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Abstract

Background Nicotine addiction continues to be a health chal-
lenge across the world. Despite several approved medications,
smokers continue to relapse. Several human and animal stud-
ies have evaluated the role of the endogenous opioid system as
a potential target for smoking cessation medications.
Methods In this review, studies that have elucidated the role of
the mu (MORs), delta (DORs), and kappa (KORs) opioid recep-
tors in nicotine reward, nicotine withdrawal, and reinstatement of
nicotine seeking will be discussed. Additionally, the review will
discuss discrepancies in the literature and therapeutic potential of
the endogenous opioid system, and suggest studies to address
gaps in knowledge with respect to the role of the opioid receptors
in nicotine dependence.

Results Data available till date suggest that blockade of the
MORs and DORs decreased the rewarding effects of nicotine,
while activation of the MORs and DORs decreased nicotine
withdrawal-induced aversive effects. In contrast, activation of
the KORs decreased the rewarding effects of nicotine, while
blockade of the KORs decreased nicotine withdrawal-induced
aversive effects. Interestingly, blockade of the MORs and
KORs attenuated reinstatement of nicotine seeking. In
humans, MOR antagonists have shown benefits in select sub-
populations of smokers and further investigation is required to
realize their full therapeutic potential.

Conclusion Future work must assess the influence of polymor-
phisms in opioid receptor-linked genes in nicotine dependence,
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which will help in both identifying individuals vulnerable to
nicotine addiction and the development of opioid-based
smoking cessation medications. Overall, the endogenous opioid
system continues to be a promising target for future smoking
cessation medications.

Keywords Morphine - Nicotine - Mu - Kappa - Delta -
Nucleus accumbens

Abbreviations
AMPA Amino-3-hydroxy-5-methyl-4-
isoxazolepropionate/kainate

CPP Conditioned place preference

CPA Conditioned place version

DAMGO [D-Ala2,N-Me-Phe4,Gly-ol5]-enkephalin

DORs Delta opioid receptors

GNTI Guanidinonaltrindole

ICSS Intracranial self-stimulation

KORs Kappa opioid receptors

MK-801  (5R,10S5)-(—)-5-Methyl-10,11-dihydro-5H-
dibenzo[a,d]cylcohepten-5,10-imine

MORs Mu opioid receptors

NAcc Nucleus accumbens

NMDA  N-methyl-D-aspartate

VTA Ventral tegmental area

Introduction

Tobacco smoking continues to attract healthcare resources due
to the considerable morbidity and mortality associated with it
(USDHHS 2014). Aggressive efforts on the part of healthcare
professionals and organizations have certainly helped in
slowing down the tobacco epidemic. Despite these efforts,
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several millions of smokers continue to smoke and suffer the
consequences of smoking. Nicotine is a major component of
tobacco smoke that is primarily responsible for continued to-
bacco smoking (Stolerman and Jarvis 1995). The availability
of nicotine to teenagers in the form of E-cigarettes has
compounded the problem of tobacco smoking, and it appears
that the battle against nicotine addiction will continue for
some time in the future (Callahan-Lyon 2014). Even though
the Food and Drug Administration (FDA) has approved sev-
eral smoking cessation medications, long-term abstinence is
still a challenge for many smokers (D’Souza and Markou
2011). Hence, there is a continuous need to identify novel
targets for smoking cessation medications.

High rates of smoking are observed in disease states in-
volving the endogenous opioid system. For example, high
rates of smoking have been reported in individuals suffering
from chronic pain compared to the general population
(Andersson et al. 1998; Hutchinson et al. 2001; Jamison
et al. 1991; Zvolensky et al. 2010). The reasons for the high
rates of smoking in patients suffering from chronic pain are
not fully understood. One hypothesis put forth to explain this
phenomenon is that people suffering from chronic pain com-
pared to the general population may have higher vulnerability
to get addicted to drugs of abuse including nicotine (Ditre
et al. 2011; Hooten 2016). The endogenous opioid system
plays an important role in modulating pain (Kirkpatrick
et al. 2015). So does the endogenous opioid system have a
role in this increased vulnerability to nicotine addiction in
patients suffering from chronic pain? Incidentally, high rates
of tobacco smoking are observed in heroin-dependent and
methadone-maintained patients (Guydish et al. 2011; Miller
and Sigmon 2015; Talka et al. 2015b). Both methadone and
heroin act by stimulating the mu opioid receptors. Again, it is
not clear if high rates of smoking in opioid-dependent patients
is due to stimulation of the endogenous opioid system or due
to an independent vulnerability to nicotine addiction.
However, it has been reported that opioid-dependent smokers
respond poorly to smoking cessation medications and may be
at higher risk of relapse (Miller and Sigmon 2015). Therefore,
opioid-dependent smokers may represent a unique subset of
smokers. Overall, the above findings suggest prevalence of
nicotine addiction in disease states that involve the endoge-
nous opioid system. Further, patients suffering from chronic
pain and opioid-dependent patients provide significant oppor-
tunities to promote smoking cessation.

Support for a role of the endogenous opioid system in nico-
tine dependence comes from a large body of preclinical and
clinical studies. In fact, several studies have reported changes
in levels of opioid peptides and/or expression of opioid recep-
tors after exposure to acute and chronic nicotine (for review, see
Berrendero et al. 2010; Drews and Zimmer 2010;
Hadjiconstantinou et al. 2011; Kishioka et al. 2014). There is
also evidence to suggest that genetic polymorphisms in opioid
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receptors may increase vulnerability to development of nicotine
addiction and influence response to smoking cessation medica-
tions (Crist and Berrettini 2014). Taken together, the above
studies suggest a possible role for the endogenous opioid sys-
tem in development and treatment of nicotine dependence.

This review discusses our current state of knowledge with
respect to the role of the endogenous opioid system in nicotine
dependence using animal models. Additionally, the review
discusses relevant human studies that further our understand-
ing of the role of the opioid system in nicotine dependence.
Importantly, the review identifies several gaps in the literature
and challenges that exist and must be addressed for promoting
smoking cessation via manipulation of the endogenous opioid
system. The review thus adds to the above described erudite
reviews on the subject.

Development of nicotine dependence

Research in nicotine dependence largely focuses on three im-
portant phases. First is the acquisition and maintenance phase,
which is mediated by the reinforcing effects of nicotine.
Tobacco smoking produces a pleasurable rush, mild euphoria,
increased arousal, decreased fatigue, and relaxation in humans
(Henningfield et al. 1985). Similarly, nicotine administration in
animals maintains nicotine-seeking behavior (Markou 2008;
Watkins et al. 2000a). The second phase of nicotine dependence
is characterized by withdrawal symptoms upon abstinence from
smoking, which occur due to alteration of brain reward systems
following chronic nicotine exposure. Withdrawal symptoms in
nicotine-dependent smokers include depressed mood, anxiety,
irritability, craving, insomnia, and weight gain (Hughes et al.
1991; Shiffman and Jarvik 1976). Similarly, withdrawal of nic-
otine in nicotine-dependent animals results in increased rearing,
jumping, shakes, abdominal constrictions, chewing, scratching,
facial tremors, aversion demonstrated by conditioned place
aversion (CPA), and depression-like state characterized by ele-
vation of brain reward thresholds (Epping-Jordan et al. 1998,
Jackson et al. 2015; Jonkman et al. 2008; Malin et al. 2006;
Watkins et al. 2000a). Nicotine withdrawal in animals can be
either spontaneous when administration of nicotine is stopped
or precipitated when nicotine withdrawal is induced by admin-
istrating a nicotinic acetylcholine receptor (nAChR) antagonist.
Finally, the last phase in nicotine dependence is relapse
amongst abstinent smokers. Relapse can occur on exposure to
stressful situations, nicotine, or cues associated with tobacco
smoking (Brigham et al. 1990). Learned associations between
nicotine and environmental stimuli largely contribute to relapse
amongst abstinent smokers (Crombag et al. 2008). In animals,
presentation of environmental cues and contexts associated
with nicotine facilitates either preference for nicotine-
associated chambers or reinitiation of nicotine-seeking behavior
after a period of abstinence and/or extinction training (Caggiula



Psychopharmacology (2017) 234:1371-1394

1373

et al. 2002; Paterson et al. 2005; Stoker and Markou 2015).
Further, stress or priming with nicotine can also produce rein-
statement of nicotine-seeking behavior in animals (Buczek et al.
1999; Chiamulera et al. 1996; Shaham et al. 2003). Below, we
will discuss the role of endogenous opioids in the above de-
scribed phases of nicotine dependence.

Endogenous opioid system and nAChR systems
Neuronal nAChRs

The actions of nicotine in the brain are mediated by neuronal
nAChRs, which also serve as receptors for the endogenous
ligand acetylcholine. The activation of the neuronal nAChRs
opens an ion channel that allows for entry of sodium and cal-
cium ions and results in excitation of the neuron. Neuronal
nAChRs are composed of five subunits of either only alpha
type (i.e., homomeric) or mixture of alpha and beta type sub-
units (i.e., heteromeric) (Dani and Bertrand 2007). Based on the
type of alpha (x2-«9) and beta (31-34) subunits that come
together to form the heteromeric nAChRs, these receptors gen-
erally have a lot of diversity and vary in pharmacological re-
sponse to nicotine and acetylcholine. In contrast, homomeric
nAChRs are most commonly formed of five &7 subunits and
are frequently located on glutamatergic neurons (Mansvelder
and McGehee 2000, 2002; McGehee et al. 1995). Neuronal
nAChRs are widely distributed throughout the CNS and can
be found in several brain regions such as the nucleus accum-
bens (NAcc), amygdala, hippocampus, cortex, globus pallidus,
thalamus, hypothalamus, and ventral tegmental area (VTA).

