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Abstract
Rationale Whereas reward-modulatory opioid actions have
been intensively studied in subcortical sites such as the nucle-
us accumbens (Acb), the role of cortical opioid transmission
has received comparatively little attention.
Objectives The objective of this study is to describe recent
findings on the motivational actions of opioids in the prefron-
tal cortex (PFC), emphasizing studies of food motivation and
ingestion. PFC-based opioid effects will be compared/
contrasted to those elicited from the Acb, to glean possible
common functional principles. Finally, the motivational ef-
fects of opioids will be placed within a network context in-
volving the PFC, Acb, and hypothalamus.
Results Mu-opioid receptor (μ-OR) stimulation in both the
Acb and PFC induces eating and enhances food-seeking in-
strumental behaviors; μ-OR signaling also enhances taste re-
activity within a highly circumscribed zone of medial Acb
shell. In both the Acb and PFC, opioid-sensitive zones are
aligned topographically with the sectors that project to
feeding-modulatory zones of the hypothalamus and intact glu-
tamate transmission in the lateral/perifornical (LH-PeF) hypo-
thalamic areas is required for both Acb- and PFC-driven feed-
ing. Conversely, opioid-mediated feeding responses elicited
from the PFC are negatively modulated by AMPA signaling
in the Acb shell.

Conclusions Opioid signaling in the PFC engages functional-
ly opposed PFC➔hypothalamus and PFC➔Acb circuits,
which, respectively, drive and limit non-homeostatic feeding,
producing a disorganized and Bfragmented^ pattern of impul-
sive food-seeking behaviors and hyperactivity. In addition,
opioids act directly in the Acb to facilitate food motivation
and taste hedonics. Further study of this cortico-striato-
hypothalamic circuit, and incorporation of additional opioid-
responsive telencephalic structures, could yield insights with
translational relevance for eating disorders and obesity.
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Introduction

In the spirit of this Special Issue, we discuss a topic that fea-
tured prominently in the acclaimed and highly impactful sci-
entific career of the late Dr. Athina Markou: the neural sub-
strates underlying reward function. Although Dr. Markou’s
interests cut across multiple domains of biological psychiatry,
her work was unified by the idea that studying central reward
function (often using the highly adaptable and informative
brain stimulation-reward technique) could provide a Bwindow^
into challenging questions regarding the affective com-
ponents of drug reward, withdrawal, or psychiatric conditions
such as depression and schizophrenia. Here, we explore the
network mechanisms underlying the feeding-modulatory ac-
tions of telencephalic opioids. Neither of these subjects (feed-
ing or opioids) were particular foci of Dr. Markou’s research.
Nevertheless, we hope that this discussion can enhance under-
standing of general principles by which telencephalic net-
works modulate motivational function, which may have broad
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relevance to the issues that Dr. Markou studied so productive-
ly and successfully in her career.

Feeding-modulatory opioid actions in the Acb

It has long been hypothesized that endogenous opioid func-
tion modulates some aspect of food reward, possibly the he-
donic experience of eating preferred foods. Early studies
showed that opioid receptor blockade reduces the perceived
pleasantness of palatable foods, without significantly altering
feelings of hunger, basic taste perception, or taste intensity
(Drewnowski et al. 1992; Fantino et al. 1986; Yeomans and
Gray 1996). Relatedly, systemic treatment with opioid ago-
nists or antagonists in rats selectively increase, or decrease,
respectively, consumption of palatable solutions and diets
preferentially over standard chow (Apfelbaum and
Mandenoff 1981; Cooper 1983; Giraudo et al. 1993; Levine
et al. 1982), and systemic opioid antagonist administration
was found to prevent the formation and expression of taste
preferences (Cooper 1983; Cooper and Turkish 1989; Evans
and Vaccarino 1990; Lynch 1986). Accordingly, Levine and
colleagues demonstrated that the efficacy of naloxone at re-
ducing food intake (1) is inversely related to the level of food
deprivation the animal is subjected to (Levine et al. 1995;
Rudski et al. 1994; Weldon et al. 1996) and (2) is dependent
upon individual dietary preferences (Glass et al. 1996).
Because food deprivation enhances palatability and food-
reward valuation (Berridge 1991; Cabanac and Duclaux
1973; Cameron et al. 2014), both findings could be interpreted
as indicating that endogenous opioid function modulates of
the rewarding impact of the food.

