEM

Differences with respect to the control group *p < 0.05; **p < 0.01; ***p < 0.001; differences with respect to the
HFD group + p < 0.05; ++ p < 0.01; +++ p < 0.001
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sites in HFD-obese rats, such as the basomedial or basolateral
amygdala, or the hypothalamus (Smith et al. 2002; Barnes
et al. 2003). This increase in MOr expression may reflect a
decreased release of endogenous opioid peptides. The mu-

opioid system in reward-related areas may be inhibited in
dietary obesity, probably by increased plasma leptin and/or
insulin. In support of this hypothesis, we have previously re-
ported contrary results after binge exposure to a fat diet during

0

20

40

60

80

100

120

140

29 36 43 50 57 64 69 76 78 82 89 96 101 107 114 121 128 135

Food intake (kcal)

Control HFD-post C

0

5

10

15

20

25

30

29 36 43 50 57 64 69 76 78 82 89 96 101 107 114 121 128 135

Food intake (gr)

Control HFD-post C

20

25

30

35

40

45

50

29 36 43 50 57 64 69 76 78 82 89 96 101 107 114 121 128 135

Body weight

Control

HFD-post C25mg/kg cocaine CPP HFD administra�on

PND

25mg/kg 
cocaine CPP

HFD administra�on

25mg/kg 
cocaine CPP

HFD administra�on

a)

b) c)

*
*

**
***

**
**

W
ei

gh
t (

gr
)

Fig. 4 a Body weight (measured weekly) of animals in the control group
and the HFD Post-C group. b Food intake in grams during the whole
procedure. c Food intake in kcal during the whole procedure. Data are

represented as the mean (± SEM) amount of body weight measured
weekly. HFD and HFD 15W groups showed a significant difference with
respect to the control group, *p < 0.05; **p < 0.01, ***p < 0.001

25mg/kg cocaine–induced CPP + HFD post –treatment

250

300

350

400

450

500

550

600

HFD-post CControl

Ti
m

e 
(s

) i
n 

th
e 

dr
ug

-p
ai

re
d 

co
m

pa
rtm

en
t

**

**

*

**

**

*

Pre-C

Post-C

Ex�nc�on

Reinstatement

Fig. 5 CPP induced by 25 mg/kg of cocaine in mice receiving a standard
diet. After Post-C, animals in the HFD Post-C group were fed a
continuous high-fat diet to explore its effect on extinction and
reinstatement. Bars represent the time (± SEM) in seconds spent in the
drug-paired compartment before conditioning sessions in the pre-
conditioning test (white bars), after conditioning sessions in the post-

conditioning test (black bars), in the last extinction session (light gray
bars) and during the reinstatement test (dark gray bars correspond to
reinstatement of the following doses from left to right: 12.5, 6.25,
3.125, and 1.56 mg/kg). *p < 0.05; **p < 0.01 significant difference in
the time spent in Post-C vs Pre-C sessions and reinstatement vs extinction

2346 Psychopharmacology (2017) 234:2337–2352



adolescence, showing a decreased MOr gene expression with-
out altering leptin levels (Blanco-Gandia et al. 2017).

Endocannabinoids affect appetite for specific dietary com-
ponents through CB1 receptors, with N Acc constituting a
critically involved area of the brain (South and Huang 2008;
Higuchi et al. 2011; Deshmukh and Sharma 2012). In the
present study, we have shown how animals on a HFD exhibit
decreased CB1 receptor gene expression in the PFC and N
Acc. In the same line, certain studies report that CB1 receptor
density in the N Acc or in the hypothalamus is reduced by
20% in HFD-fed animals (Di Marzo et al. 2001; Bello et al.
2012; Martire et al. 2014; Blanco-Gandia et al. 2017). Several
reports have pointed out that leptin regulates not only DA ac-
tivity but also opioidergic and endocannabinoid systems.
Leptin injections reduce endocannabinoid levels in the hypo-
thalamus (Di Marzo et al. 2001) or reverse mu-opioid-
stimulated sucrose feeding in the VTA (Figlewicz et al. 2007).
Our results confirm these interactions, since a HFD during ad-
olescence increased levels of leptin, which would interact with
the opioid and endocannabinoid neurotransmission systems,
among others.