Opioid receptors and peptides

Opioid receptors were first discovered in the 1970s and are
broadly classified into three types: mu opioid receptors
(MORs), kappa opioid receptors (KORs), and delta opioid re-
ceptors (DORs) (Kieffer and Evans 2009; Pert and Snyder
1973). Several endogenous peptides activate these opioid re-
ceptors including 3-endorphin, met- and leu-enkephalin, and
dynorphins (Berrendero et al. 2010). These endogenous pep-
tides have differing affinity for the opioid receptors. The (3-
endorphin has the highest affinity for the MORs, the met- and
leu-enkephalin preferentially bind to the DORs, and dynorphins
are endogenous ligands for the KORs (Lutz and Pfister 1992).
The opioid receptors are coupled to inhibitory-type G-proteins
(Gy/Gy), and therefore, activation of these receptors by endoge-
nous ligands or exogenous agonists have an inhibitory effect on
neuronal activation or neurochemical release (Kieffer and
Evans 2009). These inhibitory actions are mediated by a num-
ber of intracellular events and can include the following: inhi-
bition of adenyl cyclase, reduction in the opening of voltage-
gated calcium channels, and stimulation of potassium current

through several channels including G-protein inwardly rectify-
ing potassium channels (GIRKSs). Opioid receptors are located
at both pre- and post-synaptic sites and are associated with
modulation of neurotransmitter release. Further, repeated ago-
nist stimulation results in changes in functional activity and/or
expression of opioid receptors (Dang and Christie 2012).
Finally, heterodimerization has been reported between the
MORs and KORs and also between the MORs and DORs
(Chakrabarti et al. 2010; Pradhan et al. 2011).

Opioid receptors and their endogenous ligands are distrib-
uted throughout the CNS and peripheral tissues (Le Merrer
et al. 2009; Mansour et al. 1995). Specifically, opioid recep-
tors are found in several limbic and cortical nuclei such as the
NAcc, amygdala, hippocampus, prefrontal cortex, globus
pallidus, thalamus, hypothalamus, and VTA. These brain re-
gions form parts of circuitries mediating reward, pain, mood,
anxiety, and emotional responses. In summary, there is signif-
icant overlap in distribution of neuronal nACh and opioid
receptors in the brain. Additionally, while nAChRs are excit-
atory in nature, the opioid receptors are inhibitory in nature.

Interaction between opioid and nACh receptor systems

Nicotine does not bind directly to opioid receptors. Instead,
nicotine binds to nAChRs located on presynaptic terminals of
neurons containing opioid peptides. Thus, the effect of nicotine
on opioid peptide release is largely indirect. Additionally,
nAChRs are also located on somatodendritic regions and can
influence excitability of opioid-containing neurons (Barik and
Wonnacott 2009). The nicotine-induced release of different opi-
oid peptides is regulated differently depending on the peptide.
Nicotine-induced increase in met-enkephalin is glutamate-
dependent and occurs via activation of «7-containing
nAChRs (Isola et al. 2000). Thus, blockade of the ionotropic
glutamate receptors (i.e., N-methyl-D-aspartate (NMDA) and
amino-3-hydroxy-5-methyl-4-isoxazolepropionate/kainate
(AMPA)) located on opioid-containing neurons can attenuate
nicotine-induced met-enkephalin release. In contrast to met-en-
kephalin, nicotine-induced increase in (3-endorphin is depen-
dent on nicotine-induced dopamine release and D, dopamine
receptors (Hadjiconstantinou and Neff 2011). Finally, nicotine-
induced increase in dynorphin release was blocked by nAChR
antagonists, D, receptor antagonists, and NMDA receptor an-
tagonists (Isola et al. 2009). Therefore, nicotine-induced
dynorphin release is regulated by multiple neurotransmitter sys-
tems. Repeated exposure to nicotine can alter expression and/or
functioning of the different opioid receptors, which are
discussed in detail below.

It must be mentioned here that endogenous acetylcholine
release can be altered by presynaptic opioid receptors located
on cholinergic neurons. For example, pharmacological activa-
tion of opioid receptors located on striatal, cortical, and hip-
pocampal brain slices resulted in inhibition of acetylcholine
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release (Lapchak et al. 1989). It is not known if these in vitro
findings also occur under in vivo conditions. Theoretically, in-
hibition of ACh release in vivo by endogenous opioids can
result in upregulation of the corresponding nAChRs. This will
make the nAChRs more sensitive to nicotine and can in turn
influence release of endogenous opioids. Together, these data
suggest reciprocal regulation of nACh and opioid receptors by
nicotine and endogenous opioid peptides. In summary, the data
suggest complex interactions between the neuronal nACh and
opioid receptors, which requires further exploration.

MORSs and nicotine-induced effects

MORs are involved in drug reward and several drugs of abuse
such as morphine and heroin act primarily by stimulating the
MORs (Charbogne et al. 2014; Le Merrer et al. 2009). In this
section, we focus on the role of MORs in the reinforcing
effects of nicotine, nicotine withdrawal, and reinstatement of
nicotine seeking (see Fig. 1). Effects of pharmacological and
genetic manipulations of MORs on nicotine-induced behav-
iors are summarized in Tables 1 and 2, respectively.

MORs and reinforcing effects of nicotine

Based on the role of MORSs in reward, it is hypothesized that
indirect nicotine-induced stimulation of the MORs will facil-
itate the rewarding effects of nicotine, while blockade of the
MORs will attenuate the rewarding effects of nicotine.
Consistent with this hypothesis, MOR antagonists
naloxanazine and naloxone attenuated intravenous nicotine
self-administration in rats (Ismayilova and Shoaib 2010; Liu
and Jernigan 2011, but see also DeNoble and Mele 2006) (see
Table 1)]. Interestingly, naltrexone, another MOR antagonist
did not attenuate nicotine self-administration in Sprague-
Dawley rats (Corrigall and Coen 1991; Liu et al. 2009). It is
not clear if differences in pharmacology of naltrexone vs.
naloxanazine contributed to differences in the above findings.
Naloxanazine specifically targets type | MORs, while naltrex-
one targets both type 1 and type 2 MORs. Further, nicotine
self-administration protocols and rat strains were different be-
tween the studies and could have contributed to the reported
findings. Additionally, MOR antagonists naloxone and
glycyl-glutamine attenuated nicotine-induced conditioned
place preference (CPP) (Goktalay et al. 2006; Walters et al.
2005). Further, naloxone-mediated decrease in nicotine-
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Fig. 1 The figure represents effects of pharmacological and genetic
manipulations of the endogenous opioid system on nicotine-dependent
behaviors such as nicotine reward, nicotine withdrawal-induced effects,
and reinstatement of nicotine secking. As shown in the figure, it appears
that mu opioid receptors (MORs) and delta opioid receptors (DORs) play
a similar role in nicotine-dependent behaviors. Knockout of the MORs
and DORs decreased the rewarding effects of nicotine. These findings are
consistent with pharmacological studies, which suggest that blockade of
the MORs and DORs decreased the rewarding effects of nicotine. Further,
activation of the MORs and DORs decreased the aversive effects
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associated with nicotine withdrawal. In comparison to the MORs and
DORs, the kappa opioid receptors (KORs) appear to play an opposite
role in nicotine reward and nicotine withdrawal. Pharmacological
activation of the KORs decreased the rewarding effects of nicotine,
while blockade of the KORs blocked the aversive effects associated
with nicotine withdrawal. Interestingly, blockade of the MORs and
KORs attenuated reinstatement of nicotine seeking in animals
suggesting that such compounds may help to prevent relapse in
humans. The effects of knockout of the KORs in nicotine-dependent
behaviors has not been investigated
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induced CPP was shown to be mediated via a decrease in
cAMP response element binding protein (CREB) phosphory-
lation (Walters et al. 2005). Even though these pharmacolog-
ical studies reveal the role of MORs in the reinforcing effects
of nicotine, the role of MORSs in animal models with extended
access to nicotine have not been demonstrated. Additionally, it
remains to be determined if effects of repeated administration
of the MOR antagonists such as naloxone and naltrexone on
nicotine self-administration are similar to effects of acute ad-
ministration of these compounds as described above. The lat-
ter studies will help in determining development of tolerance
to the effects of MOR receptor antagonists on the reinforcing
effects of nicotine.

Consistent with the role of MORSs in nicotine reward, both
nicotine-induced behavioral sensitization and nicotine-
induced CPP was attenuated in mice lacking the MORs com-
pared to the wild-type mice (Berrendero et al. 2002; Walters
et al. 2005; Yoo et al. 2004). Additionally, mice lacking f3-
endorphin, the endogenous ligand for the MORs, showed at-
tenuated nicotine-induced CPP (Trigo et al. 2009). There is
indirect evidence to suggest that nicotine increases release of
[3-endorphin and activates the MORs (Davenport et al. 1990).
However, direct evidence is lacking, and in fact, an in vivo
microdialysis study showed no increase in (3-endorphin levels
in the NAcc after acute nicotine administration (Olive and
Becker 2008). Taken together, these data suggest that MORs
and its endogenous ligand [3-endorphin mediate the reinforc-
ing effects of nicotine.

The rewarding effects of nicotine like other drugs of abuse
are mediated by mesolimbic dopaminergic neurons, which orig-
inate in the VTA and project to different brain regions including
the NAcc and amygdala (Koob and Volkow 2010). MORs are
extensively distributed in both the NAcc and VTA (Mansour
et al. 1988). Activation of MORs in the VTA increased dopa-
mine levels in the NAcc and inhibited VTA dopaminergic neu-
rons projecting to the amygdala (Devine et al. 1993; Ford et al.
2006). Similarly, nicotine administration also increased dopa-
mine levels in the NAcc and VTA (D’Souza et al. 2011; Di
Chiara and Imperato 1988a; Rahman et al. 2004). Future studies
need to explore the effects of pharmacological and/or genetic
manipulation of MORs in specific brain regions such as the
NAcc and VTA on nicotine self-administration and/or
nicotine-induced CPP.