Attempts to localize feeding-modulatory opioid actions in the
brain have revealed opioid-responsive sites at neural levels rang-
ing from the cortex to the brainstem (Giraudo et al. 1998; Kim
et al. 2004; Leibowitz and Hor 1982; Mena et al. 2011; Wilson
et al. 2003; Woods and Leibowitz 1985; Zhang and Kelley
2000). Among the most extensively studied site of feeding-
modulatory opioid actions is the Acb, and drug manipulations
in this structure have shed some light on the distinct motivation-
al processes that contribute to the opioid modulation of feeding.
Early studies found that intra-Acb morphine infusions (injec-
tions were located in the medial core) increased food intake
and that naloxone reversed this effect (Majeed et al. 1986;
Mucha and Iversen 1986). Furthermore, intra-Acb μ-OR stim-
ulation increased intake of palatable solutions, regardless of taste
modality or caloric content (sucrose, saccharin, or saline solu-
tions) (Zhang andKelley 2002) and a study employing specially
formulated diets in which flavor varied but macronutrient con-
tent was held constant showed that intra-Acb μ-OR blockade
reduced intake of the flavor preferred at baseline (Woolley et al.
2006). These findings converge on the interpretation that endog-
enous opioid function (at least in the Acb) modulates the

rewarding impact of intrinsically preferred foods or tastes, rather
than selectively affecting a particular taste, orosensory charac-
teristic, or post-ingestive consequence.

In this context, it is important to note that Breward^ is the
emergent property of several interrelated yet partly dissociable
processes: the learning and subsequent assignment of motiva-
tional significance to cues and goal objects in the environment,
Benergizing^ of approach behaviors and instrumental acts di-
rected at those cues, and generation of a positively valenced
affective state during commerce with those cues and goal ob-
jects (Baldo et al. 2013; Berridge 2004; Salamone et al. 2007).
Incentive-motivation theory, for example, posits that the feed-
ing central motivational state (CMS) consists of multiple par-
allel processes working in tandem to produce coherent behav-
ioral sequences; these include Binstrumental^ seeking-type
processes that increase the likelihood of goal attainment and
Btransactional^ processes (e.g., commerce with food) (Bindra
1974; Konorski 1967; Toates 1986). Relatedly, ethologically
based frameworks propose distinctions between Bpreparatory/
approach^ vs. Bconsummatory^ behaviors (Ball and
Balthazart 2008; Craig 1917; Ikemoto and Panksepp 1999).
These functions are highly interrelated, and they function co-
operatively in the healthy brain to enable reward learning,
generate adaptive goal-directed behavior, and facilitate the ex-
pression of basic consummatory action patterns when and
where appropriate. Yet, evidence has accrued that these func-
tional domains are mediated by partly dissociable
neuromodulator systems and pathways. Some of this evidence
has emerged from the analysis of similarities and differences in
Acb-based opioid and dopaminergic actions upon various in-
dices of food-reinforced behavior and unconditioned reactions
to tasteants (Baldo et al. 2013; Barbano and Cador 2006,
2007). Intra-Acb dopamine manipulations, for example, are
less effective at altering unconditioned, low-effort responses
(e.g., simple ingestive behaviors or taste reactions), relative to
conditioned food anticipation, cue-driven approach, hyperac-
tivity, or effortful food-seeking actions (Baldo and Kelley
2007; Berridge 2007; Salamone et al. 2007). Rats treated with
dopamine receptor antagonists or dopamine lesions in the Acb
will display markedly diminished general activity in the pres-
ence of food and less switching among competing behaviors,
while total food intake itself is unaffected (Bakshi and Kelley
1991; Baldo et al. 2002). Relatedly, Salamone and col-
leagues have shown in a variety of tasks that dopamine
depletion in the Acb produces shifts in choice towards less
effortful food-seeking behaviors, although overall food in-
take is unchanged (Aberman and Salamone 1999; Nowend
et al. 2001; Salamone et al. 1994). The fact that intake
itself is unchanged suggests that the Bconsummatory^ mo-
tivational component (involving commerce with the food)
remains relatively intact. This conclusion is further sup-
ported by the observation that Acb dopamine depletion
does not eliminate orofacial taste reactions to passively
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infused sucrose solutions, an index of the hedonic evalua-
tion of foods and tasteants (Berridge et al. 1989).

