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Abstract
Rationale Tobacco use is linked to cerebral atrophy and
reduced cognitive performance in later life. However,
smoking-related long-term effects on brain function re-
main largely uncertain. Previous studies suggest that
nicotine affects serotonergic signaling, and the intensity
dependence (alias loudness dependence) of the auditory
evoked N1-P2 potential has been proposed as a marker
of serotonergic neurotransmission.
Objective In the present study, we assesed the effects of
chronic smoking on amplitude and intensity dependence of
the auditory evoked N1-P2 potential.
Methods Subjects underwent a 15-min intensity dependence
of auditory evoked potentials (IAEP) paradigm. From
N=1739 eligible subjects (40–79 years), we systematically
matched current smokers, ex-smokers, and never-smokers
by sex, age, alcohol and caffeine consumption, and socioeco-
nomic status. Between-group differences and potential dose-
dependencies were evaluated.

Results Analyses revealed higher N1-P2 amplitudes and
intensity dependencies in never-smokers relative to
ex- and current smokers, with ex-smokers exhibiting
intermediate intensity dependencies. Moreover, we ob-
served pack years and number of cigarettes consumed
per day to be inversely correlated with amplitudes in
current smokers.
Conclusions According to the IAEP serotonin hypothe-
sis, our results suggest serotonin activity to be highest
in current smokers, intermediate in ex-smokers, and
lowest in never-smokers. To our knowledge, the present
study is the first providing evidence for a dose-
dependent reduction in N1-P2 amplitudes. Further, we
extend prior research by showing reduced amplitudes
and intensity dependencies in ex-smokers even 25 years,
on average, after cessation. While we can rule out sev-
eral smoking-related confounders to bias observed asso-
ciations, causal inferences remain to be established by
future longitudinal studies.
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Introduction

Tobacco use is linked to numerous preventable diseases,
resulting in considerable public health expenditures and about
100,000 deaths per annum in the UK alone (Allender et al.
2009). Beyond negative vascular and respiratory health out-
comes, smokers show poorer cognitive performance in later
life and exhibit an increased risk for dementia (Chang et al.
2014, Mons et al. 2013). Nevertheless, discrete effects of
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chronic smoking on physiological brain function remain
largely uncertain.

Prior imaging studies point to a link between chronic
smoking and reduced cortical volume, density, and thickness,
aside from higher atrophy rates in widespread brain regions
(Almeida et al. 2008, Durazzo et al. 2012, Fritz et al. 2014,
Karama et al. 2015). Functional approaches suggest that
smokers exhibit a reduced default mode and executive control
network connectivity (Weiland et al. 2015) and a lower cere-
bral perfusion (i.e., blood flow) in the orbitofrontal cortex,
inferior parietal lobules, superior temporal gyri, and cingulate
gyrus (Durazzo et al. 2015). Due to their dependence on he-
modynamics, a large proportion of currently applied tech-
niques are rather restricted in rendering rapid information pro-
cessing visible. Recordings of electroencephalic activity, on
the other hand, enable direct assessment of neural mechanisms
with high temporal resolution. While acute effects of smoking
on various electrophysiological potentials have been de-
scribed (Pritchard et al. 2004), evidence for long-term effects
is scarce.

The intensity dependence (also referred to as loudness de-
pendence) of the auditory evoked N1-P2 component has been
suggested as an indicator of central serotonergic neurotrans-
mission, with weaker intensity dependencies hypothesized to
reflect higher serotonin activity (Hegerl et al. 2001, Hegerl
and Juckel 1993). This hypothesis was validated in experi-
mental animal studies (Juckel et al. 1997, Juckel et al. 1999,
Manjarrez et al. 2005, Wutzler et al. 2008), while several
studies on patients with putative serotonergic dysfunction pro-
vided further indirect evidence. For instance, an enhanced N1-
P2 intensity dependence was reported in ecstasy users
(Daumann et al. 2006, Tuchtenhagen et al. 2000) and in pa-
tients with migraine (Siniatchkin et al. 2000). A reduced N1-
P2 intensity dependence, on the other hand, was shown in
schizophrenia (see Juckel 2015). Further, intensity dependen-
cies were utilized to predict responses on drugs that influence
the serotonin system, such as lithium and selective serotonin
reuptake inhibitors (Gallinat et al. 2000, Juckel et al. 2004,
Juckel et al. 2007, Lee et al. 2005, Linka et al. 2004, Linka
et al. 2005, Mulert et al. 2007). By analogy to intensity depen-
dencies, an elevated serotonergic function has also been
linked to weaker auditory evoked amplitudes (Ehlers et al.
1991, O’Connor et al. 1992, Rowan et al. 1988).