Two weeks after cessation of the HFD, the hormonal
disturbances and most of the changes in MOr and CB1
receptor gene expressions induced by the diet were
normalized. However, the decrease in CB1 receptor gene
expression in the N Acc was maintained. Few studies have
evaluated the effects of fat withdrawal, but Martire et al.
(2014) showed that a 15-week cafeteria diet induced a reduc-
tion of mRNA expression of MOr and CB1 receptors in the
VTA that was maintained 48 h after cessation of said diet. The
longer withdrawal period (2 weeks) in our study was probably
responsible for the different results obtained. In the same line,
Ong et al. (2013) showed that after 72 h of withdrawal of a
cafeteria diet, μ-opioid receptor expression was reduced in
CD and CD-W males but not females.

In addition, although GHSR in the VTAwas reduced dur-
ing fat consumption, a significant increase was observed after
2 weeks of abstinence. In agreement with our findings, previ-
ous reports have associated a reduction of GHSR expression
with continuous exposure to a fatty diet or adiposity (Kurose
et al. 2005; Zhang et al. 2013), but no reports have evaluated
GHSR gene expression after a period of withdrawal. Although
their study was not focused on fat deprivation, Wellman and
Abizaid (2015) also reported increases in hypothalamic
GHSR1a mRNA in response to food restriction. Ghrelin sig-
naling in the VTA is implicated in natural and drug-induced
reward (Wellman et al. 2013), suggesting that ghrelin recep-
tors facilitate the activation of DA circuits by psychostimulant
drugs. In this context, numerous studies have pointed out that
ghrelin increases the rewarding and locomotor effects of co-
caine (Wellman et al. 2005; Davis et al. 2007; Abizaid et al.
2011). GHSR are expressed in DA neurons (Naleid et al.
2005; Skibicka et al. 2011a; King et al. 2011) and ghrelin

induces food-motivated behavior via interaction with MOr
(Kawahara et al. 2009; Skibicka et al. 2011b). Similarly to
our results obtained during fat withdrawal, GHSR mRNA
was reported to be upregulated in the hypothalamus of ham-
sters after food deprivation and accompanied by an elevation
of circulating ghrelin concentration (Tups et al. 2004).
Therefore, the increase in GHSR expression could be a com-
pensatory response to the previous decrease in circulating
plasma ghrelin levels during a HFD.

Human studies show that obese individuals are less prone to
use recreational drugs and show less prevalence of substance
abuse disorders (Simon et al. 2006; Warren et al. 2005; Mather
et al. 2009). Preclinical data also suggest that obesity alters the
neural processing of rewarding stimuli, since both food and
drugs of abuse activate the reward system (Gambarana et al.
2003; Salamone et al. 2005; Pontieri et al. 1995). Although
Lockie et al. (2015) observed a normal development of
cocaine-induced CPP in adult mice exposed to a HFD, contin-
uous exposure diminished cocaine- or food-induced CPP in
adolescent rats (Morales et al. 2012), which suggests that ado-
lescence is a period of higher vulnerability. However, after ex-
posure to a HFD during the entire period of adolescence, our
mice did not exhibit such an attenuation of cocaine-induced
CPP. Given the range of doses studied (1 and 6 mg/kg), our
results are in accordance with those of Morales et al. (2012),
who observed a decreased sensitivity of cocaine-induced CPP
with 2 mg/kg of the drug but not with the other doses adminis-
tered (1, 4, and 8 mg/kg). Although the CPP procedure of that
study was different (biased CPP), like them, we also observed
that HFD mice did not develop CPP when conditioned with a
low dose of cocaine (1 mg/kg), as they behaved in the same
way as mice fed standard chow. Likewise, no differences were
observed in the CPP induced by 6 mg/kg of cocaine, as both
groups developed CPP and required the same number of ses-
sions for the preference to be extinguished, while, in agreement
with previous results, preference was reinstated in neither group
(Maldonado et al. 2006). A recent report shows that leptin at-
tenuates cocaine-induced increases in DA levels in the N Acc
and reduces the ability of cocaine-predictive stimuli to establish
CPP and to prolong the response of cocaine-seeking during
extinction (You et al. 2016). A similar response to the acute
locomotor effects of cocaine was also seen in controls and in
HFD-feed animals in our study, as it has been previously re-
ported (Baladi et al. 2012; Fordahl et al. 2016). However,
Collins et al. (2015) observed enhanced motor response in mice
consuming a HFD in comparison to mice consuming standard
chow. The lack of differences in the present study between
cocaine-induced CPP or locomotor activation in fat-fed mice
vs controls does not seem to be due to the lack of a leptin
response, since there was a significant increase of this hormone
in the HFD group.