High rates of smoking have been reported in both heroin-
dependent and methadone-maintained patients (Guydish et al.
2011; Mello et al. 1980). Additionally, an increase in cigarette
consumption has been reported in patients using
buprenorphine, a partial agonist of the MORs (Mello et al.
1985; Mutschler et al. 2002). Interestingly, activation of
MORs in the frontal cortices was associated with reports of
cigarette liking and wanting in human smokers (Kuwabara
et al. 2014). It is not clear if the high rates of smoking in
methadone-maintained patients are because of stimulation of
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Table 2  Effects of nicotine in mice lacking specific opioid receptors

Opioid receptor Dose of nicotine Background Behavioral assay Effect observed in Reference
knockout mice strain knockout animals vs.
(e.g., MOR, DOR) wild-type animals
MORs Nicotine (0, 1, and C57/BL6 mice Locomotor activity No effect Berrendero
3 mg/kg, base; s.c.) et al. (2002)
Nicotine (0.05 mg/kg, C57/BL6 and Locomotor sensitization Decreased Yoo et al. (2004)
base; s.c. for 7 days; 129/0OLA mice
challenge dose
0.05 mg/kg, base; s.c.)
Nicotine (0.5 and C57/BL6 mice CPP Decreased Berrendero et al.
0.7 mg/kg, base; s.c.) (2002)
Nicotine (1 and 2 mg/kg,  C57/BL6 mice CPP Decreased Walters
base; s.c.) et al. (2005)
Nicotine (10 mg/kg/day; ~ C57/BL6 mice Mecamylamine-precipitated Decreased Berrendero
6 days; infusion via withdrawal withdrawal signs et al. (2002)
nicotine pump)
DORs Nicotine (0, 0.35, 1.05, and C57BL/6J mice Locomotor activity No effect Berrendero
2.10 mg/kg, base; s.c.) etal. (2012)
Nicotine (0.17 mg/kg, C57BL/6J mice CPP Decreased Berrendero
base; s.c.) etal. (2012)
Nicotine (15 and C57BL/6J mice Self-administration Decreased Berrendero
30 pg/kg/infusion, base; etal. (2012)
s.c.)
Nicotine (8.77 mg/kg/day; C57BL/6J mice Mecamylamine-precipitated No effect Berrendero
6 days; infusion via withdrawal etal. (2012)

nicotine pump)

CPP conditioned place preference;

MORs or blockade of nAChRs. Studies suggest that metha-
done blocks a«3(4-containing nAChRs and activates «7-
containing nAChRs (Talka et al. 2015a; Xiao et al. 2001). It
is possible that the high rates of smoking in opioid-dependent
abusers may be independent of opioid abuse and could be due
to concurrent increased vulnerability to addiction in these in-
dividuals, a hypothesis that needs further exploration. To un-
derstand this phenomenon better, there is a need to develop
animal models assessing effects of both nicotine and heroin in
the same model. This could be done by exposing animals to
heroin prior to nicotine self-administration. Alternately, the
effects of nicotine exposure on heroin self-administration also
need to be assessed. Here, it must be mentioned that repeated
administration of nicotine sensitized animals to the rewarding
effects of morphine (Vihavainen et al. 2008). Such models
will facilitate our understanding of neurobiological changes
occurring with coabuse of heroin and nicotine. Further, these
models will potentially help in the development of better treat-
ments for heroin abusers with high rates of smoking. As a
caveat, it must be mentioned here that high rates of smoking
are not exclusive to opioid-dependent subjects and is also
reported amongst abusers of other drugs of abuse such as
stimulants and alcohol (Dawson 2000; Weinberger and
Sofuoglu 2009).

In human smokers, MOR antagonists attenuated the re-
warding effects of smoking. A decrease in the number of
cigarettes smoked has been reported in patients taking MOR
antagonists naltrexone and naloxone compared to placebo
(Epstein and King 2004; Gorelick et al. 1988; Karras and
Kane 1980; King et al. 2013a; King and Meyer 2000; Lee
et al. 2005, but see also Wong et al. 1999). This decrease in
cigarettes smoked amongst smokers after administration of
MOR antagonists reflects a decrease in the rewarding effects
of nicotine. Additionally, smokers reported decreased satisfac-
tion from smoking after naltrexone administration (Wewers
et al. 1998). Overall, both experimental studies in animals
and humans suggest a role for MORs in nicotine reward and
blockade of these receptors decreased the rewarding effects of
nicotine.

MORs and chronic nicotine exposure

Chronic nicotine exposure resulted in alteration in MOR
expression/functioning depending on the protocol of nicotine
treatment, time of collection of tissue, biomarker measured,
and species/strain of animals used (see Table 3). For example,
MORs were upregulated in the striatum after chronic nicotine
treatment (14 days) in Sprague-Dawley rats, when measured
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using [3H]-[D-Ala2,N-Me-Phe4,Gly-ol5]-enkephalin
(DAMGO) binding (Wewers et al. 1999). Interestingly, this
upregulation of MORs was sex-dependent with more promi-
nent effects in females than males. Additionally, MOR mRNA
expression was increased in the VTA, but not in the NAcc,
after chronic nicotine administration (8 days) in C57BL/6
mice (Walters et al. 2005). The dose of nicotine that produced
this increase in MOR mRNA expression also produced
nicotine-induced CPP, thus suggesting that increased MOR
expression in the VTA expression possibly mediates the rein-
forcing effects of nicotine. Together, these findings suggest
increased MOR-mediated transmission after chronic nicotine
exposure. In contrast to the above findings, chronic nicotine
exposure via the oral route (7 weeks) in NMRI mice resulted
in no changes in MOR functioning or DAMGO binding in the
striatum and VTA (Vihavainen et al. 2008). Finally, a decrease
in MOR density was reported in the striatum (dorsal and ven-
tral) in C57BL/6 mice after chronic nicotine treatment
(Galeote et al. 2006). Overall, the above studies suggest that
MOR expression/function is altered by chronic nicotine treat-
ment, but these alterations depended on the nicotine adminis-
tration protocol, biomarker measured, time of collection of
brain tissue, and species/strain used in the study.

In addition to changes in MORs expression/functioning, de-
creases in hypothalamic f-endorphin levels and
proopiomelanocortin (POMC) mRNA levels have been reported
following chronic nicotine administration (Rasmussen 1998;
Rosecrans et al. 1985). The hypothalamic-pituitary axis plays
an important role in the aversive effects associated with nicotine
withdrawal (Koob and Volkow 2010). The hypothalamus also
plays an important role in regulating appetite, and changes in
appetite and weight gain are frequently associated with nicotine
withdrawal. Therefore, dysregulation in the (3-endorphin-MOR
system in the hypothalamus-pituitary axis possibly suggests a
role for MOR signaling in nicotine withdrawal. In current
smokers, increases in plasma levels of (3-endorphin have been
reported (Gilbert et al. 1992; Pomerleau et al. 1983). The increase
in plasma {3-endorphin was seen after smoking high doses of
nicotine and was accompanied by aversive symptoms such as
nausea, malaise, and general discomfort (Gilbert et al. 1992).
This suggests that the increase in peripheral 3-endorphin levels
is more a reflection of aversive effects associated with smoking.
However, it is not fully understood if this increase in plasma [3-
endorphin reflects a brain region-specific increase or generalized
increase in brain (3-endorphin levels.

The role of MORs in nicotine withdrawal has also been
investigated. Administration of MOR antagonist naloxone in
nicotine-dependent animals resulted in expression of somatic
signs of nicotine withdrawal (Biala et al. 2005; Malin et al.
1993). It is hypothesized that this naloxone-precipitated nico-
tine withdrawal syndrome could be mediated by binding of
naloxone to nAChRs. In fact, in vitro studies have demonstrat-
ed that naloxone can block nicotine-induced effects in cell

systems that lack opioid receptors (Tome et al. 2001). As a
caveat, it must be mentioned here that interaction of naloxone
with the nAChRs occurs at very high doses (Watkins et al.
2000b). Additionally, MOR agonist morphine attenuated
aversive somatic signs associated with spontaneous nicotine
withdrawal (Malin et al. 1993). In addition to precipitation of
somatic signs of nicotine withdrawal, low doses of the MOR
antagonist naloxone induced CPA in nicotine-dependent rats
(Ise et al. 2000; Watkins et al. 2000b). Administration of MOR
agonist morphine reversed mecamylamine-induced CPA in
nicotine-dependent animals (Ise et al. 2000). Watkins et al.
(2000b) reported elevation of brain reward thresholds in
nicotine-dependent rats only after administration of high doses
of naloxone. Interestingly, this high dose naloxone-induced
elevation of brain reward thresholds was also observed in
saline controls, suggesting that the effect of naloxone at high
doses on brain reward thresholds was not due to chronic nic-
otine exposure. Together, these pharmacological studies sug-
gest increased MOR-mediated transmission following chronic
nicotine exposure. Importantly, the data suggest that decrease
in MOR-mediated neurotransmission via blockade of MORs
in nicotine-dependent animals precipitated aversive affective
and somatic withdrawal signs. Further, activation of MORs in
nicotine-dependent animals attenuated aversive somatic and
affective signs associated with nicotine withdrawal. Thus,
MORs are involved in nicotine withdrawal and can serve as
targets to alleviate nicotine withdrawal-associated symptoms.