Acb-based opioid systems, on the other hand, appear to
play a role not only in invigorating instrumental behaviors,
but also enhancing the primary rewarding aspects of eating.
Systemic morphine increases and naloxone decreases the
number of evoked hedonic taste responses to sweet sucrose
solutions (Doyle et al. 1993; Parker et al. 1992; Pecina and
Berridge 1995; Rideout and Parker 1996) and suppresses
aversive reactions to bitter quinine solutions (Clarke and
Parker 1995; Parker et al. 1992). It has been argued that these
stereotyped, cross-species reactions to pleasant and unpleasant
tastes are the manifestation of an internal evaluation of the
hedonic quality of a taste stimulus (Grill and Norgren 1978).
Meticulous mapping studies employing local μ-OR agonist
injections coupled to the analysis of resultant Bplumes^ of
Fos expression have revealed a highly circumscribed area in
the medial AcbSh where μ-OR stimulation augments
hedonic-like taste reactions (Pecina and Berridge 2005).
Nevertheless, a wider zone, extending into the medial core,
was found to mediate μ-OR-driven hyperphagia but not the
enhancement of hedonic taste reactions. Furthermore, intra-
Acb core μ-OR stimulation augments progressive ratio (PR)
responding for sucrose (a schedule in which progressively
more responses are required for each successive reinforcer)
(Zhang et al. 2003) and opioid stimulation of either the Acb
core or shell facilitates sucrose-associated Pavlovian-to-
Instrumental Transfer (PIT), a reflection of the underlying
process by which Pavlovian learning invigorates goal-
seeking actions, (Pecina and Berridge 2013). Opioids influ-
ence reward-seeking behavior through interactions with the
mesolimbic dopamine system (Fields and Margolis 2015;
Zheng et al. 2007); however, unlike dopamine manipulations,
μ-OR stimulation also facilitates hedonic reactions to taste. In
the incentive-salience framework proposed by Berridge and
Robinson (Berridge 2009; Berridge and Kringelbach 2015;
Robinson and Berridge 2001), dopamine facilitates the
Bwanting^ of rewards, whereas opioids facilitate both
Bwanting^ and Bliking^, although the Bliking^ function is
highly restricted to the anterior medial AcbSh.

This anatomical heterogeneity across sectors of the Acb
agrees with the more general observation that there are gradi-
ents of opioid sensitivity spanning the entire striatal complex.
Early morphine microinfusion mapping studies revealed an
anatomical gradient of opioid-induced feeding, with strong
hyperphagia evoked by infusion of D-Ala2, N-Me-Phe4,
Gly5-ol]-Enkephalin (DAMGO), a specificμ-OR-subtype ag-
onist, into the Acb and weaker responses in more dorsal, lat-
eral, and posterior infusion sites (Bakshi and Kelley 1993).
The most effective site for eliciting feeding was an area span-
ning the lateral aspects of the Acb core and the medial aspects
of the shell. Nevertheless, opioid-driven feeding effects were
not restricted to the Acb. Morphine infusions into the ventral

aspects of dorsal and medial striatum also elicited feeding,
albeit to a lesser degree compared to the Acb. A later
microinfusion-mapping study using DAMGO confirmed that
the strongest opioid-driven food intake effects were elicited
from the Acb core (Zhang and Kelley 2000). Significant ef-
fects were also observed with placements in the ventrolateral
striatum and in the lateral core and even in dorsal striatum
(although opioid effects in this latter site were less consistent
across subjects). Accordingly, a recent peptide-microdialysis
study confirmed that enkephalins are released into the extra-
cellular space of the anterior medial dorsal striatum during
palatable feeding and that DAMGO infusion into this striatal
zone elicits palatable feeding (DiFeliceantonio et al. 2012).

To summarize, the studies reviewed above suggest a sensi-
tivity gradient for opioid-modulated behavioral functions
spanning the anterior medial AcbSh to the dorsal striatum.
This gradient is characterized by several features. First, food
ingestion itself can be elicited by μ-OR agonist injections
within a wide zone centered on the Acb core/shell boundary,
but including lateral aspects of the core, shell, and the ventro-
lateral striatum. Opioid-driven feeding responses can also be
elicited from select areas in dorsal striatum; these effects are
more inconsistent and less robust relative to Acb-mediated
effects. As injection placements move caudally away from
ventromedial and ventrolateral striatum, the magnitude of
opioid-driven feeding effects diminishes. Second, there ap-
pears to be an anatomical segregation of function with regard
to opioid-driven pursuit of food goals and modulation of in-
centive salience (e.g., enhancement of progressive ratio
responding and PIT) vs. opioid modulation of taste reactivity.
The former can be elicited from sites both in the Acb core and
medial shell, whereas the latter appears to be tightly restricted
to the anterior medial shell. To the authors’ knowledge, there
have been no systematic mapping studies of opioid-modulated
operant responding, PIT, or taste reactivity across the entire
extent of dorsal striatum; this represents an interesting direc-
tion for future research, particularly considering the conver-
gentmicroinfusion andmicrodialysis data indicating that there
may be an important opioid-sensitive feeding zone in the an-
terior medial dorsal striatum.