Prolonged exposure to sugar-rich diets leads to physical
dependence, inducing physical symptoms of withdrawal
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when the food is removed (Avena 2007). In order to evaluate
if continuous exposure to a HFD induced similar alterations to
those seen in diets rich in sugar, we included an additional
group of mice that was exposed to fat during the whole of
the adolescent period, but which was changed to a standard
chow diet 15 days before initiation of the CPP (HFD 15W).
Data provided by the EPM confirmed that the HFD 15W
group showed an anxiogenic profile when compared with
the rest of groups, as shown by a reduction in the time spent
in the open arms. In line with our results, several studies have
reported an increase in anxiety levels up to 24 h after cessation
of continuous access to a HFD (Teegarden and Bale 2007;
Cottone et al. 2009; Sharma et al. 2013). Moreover, our data
show that withdrawal of continuous access to a HFD induced
a long-lasting increase in anxiety that was noticeable for up to
2 weeks. In addition, appetitive behavior to palatable foods
increases during cessation of such diets and can induce cross-
sensitization behavior with drugs of abuse. In agreement with
these results, we have observed that mice under withdrawal
from a fatty diet developed CPP after conditioning with a
subthreshold dose of cocaine (1 mg/kg), suggesting increased
sensitivity to the conditioned rewarding effects of cocaine,
which did not occur when HFD was consumed during the
CPP procedure. Equally, animals in the HFD 15W group ex-
hibited an increased acute locomotor response to 10 mg/kg
cocaine. Overall, our behavioral data are in line with those
of previous studies reporting an enhanced response to alcohol,
methamphetamine, and cocaine in animals forced to abstain
from sucrose (Avena et al. 2004; Avena and Hoebel 2003;
Gosnell 2005). There are practically no studies evaluating
the effect of abrupt cessation of a HFD on the response to
drugs of abuse. It is known that food restriction increases the
locomotor response of DA agonists such as quinpirole (Carr
et al. 2003), amphetamine (Deroche et al. 1993), and cocaine
(Stamp et al. 2008). Only one study has evaluated the effect of
withdrawal from chronic exposure to HFD on the locomotor
response of rats to cocaine, with no changes observed after
cessation of the HFD (Baladi et al. 2012). Differences in the
time exposed to HFD and the withdrawal period—shorter and
longer, respectively, in the Baladis’ study—and the use of
different rodent species (rats) could explain the divergent re-
sults. In short, we did not observe changes in CPP or in the
locomotor response to cocaine when our mice continued con-
suming a HFD, but an increased response to conditioned re-
warding and stronger motor effects of cocaine were apparent
when HFD was discontinued.