Intriguingly, somatic signs associated with mecamylamine-
precipitated nicotine withdrawal in nicotine-dependent mice
were attenuated in MOR knockout mice compared to their
respective wild-type controls (Berrendero et al. 2002).
Somatic manifestation of nicotine withdrawal are largely me-
diated by peripherally located receptors, and thus these find-
ings suggest that peripherally located MORs play an impor-
tant role in mediating the effects of nicotine withdrawal. The
apparent discrepancy between findings of this study using a
genetic approach and pharmacological studies discussed
above could be explained by compensatory neuroadaptations
that can occur following congenital knockout of a specific
gene in knockout animals. Further, as discussed above knock-
out of the MORs makes the animal less sensitive to the re-
warding effects of nicotine (Berrendero et al. 2002). Together,
these findings suggest that knockout of the MORs makes an-
imals less sensitive to the effects of nicotine. Future studies
should focus on compensatory changes occurring following
genetic knockout of MORs as such studies will help identify
factors that decrease sensitivity to nicotine. Such factors can
possibly be used in the future as targets for promoting
smoking cessation.

The role of MORs has also been investigated in human
smokers after a period of overnight abstinence (early withdraw-
al). Using [''C]-carfentanil, clinical studies have reported lower
availability of MORs in several brain regions such as the
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thalamus, amygdala, and basal ganglia in abstinent smokers
compared to non-smoking controls (Scott et al. 2007; Weerts
etal. 2014, but see also Falcone et al. 2012). Lower availability
of MORs is suggestive of decreased MOR-mediated neuro-
transmission. Importantly, the availability of MORs during ear-
ly abstinence was inversely proportional to the severity of nic-
otine dependence. Additionally, lower availability of MORs in
several mesolimbic brain regions (globus pallidus, thalamus,
ventral striatum, and amygdala) was associated with higher
craving for nicotine in nicotine-dependent smokers (Weerts
et al. 2014). In summary, these neuroimaging studies suggest
that decreased MOR-mediated neurotransmission is associated
with aversive effects of smoking cessation. However, it is not
known if these changes in availability of MORs are sustained or
restricted to the time point used in the above studies. Further,
the above described findings were observed after smoking of
denicotinized cigarettes and could reflect a response to cues
associated with smoking. Nevertheless, findings from animals
studies discussed above are consistent with neuroimaging find-
ings in abstinent smokers.

Clinical pharmacological studies evaluating the effects of
MOR antagonists on nicotine withdrawal symptoms suggest ei-
ther no effect or attenuation of nicotine withdrawal symptoms.
For example, administration of naloxone had no effect on nico-
tine withdrawal symptoms in nicotine-dependent human subjects
(Gorelick et al. 1988, but see also Krishnan-Sarin et al. 1999).
Similarly, naltrexone administration had no effect on withdrawal
symptom scores (Covey et al. 1999; Knott and Fisher 2007;
Rohsenow et al. 2007; Sutherland et al. 1995; Wong et al.
1999). Importantly, naltrexone reduced craving in nicotine-
dependent smokers (King et al. 2013a; King et al. 2006; King
et al. 2012). Studies also support use of naltrexone prior to quit
date in smokers wanting to quit. In fact, initiation of the MOR
antagonist naltrexone prior to the quit date in nicotine-dependent
smokers may help predict response to naltrexone during absti-
nence from smoking (King et al. 2013a). In other words, patients
who are sensitive to naltrexone prior to quitting may continue to
respond to naltrexone after smoking cessation. In summary,
blockade of MOR-mediated neurotransmission in nicotine-
dependent patients does not exacerbate nicotine withdrawal
symptoms and infact may help in decreasing craving for nicotine.
These findings from clinical pharmacological studies in humans
thus appear to be contradictory to findings from neuroimaging
studies in human abstinent smokers and animal studies described
above. The reasons for this discrepancy are not entirely clear.
One possible reason could be due to assessment at a specific
time-point closer to withdrawal from nicotine in human neuro-
imaging and animal studies.

MORs and nicotine-seeking behaviors

MORs also play a role in reinstatement of nicotine seeking.
Blockade of MORs using naltrexone attenuated cue-induced
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reinstatement of nicotine seeking (Liu et al. 2009). The role of
MOREs in nicotine seeking is consistent with its role in rein-
statement of other drugs such as alcohol and cocaine (Giuliano
et al. 2015; Gutierrez-Cuesta et al. 2014; Simmons and Self
2009). Additionally, MORs play a role in learning and mem-
ory recall, which plays a role in reinstatement of drug-seeking
behavior (Bianchi et al. 2013; Farahmandfar et al. 2012).
Interestingly, direct injections of the MOR agonist DAMGO
in the VTA did not reinstate extinguished responding for nic-
otine, which implies that MORs in the VTA may not have a
role in reinstatement of nicotine seeking (Corrigall et al.
2000). However, MORs are extensively found in brain regions
such as the NAcc, anterior cingulate, hippocampus, and
amygdala, which play a role in reinstatement of drug seeking
including nicotine seeking (Koob and Volkow 2010; Le
Merrer et al. 2009). The role of MORSs in reinstatement of
nicotine seeking in the above mentioned brain regions has
not been investigated. Future studies will need to address this
gap in knowledge.

Differential regulation of the MORs in the brain has been
reported after cocaine-induced and cue-induced reinstatement
of cocaine seeking (Georgiou et al. 2015). Using quantitative
radiography, cocaine-induced but not cue-induced reinstate-
ment of cocaine seeking upregulated MOR binding in the
basolateral amygdala. In contrast, cue-induced but not
cocaine-induced reinstatement of cocaine seeking upregulated
MOR binding in the caudate putamen and NAcc core. It is not
clear if these findings are restricted to cocaine or will extend to
nicotine. Future work will need to determine if MOR func-
tioning is differentially regulated by nicotine-induced vs. cue-
induced reinstatement of nicotine seeking.

The effect of nicotine-associated cues on MORSs has also been
investigated in humans. PET imaging and [''C]-carfentanil dis-
placement studies have reported a decrease in availability of
MORs in the anterior cingulate, thalamus, NAcc, and amygdala
following smoking of denicotinized cigarette in overnight absti-
nent smokers (Nuechterlein et al. 2016). These brain regions play
an important role in relapse. Therefore, the decrease in MOR
availability in these brain regions following smoking of
denicotinized cigarettes could be due to activation of MORs by
nicotine-associated environmental and sensory cues, which can
act as powerful substitutes during nicotine withdrawal-induced
craving (Rose et al. 2010). In summary, MORs play a role in
relapse to smoking and could serve as potential targets to prevent
relapse in abstinent smokers.

MORs: therapeutic potential and future directions

Based on the preclinical data described above, one can con-
clude that blockade of MORs may help in attenuating the
rewarding effects of nicotine and in preventing reinstatement
of nicotine-seeking behavior. Further, the studies described
above suggest that stimulation of MORs may help in
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attenuating nicotine withdrawal effects. To date, the MOR
antagonists naltrexone and naloxone have had limited success
in promoting long-term cessation in human smokers. Several
studies report no significant effect on long-term abstinence
with naltrexone compared to placebo either alone or in com-
bination with nicotine replacement therapy (Baltieri et al.
2009; Covey et al. 1999; King et al. 2006; King et al. 2012;
Toll et al. 2010; Wong et al. 1999, see also reviews David et al.
2014; David et al. 2013).

Although naltrexone has not been very effective in improv-
ing long-term smoking cessation, administration of naltrexone
was more efficacious compared to placebo in limiting
smoking cessation-induced weight gain in women, but not
in men (King et al. 2012; King et al. 2013b). These findings
suggest that MOR antagonists may have gender-based effects,
the mechanisms of which are not fully understood. These data
are consistent with other studies discussed below that suggest
gender-based differences in functioning of the endogenous
opioid system. Addition of naltrexone to nicotine replacement
therapy improved short-term abstinence rates amongst
smokers and reduced smoking cessation-induced weight gain
(Krishnan-Sarin et al. 2003; O’Malley et al. 2006). Overall,
the data support the use of naltrexone for limiting negative
consequences associated with smoking cessation such as
weight gain, especially amongst women smokers.

Naltrexone may also be of use in certain subpopulations of
smokers desiring to quit, such as those suffering from comorbid
mental disorders including depression and alcohol dependence.
Addition of naltrexone to nicotine replacement treatment im-
proved quit rates in smokers suffering from depression (Walsh
et al. 2008). Naltrexone, which has been approved by the FDA
for treatment of alcohol, was also effective in smokers with heavy
alcohol consumption habits. Smokers with high alcohol con-
sumption constitute approximately 20-25% of smokers and have
a distinct clinical profile compared to smokers who do not drink
heavily (Dani and Harris 2005; Toll et al. 2012). In fact, admin-
istration of naltrexone was shown to improve quit rates in heavy
drinking smokers (King et al. 2009). Further, combining
varenicline with low-dose naltrexone (25 mg/day) attenuated
consumption of both alcohol and cigarettes compared to placebo
in smokers who were classified as heavy drinkers (Ray et al.
2014). Additionally, the study reported decreased craving for
cigarettes and attenuation of “high” associated with smoking
and alcohol consumption. Moreover, naltrexone in combination
with varenicline compared to placebo attenuated activation of
anterior cingulate cortex, a brain region involved in cigarette
craving, in response to cigarette-related cues (Ray et al. 2015).
Together, these data suggest that naltrexone may have potential
for improving efficacy of currently approved smoking cessation
medications in smokers with high alcohol consumption. As a
caveat, the treatment period in both studies was relatively short
(only 9-12 days), and therefore, these findings must at best be
considered preliminary in nature. However, smokers with

significant alcohol consumption history are generally less respon-
sive to currently approved smoking cessation medications and
are more likely to relapse (Kahler et al. 2010). Thus, combining
smoking cessation treatments with naltrexone may be beneficial
in this subgroup of smokers and further work is warranted. In
summary, although MOR antagonists such as naltrexone have
not shown efficacy in maintaining long-term abstinence in
smokers to date, identifying subpopulation of smokers based
on gender, comorbid alcohol abuse, and psychiatric comorbidity
(e.g., depression) may improve response to naltrexone in
smokers. Also, MOR antagonists may have greater success in
promoting smoking cessation when combined with currently
approved smoking cessation medications such as nicotine re-
placement and varenicline.