Feeding-modulatory opioid actions in the PFC

Compared to the Acb, far less is known regarding the behav-
ioral mechanisms underlying feeding-modulatory opioid ac-
tions in the PFC. Evidence thus far indicates that μ-OR stim-
ulation in ventromedial sectors of frontal cortex induces a
robust feeding central motivational state (CMS), although
the mechanistic details of this state are not fully understood.
μ-OR stimulation in the ventromedial prefrontal cortex
(vmPFC), mainly the infralimbic region, engenders feeding
both in food-deprived and ad libitum-maintained rats (Mena
et al. 2011); the organization of this feeding response consists
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of brief feeding bouts and abrupt switching between food-
directed responses and responses directed away from food
(e.g., Bexploratory-like^ ambulatory or rearing behaviors).
This pattern is essentially the opposite of that engendered by
GABA-mediated inactivation of the vmPFC (i.e., longer feed-
ing bouts and less ambulation and rearing) (Baldo et al. 2016;
Mena et al. 2011), suggesting that the net behaviorally rele-
vant effect of μ-OR stimulation is to activate or disinhibit
cortical output. Presently, the role of μ-ORs in regulating py-
ramidal neuron activity (and thus cortical output) is not well
understood. It is interesting to note that μ-ORs mediate hip-
pocampal pyramidal neuron disinhibition by suppressing local
inhibitory interneurons (McQuiston and Saggau 2003;
Zieglgansberger et al. 1979). These hippocampal interneurons
are similar to μ-OR-bearing interneurons in cortex (Curley
and Lewis 2012; Ferezou et al. 2007; Krook-Magnuson
et al. 2011; Taki et al. 2000), lending some plausibility to the
idea that cortical μ-OR stimulation may have net disinhibitory
or activational effects upon cortical output.

In addition to driving feeding itself, μ-OR stimulation in
vmPFC also robustly amplifies responding in a sucrose-
reinforced progressive ratio (PR) task and promotes
Bimpulsiveness-like^ deficits in differential reinforcement of
low response rate task (DRL) (Selleck et al. 2015). Together,
these effects indicate that cortical μ-OR stimulation increases
the motivational value of food and energizes food-seeking
repertoires, as well as disrupting inhibitory control over
food-seeking. The precise mechanisms underlying these ef-
fects are unclear, but a number of possibilities come to mind.
For example, because electrophysiological studies have sug-
gested that units in vmPFC encode information regarding
food-associated taste characteristics (including taste hedonics)
and reward valuation (Jezzini et al. 2013; Parent et al. 2015),
the intra-PFC μ-OR-mediated increase in food intake could
reflect an enhancement of the hedonic properties of the food.
Nevertheless, the μ-OR stimulation-induced pattern of bout
initiation coupled with the shortening of individual bouts in-
dicates that commerce with the food does not sustain the rel-
atively longer periods of consumption that might be expected
with increased gustatory reward (Davis and Smith 1992;
Ostlund et al. 2013; Spector et al. 1998). This could be
interpreted as enhanced salience of the sucrose incentive in
the absence of hedonic taste facilitation (Bwanting^ in the
absence of increased Bliking^). In this regard, an important
question for future research is whether intra-vmPFC μ-OR
stimulation modulates taste reactions to sucrose.

Alternatively, the changes in feeding-bout microstructure
described above could reflect opioid-mediated perturbation of
underlying response-selection functions of the PFC. In a gen-
eral sense, medial PFC plays a prominent role in modulating
ongoing behavior and inhibiting disadvantageous behavior, to
match prevailing (and often changing) contingencies; exam-
ples include the regulation of set-shifting (Birrell and Brown

2000; Dalley et al. 2004; Floresco et al. 2008; Ragozzino et al.
1999) and the expression of extinction learning (Eddy et al.
2016; Peters et al. 2008; Quirk et al. 2006; Rhodes and
Killcross 2007). With regard to ingestive behaviors, recent
findings that inhibition of ventromedial PFC disturbs the tem-
poral distribution of licking bouts in an incentive-contrast par-
adigm, Bmisaligning^ licking bout durations to high and low
concentrations of sucrose (Parent et al. 2015). This finding
suggests a PFC-based operation that matches the temporal
duration of licking bouts with the reward value of the food.
It is interesting to hypothesize that, in a free-feeding context,
this Bsupervisory^ operation aligns the temporal duration of
consummatory responses with contingencies of taste-reward
valuation and the need for periodic environmental reconnais-
sance, enabling flexible, adaptive switching between the two
competing response sets. Such a function would serve to keep
food-directed and non-food-directed repertoires in balance,
thereby optimizing intake while minimizing risk (Blanchard
and Blanchard 1989; Dukas 2002; Krebs et al. 1996; Krebs
et al. 1997; Onuki and Makino 2005). This purported
switching function, combined with a facilitation of the incen-
tive value of food (as reflected in the abovementioned effects
on PR and DRL performance), could produce the observed μ-
OR stimulation-induced changes in feeding approach and
bout duration. As will be discussed below, it is possible that
the modulation of and switching between food-directed vs.
non-food-directed activity by PFC-based μ-ORs reflects the
recruitment of distinct PFC efferent pathways.