We have previously reported comparable results in mice
exposed to a high-fat binge during adolescence, which
showed CPP with a subthreshold dose of cocaine (Blanco-
Gandía et al. 2017). Therefore, mice consuming a high-fat
binge diet and mice under withdrawal from a HFD show an
increased sensitivity to the conditioned rewarding effects of
cocaine. In both cases, mice present a similar hormonal and

neurobiochemical profile and plasmatic levels of leptin and
ghrelin are within normal values. More remarkable, CB1 re-
ceptor gene expression in the N Acc is decreased and GHSR
in VTA is increased in both cases. Recent studies suggest that
leptin represents an endogenous antagonist of responses to
cocaine (You et al. 2016). A subset of VTA dopamine neurons
was shown to express leptin receptors (Hommel et al. 2006;
Leshan et al. 2010), which hyperpolarized DA neurons when
stimulated, thus decreasing their action potential firing fre-
quency (Hommel et al. 2006) and reducing extracellular DA
in the NAc (Krügel et al. 2003). These data suggest that leptin
directly inhibits DA neurons in the VTA. The possibility of
leptin resistance in our HFD obese mice cannot be ruled out
(Munzberg et al. 2005). However, several studies report do-
pamine inhibition in obese leptin-resistant animals (Davis
et al. 2009; Thanos et al. 2008). Therefore, we can hypothe-
size that, while animals are feeding on fat, the elevation of
leptin levels will decrease the response of the dopaminergic
mesolimbic system to cocaine. Our results suggest that this
decrease is not enough to block the conditioned rewarding
effect of an effective dose of cocaine (6 mg/kg). However,
after abrupt cessation of fat ingestion, DA neurons would
uncover the neuroadaptation due to their chronic inhibition
for higher leptin levels. When able to function without that
negative influence, a temporary increase in their responsive-
ness to drug stimuli would be observed.

An undermining of the endocannabinoid system can mod-
ulate the dopaminergic system and contribute to the sensitiza-
tion of cocaine reward. Since an increased ghrelin signal in the
VTA has been associated with more potent effects of cocaine,
the enhanced expression of GHSR in the VTA of mice ex-
posed to a HFB may have contributed to the increase in the
rewarding effects of cocaine observed in these animals. This
hypothesis would explain why HFD 15W mice developed
preference for a noneffective dose of cocaine.

Our results suggest that continuous exposure to fat during
adolescence induces neuroadaptations that continue to be
expressed after cessation of fat ingestion. Therefore, our re-
sults give support to the hypothesis that high fat food has
addictive properties. Clinical practice often reports that sub-
jects under treatment for cocaine dependence experience sig-
nificant weight gain during recovery, developing a pro-
nounced appetite, especially for high-fat food (VanBuskirk
and Potenza 2010; Billing and Ersche 2015; Balopole et al.
1979), and similar results have been obtained in animal
models (Bane et al. 1993; Avena and Hoebel 2003; Orsini
et al. 2014). Based on these studies, a second experiment
was performed to evaluate if a HFD, acting as an alternative
reinforcer, reduced cocaine-seeking during extinction of the
CPP and/or reinstatement. Our results confirmed that animals
with free access to high-fat food after conditioning with
25 mg/kg cocaine in the CPP showed an attenuated cocaine-
induced reinstatement and needed less time than control
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animals for the preference to be extinguished. A few studies
have evaluated these effects in animals. Kearns and Weiss
(2007) reported that pairing cocaine-related stimuli with alter-
native reinforcers, such as food, prevented reinstatement of
self-administration. Our results support some human studies
that point to the concept of Baddiction transfer,^ whereby one
addiction is replaced by another (Chechlacz et al. 2009). In
our case, the rewarding effects of cocaine conditioning would
seem to be replaced by food reward.

Conclusion

To sum up, our results provide biochemical and behavioral
evidence that nutritional manipulations can modify the re-
sponse and sensitivity to the rewarding effects of cocaine in
mice. Continuous exposure to fat alters the endocannabinoid
and endogenous opioid systems, perhaps through leptin in-
crease, and some of these alterations are maintained after fat
withdrawal. While abrupt discontinuation of fat induces in-
creased sensitivity to the rewarding and motor effects of co-
caine, chronic fat intake during cocaine withdrawal acceler-
ates extinction of cocaine memories and undermined reinstate-
ment, therefore acting as an alternative reward. Our results
highlight the close relationship between chronic intake of pal-
atable food and the rewarding effects of cocaine.
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