Polymorphism of the OPRM1 gene is associated with differ-
ences in subjective experiences of nicotine reward and suscepti-
bility to nicotine dependence. In humans, a single nucleotide
polymorphism in the OPRM1 gene, OPRM1 A118G, has been
extensively investigated (Crist and Berrettini 2014). This poly-
morphism is associated with substitution of adenine by guanine
in exonl of the OPRMI gene. Lower brain MOR mRNA and
protein has been reported in individuals possessing the OPRM1
A118G polymorphism (Zhang et al. 2005). Although not exactly
similar, G allele carriers are like MOR receptor knockout mice
which have been shown to be less sensitive to nicotine.
Importantly, women carrying the low-activity G allele (A/G
and G/G) have reported reduced reinforcing value of nicotine
and were less likely to differentiate between nicotine vs.
denicotinized cigarettes (Ray et al. 2006). In contrast, there was
no association of nicotine reinforcement with this genotype
amongst male smokers. Additionally, smokers homozygous for
the A allele (i.e., OPRM1 A118A) were more susceptible to
nicotine dependence compared to smokers with G allele (i.e.,
OPRMI A118G) (Verhagen et al. 2012). Consistent with these
findings, neuroimaging studies have reported increased availabil-
ity of free MORs in smokers homozygous for the A allele com-
pared to smokers carrying the G allele in the brain regions such as
the amygdala and NAcc (Domino et al. 2015; Ray et al. 2011).
Further, these neuroimaging studies reported blunted release of
endogenous opioids after nicotine smoking in smokers carrying
the G allele compared to smokers homozygous for the A allele.
In nicotine-dependent smokers, overnight abstinence from
smoking resulted in increased blood flow to regions associated
with craving in individuals who were homozygous for A allele
(OPRM1 A118A) (Wang et al. 2008). However, OPRM1
A118G polymorphism has not been strongly associated with
smoking initiation or response to smoking cessation treatment
(Munafo et al. 2013; Verhagen et al. 2012). In summary, the
above studies suggest that polymorphism in the OPRM1 gene
determines susceptibility to nicotine dependence and A allele
carriers may be more susceptible to craving upon abstinence
from smoking and are more likely to relapse. The discovery of
the OPRM1 A118G polymorphism spurs the need to look for
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other polymorphisms in the MORs that may be involved in
development of nicotine dependence and/or response to smoking
cessation treatment.

Other MOR gene polymorphisms have been reported that
determine opioid withdrawal severity in humans (Jones et al.
2016). It remains to be seen if these polymorphisms influence
other nicotine-dependent behaviors such as nicotine reward
and nicotine withdrawal-induced craving. Future studies must
also focus on understanding the interaction effects of OPRM1
polymorphism with polymorphisms of other genes, such as
those regulating other neurotransmitters (dopamine and gluta-
mate) involved in nicotine reward, on nicotine dependence.

It must be mentioned here that OPRM1 A118G polymor-
phism was initially reported to predispose individuals to the
risk of developing alcoholism and also determine response to
naltrexone in alcoholic patients (Kim et al. 2009; Ray and
Hutchison 2004, 2007). More recent studies have not support-
ed a role for OPRM1 A118G polymorphism in predicting
susceptibility to development of alcohol dependence or re-
sponse to naltrexone (Anton et al. 2012; Arias et al. 2006;
Schacht et al. 2013).

Future work must explore the influence of gender and age
on the role of MORs in nicotine-dependent behaviors.
Gender-dependent differences in response to opioid analge-
sics that act via MORs have been reported (Bodnar and Kest
2010; Cicero et al. 1997; Kepler et al. 1989). As discussed
above, Wewers et al. (1999) reported gender-dependent ef-
fects on MOR functioning after chronic nicotine exposure.
Also, King et al. (2012) reported greater effect of naltrexone
compared to placebo on smoking cessation-induced weight
gain in women and not in men. Finally, as described above,
gene-gender interaction effects have been associated with
polymorphism of OPRM1 A118G gene. However, the inter-
action of gender and MORs on nicotine-induced behaviors
such as nicotine self-administration, cue-induced nicotine
seeking, and nicotine withdrawal has not been explored in
detail and further work is warranted. Another factor that needs
further investigation is the influence of age on MOR function
and nicotine-dependent behaviors. Chronic exposure to nico-
tine in adolescent animals compared to adult animals resulted
in downregulation of MORs in the hippocampus and striatum
(Marco et al. 2007). Importantly, the effects of chronic nico-
tine exposure during adolescence on MOR function in the
striatum were more marked in males than in females. In sum-
mary, the interaction of age (adolescents vs. adults) and gender
on the role of MORs in nicotine-dependent behaviors needs to
be further explored.

The role of MORs in specific brain regions on nicotine
reward and other nicotine-dependent behaviors also needs
further investigation. Based on their location in the NAcc,
MORs play a differential role in hedonia (pleasure) experi-
enced after food reward compared to motivation to consume
food reward. It was reported that stimulation of MORs in a
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small (1 mm?®) rostrodorsal region of the NAcc shell enhanced
hedonic reactions as assessed by measuring the orofacial re-
action to sucrose taste (Castro and Berridge 2014). In contrast
to this hedonic hotspot in the rostrodorsal region of the NAcc
shell, stimulation of MORs in the caudal region of the NAcc
shell inhibited hedonic reactions for sucrose. However, irre-
spective of their location in the NAcc shell, stimulation of
MORs increased motivation to consume food rewards.
Together, these data suggest a differential role for MORs
based on their distribution in different parts of the NAcc shell
in hedonia experienced after consumption of food vs. motiva-
tion to consume food rewards. It is not clear if this heteroge-
neity in the role of MORs based on their localization is re-
stricted to food reward or if it influences other types of reward
such as nicotine reward. Future studies must explore the role
of MORs in the different parts of the NAcc shell (rostrodorsal
vs. caudal) in hedonic reaction to nicotine vs. motivation to
consume nicotine. In summary, more work is required to un-
derstand the role of MORs in nicotine dependence and to fully
exploit the MORs as a target for smoking cessation treatment.

DORs and nicotine-induced effects

DORs are widely distributed in the mesolimbic brain regions that
play a role in reward, emotional processing, and drug addiction
(Cahill et al. 2001; Mansour et al. 1996). Direct intracerebroven-
tricular injection of DOR agonists induced CPP on its own
(Shippenberg et al. 1987; Suzuki et al. 1997). Additionally, direct
injection of a DOR agonist in the NAcc reduced brain reward
thresholds, suggesting that activation of DORs was rewarding
(Duvauchelle et al. 1997). Pharmacological blockade or genetic
elimination of the DORs induced anxiety- and depression-like
behaviors (Filliol et al. 2000; Perrine et al. 2006; Saitoh et al.
2005). Further, knockout of pro-enkephalin (PENK) gene, which
is responsible for met- and leu-enkephalin synthesis, resulted in
increased anxiety in mice compared to wild-type mice (Konig
et al. 1996). Moreover, activation of DORs has also been shown
to have anxiolytic and antidepressant-like actions (Broom et al.
2002; Saitoh et al. 2004; Vergura et al. 2008). Finally, activation
of DORs via inhibition of enkephalin breakdown resulted in
anxiolytic and antidepressant-like effects (Nieto et al. 2005). In
summary, the above studies suggest a role for DORs in reward
and emotional processing. Effects of pharmacological and genet-
ic manipulation of the DORs on nicotine-induced behaviors are
summarized in Tables 1 and 2, respectively (see also Fig. 1).

DORs and reinforcing effects of nicotine

Several studies have explored the role of DORs in the reinforcing
effects of nicotine. Nicotine increased the levels of endogenous
DOR agonist met-enkephalin in the ventral and dorsal striatum in
mice (Dhatt et al. 1995). Importantly, DOR antagonist natrindole
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attenuated nicotine-self-administration in mice (Berrendero et al.
2012). Additionally, nicotine-induced CPP was attenuated in
DOR knockout mice compared to wild-type counterparts.
Moreover, fewer DOR knockout mice acquired nicotine self-
administration compared to wild-type mice and the DOR knock-
out mice showed lower levels of nicotine-induced increase in
NAcc dopamine compared to wild-type mice (Berrendero et al.
2012). In contrast to studies in mice, DOR antagonists did not
influence nicotine self-administration in rats (Ismayilova and
Shoaib 2010; Liu and Jernigan 2011). It is not clear if these
differences in findings were due to use of different species in
the above studies. Interestingly, blockade of DORs, using DOR
antagonist natrindole, did not have any effect on nicotine-
induced locomotor sensitization (Heidbreder et al. 1996). To
date, the role of DORs in specific brain regions such as the
NAcc and VTA in the reinforcing effects of nicotine have not
been evaluated. Overall, the above studies suggest that the DORs
play a role in mediating the rewarding effects of nicotine. There
are similarities between the role played by MORs and DORs in
nicotine reward. Further like MOR knockout mice, DOR knock-
out mice appear to be less sensitive to the rewarding effects of
nicotine. However, more work is required to understand the role
of DORs in nicotine reward in specific brain regions such as the
NAcc and VTA. There is also a need to explore the role of DORs
in animals with extended access to nicotine.