From an anatomical perspective, recent studies have begun
to map the effects of intra-tissue infusions of a μ-OR agonist
in order to determine whether, as in striatum, there are hetero-
geneities in opioid sensitivity across different regions of fron-
tal cortex. First, to define the basic effect, the μ-OR agonist,
DAMGO, was infused directly into vmPFC. In this initial
experiment, injections were placed near the dorsal border of
infralimbic cortex, which some sites crossing into the ventral
aspect of prelimbic cortex (Mena et al. 2011). These infusions
dose dependently enhanced food intake in both food-deprived
and ad libitum-maintained rats. A subsequent mapping exper-
iment revealed that DAMGO infusions in the ad libitum con-
dition also enhanced food intake when injections were placed
in medial aspects of subgenual orbitofrontal cortex. DAMGO
effects were weaker when infusions with infusions sited more
dorsally in the medial wall (i.e., anterior cingulate cortex),
dorsolaterally in anterior somatosensory cortex, or laterally
in orbitofrontal cortex (i.e., lateral subgenual orbital cortex,
anterior aspects of insular cortex) (Mena et al. 2011). Hence,
a gradient of μ-opioid sensitivity is apparent in the frontal
cortex. The strongest feeding-modulatory sites are located in
a ventromedial zone comprising parts of medial PFC and
orbitofrontal cortex; as infusions move dorsally and laterally
from this zone, progressively weaker effects are observed.
Presently, it is unknown whether opioid modulation of PR or
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DRL can be elicited from frontal territories beyond the
infralimbic cortex. This represents an important area for future
research.

Motivational effects of telencephalic opioids:
a cortico-striato-hypothalamic network model

Consideration of the topographic organization of cortical and
striatal gradients of opioid sensitivity suggest possible efferent
pathways through which telencephalic opioids modulate ap-
petitive motivation. First, the frontal cortical sites from which
the strongest μ-OR-induced feeding responses can be elicited
are clustered in a Bventromedial corridor^ consisting of sites
both in medial and orbitofrontal cortex that innervate opioid-
responsive zones in the Acb and dorsal striatum (Heilbronner
et al. 2016; Schilman et al. 2008; Thompson and Swanson
2010; Vertes 2004). In particular, the infralimbic area projects
strongly to the Acb shell (Heilbronner et al. 2016; Thompson
and Swanson 2010), including the anteromedial zone that
plays a specialized role in mediating taste hedonics (Pecina
and Berridge 1995). Opioid-sensitive sites in frontal cortex
have also been shown to project to the hypothalamus, includ-
ing lateral and perifornical areas of tuberal hypothalamus from
which intense feeding responses can be elicited by local infu-
sions of glutamate agonists or neuropeptide Y (Floyd et al.
2001; Gabbott et al. 2005; Reppucci and Petrovich 2016;
Vertes 2004). Similarly to the ventromedial PFC, the medial
AcbSh projects to feeding-modulatory areas of hypothalamus
both directly and indirectly via the ventral pallidum
(Groenewegen et al. 1993; Haber et al. 1985; Heimer et al.
1991; Mogenson et al. 1983).

The anatomical relationships described above suggest a
circuit for higher-order control of feeding behavior, consisting
of telencephalic nodes in ventromedial frontal cortex and me-
dial Acb shell outputting to a dienephalic node in tuberal hy-
pothalamus. The functional relevance of this circuit has been
confirmed in studies employing drug microinfusions and the
analysis of immediate-early gene expression to Bdissect^ dis-
tinct pathways among those sites. Early studies focused on the
functional relationship between the medial AcbSh Bfeeding
hotspot^ and the lateral hypothalamus in the control of food
intake. Kelley and colleagues performed a series of dual-site
microinfusion studies in rats in which the AcbSh and hypo-
thalamus (in a zone spanning lateral and perifornical areas of
tuberal hypothalamus; LH-PeF) were jointly targeted with in-
fusion cannulae. Feeding responses were elicited either by
AMPA receptor blockade, GABA receptor stimulation, or μ-
OR stimulation in the Acb; in the same animal, a GABA
agonist or glutamate antagonist was concurrently infused into
the LH-PeF (Maldonado-Irizarry et al. 1995; Stratford and
Kelley 1999; Will et al. 2003). For each orexigenic manipu-
lation of the Acb, it was found that reducing neural activity in
the hypothalamus (via either glutamate blockade or GABA

stimulation) eliminated the Acb-mediated hyperphagia, indi-
cating that intact hypothalamic function is necessary for the
expression of Acb-driven hyperphagia. This conclusion is fur-
ther bolstered by recent optogenetic studies showing that si-
lencing the Acb shell increases consumption, stimulating that
region decreases consumption and that these effects are medi-
ated through projections of D1-bearing Acb neurons
projecting to the hypothalamus (O’Connor et al. 2015;
Parent et al. 2015). Further work indicated that either GABA
receptor or μ-OR stimulation in the Acb shell provoked ex-
pression of the immediate-early gene, Fos, in several hypotha-
lamic regions, including the LH-PeF (Baldo et al. 2004;
Stratford and Kelley 1999; Zhang and Kelley 2000).
Immunohistochemical co-labeling studies indicated that
intra-Acb GABA-ergic or μ-OR manipulations provoke Fos
expression in orexigenic neuronal populations including
hypocretin/orexin (H/O)-containing cells in the LH-PeF
(Baldo et al. 2004; Zheng et al. 2003). It is important to note
that, in the abovementioned Fos mapping study, a number of
sites in addition to the hypothalamus were activated by intra-
Acb DAMGO. These included the ventral tegmental area
(VTA) and nucleus of the solitary tract (NTS) (Zhang and
Kelley 2000). Accordingly, local GABA-mediated inactiva-
tion of the VTA or NTS blocked intra-Acb DAMGO-induced
amplification of sweetened-fat intake (Will et al. 2003). It is
unknown whether Acb interactions with these mesencephalic
and brainstem sites are enacted mainly through direct projec-
tions or through a hypothalamic relay. One study has identi-
fied a serial relationship among the Acb, to H/O-expressing
hypothalamic neurons, to the VTA mediating intra-Acb
DAMGO-driven feeding (Zheng et al. 2007). It is certainly
possible that both serial and parallel projections are involved;
pathway-specific optogenetic or chemogenetic manipulations
could shed further light on this issue.

Recent findings have also demonstrated a role for a func-
tional interaction between PFC and hypothalamus in the con-
trol of feeding. Infusions of the μ-OR agonist, DAMGO, di-
rectly into the vmPFC (infralimbic and ventral prelimbic ter-
ritories) induced Fos expression in the LH-PeF, including
within a group of medially localized H/O-containing cells
(Mena et al. 2013). This finding suggests that intra-vmPFC
DAMGO activates neurons in this hypothalamic area, possi-
bly via glutamatergic afferents arriving from the vmPFC.
Evidence for glutamate involvement in this functional rela-
tionship between the PFC and hypothalamus was provided
by the finding that hyperphagia induced by intra-vmPFC
DAMGO was reversed by intra-LH-PeF infusions of low
doses of the glutamate NMDA receptor subtype antagonist,
AP-5 (Mena et al. 2013). The LH-PeF subregion targeted in
this study is similar to the zone from which strong
neuropeptide-Y-induced feeding responses have been report-
ed (Stanley et al. 1993) and also to the area where local inac-
tivation or glutamate receptor blockade reduces hyperphagia
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induced by intra-Acb μ-OR stimulation (Maldonado-Irizarry
et al. 1995; Stratford and Kelley 1999). Further evidence for a
PFC-hypothalamus functional relationship is provided by
studies examining the control of Pavlovian-conditioned cues
over food consumption. Displaying a stimulus previously
paired with hunger-driven hyperphagia causes a subsequent
increase in food intake in sated rats. Examination of activity-
dependent gene expression during cue-induced overeating re-
vealed activation in PFC and amygdalar inputs to the hypo-
thalamus (as defined by labeling from a retrograde tracer
placed in the hypothalamus) (Petrovich et al. 2005).
Interestingly, the AcbSh➔hypothalamus projection did not
seem to be involved. A lesion study confirmed that the PFC
is required for the expression of cue-induced overeating
(Petrovich et al. 2007). Hence, the hypothalamus appears to
be an output node not only for drug-induced hyperphagia
elicited from the Acb or PFC, but also for higher-order com-
putations relevant for the modulation of intake by learned
cues.