DORs and chronic nicotine exposure

Chronic nicotine administration altered met-enkephalin levels
and DOR signaling (see Table 3). The nicotine-induced
changes in preproenkephalin mRNA and met-enkephalin
levels were time sensitive. For example, striatal met-
enkephalin levels were decreased in rats after chronic nicotine
when brain tissue was collected 1 h after the last nicotine dose
(Wewers et al. 1999). Interestingly, striatal and hippocampal
preproenkephalin mRNA levels were increased 24 h after
withdrawal from nicotine in rats with chronic nicotine expo-
sure (Houdi et al. 1998). Together, these findings suggest a
compensatory increase in preproenkephalin mRNA in re-
sponse to decrease in met-enkephalin levels. Consistent with
these findings, both preproenkephalin mRNA and met-
enkephalin levels were increased in the ventral striatum,
24 h after last dose of nicotine, in mice with chronic nicotine
treatment (Isola et al. 2002).

Withdrawal from nicotine did not alter DOR binding in the
NAcc and caudate/putamen (McCarthy et al. 2011). However,
DOR mRNA was significantly elevated in the NAcc, prefron-
tal cortex, and hippocampus during nicotine withdrawal and
this increase in DOR mRNA was sensitive to time since with-
drawal from nicotine (see Table 3). Additionally DOR signal-
ing, which was measured via uncoupling of the DOR-
associated G-protein, was decreased in the NAcc during nic-
otine withdrawal. In summary, even though there may be

compensatory increase in PENK mRNA and met-enkephalin
levels, the decrease in DOR signaling suggest that there is an
overall decrease in DOR-mediated functioning during nico-
tine withdrawal.

Temporal changes in DOR signaling during nicotine with-
drawal overlaps with some of the affective aversive effects
associated with nicotine withdrawal. Nicotine withdrawal-
induced anhedonia and anxiety usually peaks between 4 and
24 h, and this coincides with DOR dysregulation (Costall et al.
1989; Epping-Jordan et al. 1998; Jackson et al. 2009;
Jonkman et al. 2005; Stoker et al. 2008). As described above,
decreased DOR-mediated transmission has anxiogenic and
depression-like effects. Together, these data suggest that
DOR dysregulation possibly mediates some of the aversive
effects associated with nicotine withdrawal. In fact, activation
of DORs attenuated mecamylamine precipitated nicotine
withdrawal-induced CPA (Ise et al. 2000). In contrast, DORs
are not involved in nicotine withdrawal-induced somatic aver-
sive effects. There was no difference in mecamylamine-
precipitated nicotine withdrawal-associated somatic signs be-
tween DOR wild-type and knockout mice (Berrendero et al.
2012). These findings are unlike findings in MOR knockout
mice, which showed decreased aversive somatic signs during
mecamylamine-precipitated nicotine withdrawal. Together,
the above studies suggest that DORs are involved in aversive
affective symptoms associated with nicotine withdrawal,
which are mediated by receptors located in the brain.
However, DORs are not involved in somatic effects associated
with nicotine withdrawal, which are predominantly mediated
by peripherally located receptors. In summary, central but not
peripheral DORs play a role in nicotine withdrawal.

DORs and nicotine-seeking behavior

The role of DORs in reinstatement of nicotine seeking has not
been explored. However, cue-induced reinstatement of co-
caine seeking was attenuated in DOR knockout mice com-
pared to their wild-type littermates (Gutierrez-Cuesta et al.
2014). Consistent with this finding, activation of DORs using
DOR-specific peptides facilitated cocaine-induced reinstate-
ment of CPP (Kotlinska et al. 2010). Similarly, DORs have
been shown to play a role in reinstatement of morphine-
induced CPP and expression of ethanol-induced CPP (Bie
et al. 2012; Bie et al. 2009). Further behavioral, genetic, and
electrophysiological evidence suggests that DORs play an im-
portant role in learning and memory, which support their pos-
sible role in reinstatement of drug-seeking behavior (Chavkin
et al. 1985; Klenowski et al. 2015; Le Merrer et al. 2013).
Based on the data described above, we hypothesize that block-
ade of DORs will attenuate cue-induced nicotine seeking.
Further work is required to fully understand the role of
DORs in nicotine seeking.
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DORs: therapeutic potential and future directions

Currently, there are no FDA-approved medications available
that exclusively target the DORs. However, clinical studies
using compounds selectively targeting the DORs have been
conducted (Richards et al. 2016). The DORs have been con-
sidered as a therapeutic target for the treatment of pain for a
couple of decades (Gendron et al. 2015; Pradhan et al. 2011).
There has been a growing interest in targeting the DORs for
the treatment of addiction (Charbogne et al. 2014; Klenowski
et al. 2015; Lutz and Kieffer 2013). Studies discussed above
have shown that blockade of DORs attenuated the rewarding
effects of nicotine and can potentially attenuate reinstatement
of nicotine seeking. Further, activation of DORs has been
shown to alleviate the aversive effects associated with nicotine
withdrawal. DORs can be activated by both peptide- and non-
peptide-based agonists and/or by inhibiting the enzyme that is
responsible for breakdown of enkephalin (Gendron et al.
2015). It is hypothesized that DOR agonists are less likely to
produce dependence compared to MOR agonists, which can
be advantageous for using DOR agonists therapeutically.
Taken together, both DOR antagonists and agonist have the
potential to promote smoking cessation.

Several challenges exist in targeting the DORs. Over
the last few years, significant advances have been made in
understanding the structure and downstream effects of
DOR activation. Using pharmacological agonist and an-
tagonists, the DORs have been classified into at least two
subtypes (e.g., DOR1 and DOR2) (Gendron et al. 2015).
Additionally, several different types of secondary messen-
ger systems have been found to be associated with the
DORs. However, the DOR gene codes for only one type
of protein and no alternative splicing of the gene has been
reported. In humans, polymorphisms in the DOR gene
have been reported (Simonin et al. 1994; Wei and Loh
2011). Future studies will need to assess if differences in
DOR subtypes, DOR secondary messenger signaling, and/
or polymorphisms in the genes coding for the DORs af-
fect development of nicotine dependence.

Gender-based differences in DOR-mediated analgesia have
been reported. For example, DOR agonists produced greater
analgesic effects in male rats compared to female rats (Bartok
and Craft 1997). Further, the effects of age (adolescent vs.
adults) on DOR-mediated effects have not been investigated
as has been for KORs (see below). More recently, a study
reported increased ethanol consumption during adolescence
in animals with a history of prenatal ethanol exposure (Fabio
et al. 2015). As a caveat, this study reported only an increase
in MOR mRNA in the VTA, but no change in DOR mRNA,
suggesting no role for DORs in the VTA in the observed
findings. Nevertheless, future studies must assess the impact
of gender and age on DOR-mediated effects in nicotine
dependence.
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KORs and nicotine-induced effects

KORs and their endogenous ligand dynorphin are widely distrib-
uted throughout the brain, including the mesolimbic dopaminer-
gic system in both humans and rodents (Mansour et al. 1996;
Schmidt et al. 1994). Activation of KORs increased brain reward
thresholds during the intracranial self-stimulation procedure, sug-
gesting development of a depression-like state (Todtenkopf et al.
2004). Further, activation of KORs decreased the rewarding ef-
fects of drugs of abuse (Bruijnzeel 2009; Shippenberg et al.
2007; Wee and Koob 2010). In contrast, blockade of KORs
decreased immobility time in animals in the forced swim test,
suggesting antidepressant-like effects (Mague et al. 2003).
Together, the data suggest that KORs mediate negative motiva-
tional and affective states. Below we discuss the role of KORs in
nicotine-induced behaviors. The effects of pharmacological ma-
nipulation of KORs on nicotine-induced behaviors are summa-
rized in Table 1 and Fig. 1.

KORs and reinforcing effects of nicotine

Acute nicotine administration changes dynorphin-KOR sig-
naling. Increase in striatal dynorphin levels and prodynorphin
mRNA have been reported following acute subcutaneous ad-
ministration of high doses of nicotine (>0.5 mg/kg, base)
(Isola et al. 2009). The nicotine-induced increase in dynorphin
was temporally phasic in nature with an initial increase at 1 h
followed by a decrease at 2 h and then again an increase
between 6 and 24 h. Further, Isola et al. (2009) showed that
the nicotine-induced increase in synthesis and release of
dynorphin was mediated via other neurotransmitters such as
glutamate and dopamine. In contrast, low doses of nicotine
(<0.5 mg/kg) decreased or had no effect on preprodynorphin
mRNA levels (Isola et al. 2009; Le Foll et al. 2003). Overall,
the data suggest temporal dose-dependent changes in
dynorphin and prodynorphin mRNA levels after acute nico-
tine administration.

Studies have also evaluated the role of KORs in the reinforc-
ing effects of nicotine. Consistent with the role of KORs in
negative emotional states described above, administration of
low doses of the KOR agonist (£)U-50,488H (1-3 mg/kg) de-
creased nicotine self-administration in Lister hooded rats, sug-
gesting that KOR activation attenuated the reinforcing effects of
nicotine (Ismayilova and Shoaib 2010). Further, KOR agonists
attenuated nicotine-induced locomotor activity (Hahn et al.
2000). Additionally, mice lacking the prodynorphin gene com-
pared to wild-type mice self-administered nicotine at lower
doses, suggesting that the dynorphin-KOR system plays an in-
hibitory role in the reinforcing effects of nicotine (Galeote et al.
2009). Interestingly, activation of the KORs, using the KOR
agonist GNTI, did not affect the reinforcing effects of nicotine
as assessed using intravenous nicotine self-administration in male
Sprague-Dawley rats (Liu and Jernigan 2011). As compared to
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Ismayilova and Shoaib (2010) described above, Liu and Jernigan
used a different strain of rats (Lister hooded vs. Sprague-Dawley
rats) and a different KOR agonist [(+)U-50,488H vs. GNTI]. It is
possible that the difference in findings between the above de-
scribed studies could be due to the above described differences.
In summary, the data suggest that activation of KORs has an
inhibitory effect on reinforcing effects of nicotine. Thus, the role
of the KORs appears to be opposite to the role played by other
opioid receptors such as the MORs and DORs in the rewarding
effects of nicotine.

Although dynorphin blocks nAChR-mediated effects in
PC12 cells, the precise mechanism by which KOR activation
decreases the rewarding effects of nicotine is not fully under-
stood (Itoh et al. 2000). KOR activation on its own has been
shown to decrease both firing of VTA dopaminergic neurons
and release of dopamine in the NAcc (Di Chiara and Imperato
1988b; Margolis et al. 2003). However, the effects of KOR
activation on nicotine-induced increases in NAcc dopamine
have not yet been addressed. Further, future studies may need
to explore the effects of direct injections of KOR agonists and
antagonists in specific brain regions such as the NAcc and
VTA on nicotine self-administration and nicotine-induced in-
creases in dopamine in these brain regions.

First-time smokers often report unpleasant experiences such
as vomiting, headache, tachycardia, and gastric discomfort
(DiFranza et al. 2004). Based on the role of KORs and dynorphin
in dysphoria, it is hypothesized that the dynorphin-KOR system
is potentially involved in mediating the aversive effects of nico-
tine experienced by first-time smokers (Fowler and Kenny
2014). However, the role of KORs in the aversive effects of
nicotine has not been directly explored. The rewarding and aver-
sive effects of nicotine are mediated by distinct but overlapping
circuits (D’Souza and Markou 2011; Laviolette and van der
Kooy 2004). Therefore, future studies must focus on identifying
the role of KORs in specific brain regions in the aversive and
rewarding effects of nicotine. In summary, activation of KORs
using low doses of a KOR agonist can decrease the reinforcing
effects of nicotine either by decreasing the rewarding effects of
nicotine and/or by increasing the aversive effects of nicotine.

Activation of KORs is also associated with a stress-like
state and can thus increase motivation for drugs of abuse.
Consistent with this hypothesis, activation of KORs using
high doses of the KOR agonist (£)U-50,488H (5 or 10 mg/
kg, 1.p.) increased expression of nicotine-induced CPP com-
pared to controls (Smith et al. 2012). This increase in nicotine-
induced CPP was mediated by activation of the KORs in the
amygdala. Smith et al. (2012) administered the KOR agonist
only once, and this administration was done 1 h prior to testing
for CPP (i.e., on the test day) and not during conditioning with
nicotine. Compared to Ismayilova and Shoaib (2010) (de-
scribed above), Smith et al. (2012) not only used a different
model and protocol (self-administration vs. CPP) to assess the
effects of KOR activation on the reinforcing effects of nicotine

but also used higher doses of the KOR agonist (+)U-50,488H
(1-3 vs. 5-10 mg/kg). The dose of KOR agonist used by
Smith et al. produces a stress-like state (Wee and Koob
2010). Based on the above findings, one can conclude that
increased recruitment of KORs using high doses of a KOR
agonist can induce stress and indirectly increase motivation
for nicotine. Further studies are required to determine the spe-
cific brain regions that are involved during the excessive re-
cruitment of KORs by high doses of a KOR agonist.

KORs and chronic nicotine exposure

Chronic nicotine treatment in adult rats decreased prodynorphin
mRNA levels in the NAcc, but increased prodynorphin mRNA
levels in the prefrontal cortex and caudate putamen (Carboni
et al. 2016) (see Table 3). Importantly, these changes in
prodynorphin mRNA levels were accompanied by nicotine-
induced locomotor sensitization. However, no changes in KOR
mRNA were observed after chronic nicotine treatment in any of
the above described regions. Taken together, these data suggest
that chronic nicotine treatment differentially affects dynorphin
synthesis in the different brain regions. The precise role of these
changes in dynorphin levels and/or prodynorphin mRNA in spe-
cific brain regions on nicotine-induced behaviors is not fully
understood. Future studies need to identify the role of dynorphin
in specific brain regions on nicotine-induced behavioral effects
by altering dynorphin levels in specific brain regions using viral-
mediated overexpression and siRNA techniques.

Age of the animals influenced KOR-mediated behavioral
and neurochemical effects after chronic nicotine treatment
using osmotic minipumps. For example, administration of
KOR agonist (+)U-50,488H after chronic nicotine treatment
increased anxiety-like behavior, induced CPA, and decreased
NAcc dopamine levels in adult, but not adolescent rats com-
pared to respective controls (Tejeda et al. 2012). Together, the
data suggest that KORs are more sensitive after chronic nico-
tine treatment in adult, but not in adolescent rats. This could be
protective mechanism to limit nicotine intake in adults. These
data also suggest that the KOR-dependent protective mecha-
nism is absent in adolescents making them more vulnerable to
nicotine addiction.

Withdrawal from nicotine after chronic nicotine treatment al-
tered dynorphin and prodynorphin mRNA levels, and these mo-
lecular changes were dependent on the time elapsed since the last
dose of nicotine. For example, a decrease in striatal dynorphin
levels was reported after nicotine withdrawal when brain tissue
was collected between from 4 to 72 h. Additionally, there was an
increase in striatal prodynorphin mRNA between 8 and 96 h
(Isola et al. 2008) (see Table 3). These data suggest that nicotine
withdrawal-induced decrease in dynorphin levels was followed
by a compensatory increase in dynorphin synthesis as suggested
by an increase in prodynorphin mRNA. Interestingly, withdrawal
from nicotine after chronic nicotine administration was
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accompanied by desensitization of KORs in the NAcc
(McCarthy et al. 2010). The desensitization of KORs was first
observed at 24-48 h after withdrawal of nicotine and lasted for
over 72 h. This decrease in KOR signaling coincides with aver-
sive affective effects associated with nicotine withdrawal as de-
scribed above in the section on DORs. It is not clear if this
decrease in KOR signaling is directly due to nicotine withdrawal
or a compensatory mechanism to counter the increase in
dynorphin synthesis described above.

Pharmacological manipulation of KORs influenced both so-
matic and affective aversive effects associated with nicotine with-
drawal. Administration of high doses of the KOR agonist (+)U-
50,488H (5 mg/kg, s.c.) enhanced spontaneous nicotine
withdrawal-induced aversive somatic effects in adult rats, sug-
gesting increased sensitivity of the KORs during nicotine with-
drawal (Tejeda et al. 2012). In this study, somatic signs of nico-
tine withdrawal were assessed 24 h after removal of nicotine
pumps, while the KOR agonist was administered 25 min before
recording of somatic withdrawal signs. Interestingly, the same
study reported that the increased sensitivity of the dynorphin-
KOR system during nicotine withdrawal was observed in adult
rats and not in adolescent rats despite receiving similar nicotine
treatment as adult rats. This suggests that the KORs do not me-
diate nicotine withdrawal-induced aversive effects in adolescent
rats. In contrast, activation of the KORs using low doses of the
KOR agonist (£)U-50,488H (0.01-1 mg/kg) 30 min prior to
induction of mecamylamine-precipitated nicotine withdrawal, at-
tenuated nicotine withdrawal-induced CPA (Ise et al. 2002).
These data suggest that KOR activation attenuated nicotine
withdrawal-associated aversive affective effects. It is not clear if
the differences in the role of the KORs between those reported by
Tejeda et al. (2012) vs. Ise et al. (2002) are due to the fact that
different withdrawal effects were measured in the two studies
(somatic vs. affective) or because nicotine withdrawal was in-
duced differently in the two studies (spontaneous vs. precipitat-
ed). Besides, there were also methodological differences between
Tejeda et al. (2012) and Ise et al. (2002) such as the dose of the
KOR agonist used (5 vs. 0.01-1 mg/kg), dose of nicotine used
(3.2 mg/kg/day, base vs. 10 mg/kg, base) and duration of nicotine
treatment (14 vs. 7 days). Further investigation is required to
determine if KORs are differentially regulated by differences in
nicotine treatment and/or by spontaneous vs. precipitated nico-
tine withdrawal. Finally, activation of peripheral KORs using a
compound (ICI204, 448) that does not cross the blood-brain
barrier inhibited nicotine withdrawal induced increases in feed-
ing, metabolism, and locomotor activity in rats (Sudakov et al.
2014). These data suggest that peripheral and central KORs may
be mediating different aspects of nicotine withdrawal and possi-
bly play a differential role in these effects. In summary, the above
data support a role for the KORs in somatic and affective aver-
sive effects associated with nicotine withdrawal.