The vmPFC➔AcbSh projection also modulates feeding,
but in the opposite direction. Thus, bicuculline-induced disin-
hibition in infralimbic cortex limits feeding responses engen-
dered by intra-AcbSh AMPA blockade (Richard and Berridge
2013) and intra-Acb shell neural activation, including that
engendered by AMPA receptor stimulation (Stratford et al.
1998), electrical stimulation (Krause et al. 2010), or
optogenetic activation (O’Connor et al. 2015) arrests feeding
and provokes competing behaviors such as intense motor ac-
tivity (Ikeda et al. 2003). These results suggest a complex,
glutamate-coded functional relationship among the PFC,
Acb, and LH-PeF, whereby PFC-driven feeding is mediated
by glutamate transmission in the LH-PeF, but negatively mod-
ulated by AMPA signaling in the Acb. These results can be
interpreted as reflecting the activity of a cortico-striato-
hypothalamic circuit, consisting of functionally opposed
PFC and AcbSh efferents converging on a hypothalamus-
based output node. It has been hypothesized that these puta-
tive PFC➔hypothalamus Bfeeding driver^ and PFC➔AcbSh
Bfeeding limiter^ pathways counterbalance one another to
maintain food-directed activity within adaptive limits (Baldo
2016). It is not yet known, however, to what extent these
functional relationships are driven by monosynaptic gluta-
matergic projections originating from the PFC vs. polysynap-
tic routes of control; such a determination awaits the applica-
tion of optogenetic or chemogenetic manipulations to dissect
the individual pathways.

To summarize the major tenets of the network model, μ-
OR activity in the PFC or Acb appears to drive feeding via an
obligatory output node in the PeF-LH, albeit by distinct mech-
anisms. Glutamatergic PFC projections stimulate hypothalam-
ic feeding systems, while the inhibition of GABA-ergic Acb
efferents disinhibits those systems. Conversely, activation of
the Acb via AMPA receptor stimulation (possibly arising from

glutamatergic PFC projections) inhibits feeding, partly
through descending inhibitory control over the hypothalamus,
but also through the recruitment of non-food-directed behav-
iors. The incoherent engagement of these parallel Bfeeding-
driver^ and Bfeeding-limiter^ pathways by opioid signaling
could result in disorganized, impulsive food-seeking behav-
iors, such as those engendered by μ-OR stimulation in ven-
tromedial PFC (Mena et al. 2011; Selleck et al. 2015). Figure 1
shows a schematic summarizing this model, along with pos-
sible feeding pathologies arising from different types of net-
work dysfunction.

Finally, it is important to consider how additional opioid-
responsive telencephalic sites can be incorporated into this
cortico-striato-hypothalamic network hypothesis. Based upon
hodological considerations and functional evidence, the
amygdala is a prime candidate. This structure sends robust
projections to Acb, PFC, and hypothalamus and, hence, is
positioned to modulate PFC and Acb directly as well as to
enact parallel regulation of Acb- and PFC-innervated zones
of hypothalamus (Reppucci and Petrovich 2016). Sites within
the amygdaloid complex support μ-OR-induced effects on
feeding and food motivation; for example, μ-OR stimulation
in the central amygdaloid region (CeA) causes hyperphagia
(Kim et al. 2004) and strongly amplifies the activational ef-
fects of Pavlovian cues over food approach and other instru-
mental actions (Mahler and Berridge 2012). Furthermore,
intra-CeA μ-OR stimulation-induced hyperphagia appears to
interact in a complex, reciprocal way with opioid function in
the Acb, as evidenced by the finding that opioid receptor
blockade in amygdalar sites blocks opioid-driven feeding elic-
ited from the Acb, and vice-versa (Kim et al. 2004). Along
with the CeA, the basolateral area of the amygdala (BLA)
plays an obligatory role in the amplification of palatable feed-
ing induced by intra-Acb μ-OR stimulation (Parker et al.
2015; Will et al. 2004). Thus, pharmacological inactivation
of either BLA or CeA eliminated the increase in sweetened-
fat intake induced by intra-Acb infusions of DAMGO, with-
out suppressing baseline levels of intake (Will et al. 2004).
Finally, interactions between the PFC and amygdala may also
participate in the regulation of food motivation. For example,
a recent study demonstrated that optogenetic activation of
PFC projections to the basolateral amygdala enhances feeding
(Land et al. 2014). Finally, Pavlovian cue-induced overeating
recruits both BLA➔ hypothalamus and PFC➔hypothalamus
pathways (Petrovich et al. 2005), suggesting a route through
which BLA and PFC processing can converge on a common
hypothalamic output node.

Together, the studies discussed above suggest multiple
pathways through which amygdalar processing can integrate
with the feeding Bdriver^ and Blimiter^ circuits described
above, including but not limited to (1) parallel convergence
onto a common hypothalamic effector node; (2) regulation of
opioid responses at the level of the Acb and/or PFC, either via
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monosynaptic projections or multi-step pathways through in-
termediaries such as orexin neurons or VTA dopamine neu-
rons; (3) descending control of amygdala function by the PFC.
Teasing these network interactions apart using contemporary
optogenetic and chemogenetic approaches represents an ex-
citing direction for future research.

Clinical implications

Aberrant activity prefrontal cortex and nucleus accumbens
contribute to deficits in impulse control in a number of psy-
chiatric disorders characterized by excessive appetitive mo-
tivation, including disorders of food intake such as binge eat-
ing disorder (BED) (Dong et al. 2016; Karhunen et al. 2000;
Schienle et al. 2009;Seoet al. 2013;Uher et al. 2004).Several
studieshavesuggested that thesedeficitsarise fromsupernor-
mal opioid transmission (Blasio et al. 2014; Gorelick et al.
2008; Love et al. 2009; Mitchell et al. 2012; Morganstern
et al. 2012; Selleck et al. 2015; Zubieta et al. 1996), and these
studies are supported by clinical findings that opioid antago-
nists have at least some degree of efficacy across several dis-
orders characterized by loss of control over goal-seeking be-
havior (Cambridge et al. 2013;Kimet al. 2001;Mitchell et al.
2007; Volpicelli et al. 1992). However, there is variability in
the reports of opiate antagonist clinical efficacy (McElroy
et al. 2013; Ziauddeen et al. 2013), suggesting that further
studies are needed to more thoroughly delineate opioid

actions within the brain and how normal brain function is in-
fluenced by opioid antagonists. The networkmodel outlined
in this article suggests that using poly-drug approaches may
enhancetheefficacyofopiateantagonistsintreatingdisorders
such as BED, as well as other conditions such as alcohol de-
pendence, for which opioid antagonists represent one of the
only FDA-approved treatments (Pettinati et al. 2006; Soyka
andRosner 2008;Volpicelli 1995). Because nodes in the net-
work have been specified neurochemically (i.e., as described
previously, μ-ORs in the PFC and Acb, as well as other sites
including the CeA; orexin systems in the LH-PeF, AMPA re-
ceptorsintheAcbshell), it ispossibletoidentifycombinations
of treatments that together could have an additive or super-
additive effect on network function. Specifically, co-
administering opioid antagonists with treatments that target
downstream nodes of the network (for example, orexin sys-
tems in the hypothalamus) may prove more effective than
opioid antagonists alone. It has been suggested, for example,
that orexin manipulations could represent an effective treat-
ment for conditions such as drug addiction or relapse (Plaza-
Zabala et al. 2012;Zhouet al. 2011) (Picetti et al. 2013).More
generally, future studies aimed at enhancing our understand-
ing of the neural networks through which opioids exert
reward-modulatory effectswill be crucial for developingbet-
ter treatments for a wide variety of disorders, including drug
dependenceandwithdrawal,psychiatric conditions thatwere
the focus ofDr. AthinaMarkou’s career.

Fig. 1 Schematic depicting the proposed cortico-striato-hypothalamic
feeding-modulatory network, along with possible feeding pathologies
arising from different types of network dysfunction. Panel (a) shows the
underlying organization of prefrontal cortical (PFC) projections to the
nucleus accumbens shell (AcbSh) and feeding circuits in the
hypothalamus (H). Excitatory PFC➔AcbSh glutamatergic projections
(indicated by B+^ signs) acting through AMPA-type receptors act as a
Blimiter circuit,^ restraining bouts of consummatory activity. PFC➔H
projections elicit feeding, acting as a Bdriver circuit^ that can be
engaged by frontal activation, including that associated with local

opioid release. The AcbSh, in turn, sends an inhibitory GABA-ergic
projection (B−^ sign) to the H. Panel (b) displays possible network
alterations that would be predicted to cause bingeing behavior. These
alterations include increased activity in the Bdriver^ pathway, and/or
diminished function of the Blimiter^ pathway. Influence of these
pathways over their respective terminal fields is depicted by the width
of the arrows. The opposite changes (i.e., overactive Blimiter^ and/or
underactive Bdriver^ pathways) would be expected to result in abnormal
restriction of feeding behavior, as depicted in panel (c)
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