Long-acting KOR antagonist nor-BNI (5 and 15 mg/kg, s.c.)
attenuated aversive somatic effects associated with spontaneous
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nicotine withdrawal in adult rats (Tejeda et al. 2012). Consistent
with these findings, KOR antagonists nor-BNI and JDTic atten-
uated nicotine withdrawal-induced aversive somatic and affec-
tive symptoms in mice (Jackson et al. 2010). However, KOR
antagonists such as nor-BNI and JDTic have several pharmaco-
kinetic limitations such as that they are both long-acting (approx.
21 days) and have delayed onset of action (Munro et al. 2012).
This complicates study design and to counter these limitations,
studies have evaluated the effect of a short acting KOR antago-
nist £Y2456302 on nicotine withdrawal-induced affective and
somatic effects (Jackson et al. 2015). LY2456302 alleviated nic-
otine withdrawal-induced aversive somatic and affective effects
in a manner similar to JDTic and nor-BNI. In summary, although
further work is required to understand the role of KORs in nic-
otine withdrawal, to date a majority of the literature supports the
hypothesis that activation of KORs worsens the aversive somatic
and affective effects associated with nicotine withdrawal.
Further, blockade of KORs attenuated nicotine withdrawal-
induced aversive effects and can be utilized to facilitate smoking
cessation in smokers.

KORs and nicotine-seeking behavior

A few studies have investigated the role of KORs in reinstate-
ment of nicotine seeking. For example, it is known that
footshock-induced stress facilitates reinstatement of nicotine
seeking (Buczek et al. 1999). Notably, blockade of the KORs
with the KOR antagonist nor-BNI attenuated stress-induced,
but not cue-induced reinstatement of nicotine seeking (Grella
et al. 2014). Further, KOR antagonist nor-BNI attenuated re-
instatement of stress-induced nicotine CPP, but did not have
any effect on nicotine-induced reinstatement of CPP (Jackson
et al. 2013). Consistent with these findings, KOR antagonists
attenuated stress-induced reinstatement of cocaine-seeking
behavior (Redila and Chavkin 2008).

Exposure to chronic mild stress can lead to tolerance-like
effects of KOR activation. For example, exposure to chronic
stress attenuated KOR activation-induced reinstatement of nico-
tine-CPP, possibly due to either downregulation or desensitiza-
tion of KORs (Al-Hasani et al. 2013). Future studies will need to
explore alterations in the dynorphin-KOR system after repeated
stress and its possible impact on reinstatement of drug seeking
including nicotine seeking. In summary, data to date demonstrate
that blockade of KOR-mediated neurotransmission attenuated
reinstatement of nicotine seeking and that KORs may be useful
targets to prevent relapse amongst abstinent smokers.

KORs: therapeutic potential and future directions

Currently, there are no FDA approved medications that exclu-
sively target the KORs. KOR antagonists have recently been
tested in humans (Buda et al. 2015; Lowe et al. 2014). Based
on the studies described above, we hypothesize that KOR
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antagonists will promote smoking cessation by attenuating
both nicotine withdrawal-induced aversive effects and rein-
statement of nicotine seeking amongst abstinent smokers.

Further, we hypothesize that low doses of the KOR ago-
nists may have a role in promoting smoking cessation by
increasing the aversive effects of nicotine or decreasing the
rewarding effects of nicotine. A major challenge in utilizing
KOR agonists clinically has been the occurrence of dysphoria
upon activation of KORs. In the future, it may be possible to
dissociate dysphoric effects from activation of KORs.
Currently, efforts are on to develop novel KOR agonists/
positive allosteric modulators with minimal dysphoric effects
(Burford et al. 2013; Zhou et al. 2013). Such KOR ligands
may have greater clinical utility and allow for a more complete
exploitation of the KORs as a possible therapeutic target for
smoking cessation treatment.

Several single nucleotide polymorphisms in dynorphin-
KOR system genes have been reported in humans (Clarke
et al. 2012; Huang et al. 2008; Wang et al. 2014). Some of
these polymorphisms in the KOR genes increase vulnerability
to drug dependence in humans (Li and Zhang 2013). Exactly
how these polymorphisms alter dynorphin release or
dynorphin-KOR signaling is unknown. Do some of these ge-
netic variations in dynorphin-KOR system genes alter aver-
sive effects of nicotine and increase potential to develop nic-
otine addiction? Moreover, do these genetic variations in the
dynorphin-KOR system alter aversive effects associated with
nicotine withdrawal? In summary, further work is required to
understand the influence polymorphisms in genes related to
the KORs in the development of nicotine dependence.

Both animal and human studies have reported gender-
dependent differences following pharmacological manipula-
tion of the dynorphin-KOR system (Gear et al. 1996, 1999;
Russell et al. 2014; Zacny and Beckman 2004). To date, the
focus of these gender-dependent differences in the dynorphin-
KOR system has largely been restricted to the role of
dynorphin-KOR system in pain (Rasakham and Liu-Chen
2011). However, considering the distribution of KORs in sev-
eral brain regions involved in addiction, there is growing in-
terest in understanding the interaction of gender and the
dynorphin-KOR system in drug addiction (Chartoff and
Mavrikaki 2015). In keeping with the focus of this review, it
will be of great interest to see if gender and dynorphin-KOR
system interactions seen in pain extend to acute and chronic
effects of nicotine. Furthermore, if there are gender-dependent
differential effects of nicotine on the dynorphin-KOR system,
it will be interesting to investigate if these differential effects
impact manifestations of nicotine withdrawal and/or response
to currently available smoking cessation treatments?

It is well known that activation of KORs produces a negative
aversive state in both animals and humans (Bruijnzeel 2009).
However, the cellular mechanism of this KOR-mediated nega-
tive aversive effect is not completely understood. Increased

expression of serotonin reuptake transporters in mesolimbic brain
regions such as the NAcc, resulting in decreased synaptic sero-
tonin levels, has been suggested as one possible mechanism
(Schindler et al. 2012). Another possible cellular mechanism that
may mediate KOR-mediated aversive effects is the activation of
the p38 mitogen-activated protein kinase (MAPK) pathway
(Bruchas et al. 2007). In support of this mechanism, phosphory-
lation of the p38 MAPK pathway in the VTA dopaminergic
neurons was shown to mediate the aversive effects of the KOR
agonist (£)U-50,488H (Ehrich et al. 2015). Interestingly,
microglial p38 MAPK pathway plays a role in nicotine
withdrawal-induced hyperalgesia (Ding et al. 2015). Future stud-
ies must identify exactly what downstream KOR-associated
pathways are activated by acute and chronic nicotine exposure.
Understanding these downstream pathways will help in effec-
tively manipulating the KORs and make them a more viable
therapeutic target for future smoking cessation medications.

Conclusions

The endogenous opioid system, which was originally con-
ceived as an endogenous response system to painful stimuli,
is now seen as an important mediator in drug addiction.
Several FDA-approved medications currently used to treat al-
cohol and heroin addiction target the MORSs. In this review, we
focused on the effects of nicotine on the endogenous opioid
system and the possible role of the different opioid receptors
as potential targets to promote smoking cessation. Amongst the
three opioid receptors discussed in this review, the role of the
MORSs in nicotine-dependent behaviors has been extensively
investigated in both animals and humans. This is primarily
because of a better understanding of the MOR structure and
the availability of clinically viable medications targeting the
MORs. Moreover, identification of the OPRM1 A118G poly-
morphism continues to make the MORs an exciting target with
the highest potential for the development of smoking cessation
medications. MOR antagonists attenuated nicotine seeking in
animal models and reduced craving in human smokers. Thus,
MOR antagonists and/or negative allosteric modulators would
help promote smoking cessation. However, future studies need
to identify patient subpopulations that may be more responsive
to MOR-based smoking cessation medications.

The role of the DORs in nicotine dependence has been
explored the least amongst the three opioid receptors. This is
partly because of incomplete understanding of the structure of
the DORs and the limited availability of clinically viable
medications/compounds selectively targeting the DORs.
Preclinical research has shown that DOR antagonists de-
creased nicotine seeking, while the DOR agonists attenuated
the aversive effects associated with nicotine withdrawal. Thus,
both DOR agonists and antagonists have the potential to pro-
mote smoking cessation. However, based on the literature
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reviewed above, the likelihood of seeing a successful smoking
cessation medication targeting the DORs in the near future
appears to be comparatively low. The development of clini-
cally viable selective compounds targeting the DORs will go a
long way in facilitating the process of exploiting the DORs as
a potential target for future smoking cessation medications.

In contrast to the MORs and DORs, the KORs appear to
have an inhibitory role in the rewarding effects of drugs of
abuse including nicotine. Interesting work conducted in ado-
lescent animals suggests a limited role for KORs in nicotine-
dependent behaviors in adolescents, which possibly makes
them more vulnerable to nicotine addiction. Preclinical re-
search has shown that KOR antagonists attenuated both the
aversive effects of nicotine withdrawal and reinstatement of
nicotine seeking. Therefore, KOR antagonists and/or negative
allosteric modulators would be useful as smoking cessation
medications. The availability of clinically viable KOR antag-
onists has greatly increased the potential of the KORs as a
target for future smoking cessation medications.

However, despite the extensive investigation of the endog-
enous opioid system in nicotine dependence over the last two
decades, much work still needs to be accomplished. For ex-
ample, little is known about the role of the different opioid
receptors in specific brain regions in nicotine seeking and
nicotine withdrawal. Therefore, future work must focus on
identifying the role of the different opioid receptors in specific
brain regions and neural circuits in nicotine-dependent behav-
iors using a combination of pharmacological, molecular, and
genetic approaches. Additionally, the influence of age and
gender on the role of opioid receptors in nicotine-dependent
behaviors needs to be evaluated. Finally, genetic studies in
humans must continue to assess the influence of polymor-
phisms in opioid receptor-linked genes in nicotine depen-
dence. Identification of such polymorphisms will help in both
identifying individuals vulnerable to develop nicotine addic-
tion and patient subpopulations who may be more responsive
to opioid-based smoking cessation medications. In conclu-
sion, the opioid receptors are promising targets and it is our
belief that continued focus on the endogenous opioid system
will provide efficacious smoking cessation medications in the
near future.
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