Notably, the N1 and P2’s intracerebral origins, i.e., the
superior temporal gyri (Crowley and Colrain 2004), have been
associated with smoking-related morphological and function-
al alterations (Durazzo et al. 2015, Karama et al. 2015). In
addition, nicotine was found to impact serotonergic signaling
(Benwell et al. 1990, Hernandez-Lopez et al. 2013, Malone
et al. 2003, Seth et al. 2002). Consequently, two studies pre-
viously reported a lower N1-P2 intensity dependence among
current smokers relative to non-smokers (Gallinat et al. 2005,
Min et al. 2012). However, both studies did not provide

information about absolute N1-P2 amplitudes, nor they sys-
tematically controlled for confounders beyond sex and age.
Further, non-smokers were not consistently subdivided into
ex- and never-smokers, and sample sizes might have been
too small to detect potential dose-dependent relationships.

On this basis, we sought to investigate the effects of
smoking status on brain function by means of amplitude and
intensity dependence of the cortical auditory evoked N1-P2
component in a sample providing enhanced power and the
opportunity to systematically control for several major
smoking-related confounders. Beyond this, we aimed to in-
vestigate potential dose-dependent relationships.

Methods and materials

Sample

The sample was drawn from the LIFE-Adult study (Loeffler
et al. 2015), a population-based cohort study which aims to
examine prevalences, genetic predispositions, and lifestyle
factors of civilization diseases. The LIFE-Adult cohort com-
prises 10,000 randomly selected inhabitants of Leipzig,
Germany (main age range 40–79 years). Of those, 2,718 sub-
jects completed an EEG assessment and provided sufficient
data to evaluate tobacco use, socioeconomic status, alcohol
and caffeine consumption, and hearing threshold level. In
the context of the present investigation, we did not include
subjects with any current psychiatric disorder (according to a
structured clinical interview for DSM-IVaxis I disorders), any
current intake of psychotropic medication, or any history of a
major neurological disorder (leaving 1,974 subjects). Further,
we did not include cigar, cigarillo, stogie and pipe smokers, or
subjects with a hearing loss exceeding a moderate degree
(>55 dB SPL). Never-smokers reported no 6-month history
of five or more cigarettes a week. Ex- and current smokers
reported a regular tobacco intake of at least one cigarette a day
over a 1-year period. Current smokers were allowed to smoke
ad libitum. Ex-smokers quit smoking at least 12 months ago.
A resulting number ofN=1739 eligible subjects (40–79 years,
873 female) passed these criteria and subsequent EEG data
quality checks (described below).

However, current, ex-, and never-smokers differed substan-
tially concerning various potential confounders (see supple-
mentary Table S1). To improve group comparability, we per-
formed nearest neighbor matching using R-based SPSS
extension bundle psmatching 3.04 (Thoemmes 2012).
Propensity scores were calculated from a generalized additive
model with relaxed assumptions. Age on assessment date,
socioeconomic status, average amount of alcohol consumed
daily during the past 12 months, and the amount of caffeine
consumed prior to EEG served as covariates. Ex- and current
smokers were additionally matched by age of smoking onset
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and number of cigarettes consumed daily. Exact matching was
carried out for sex. Units out of common support were
discarded. To avoid incomplete matches, a caliper (0.05 in
size) was only used for 1:1 matching. First, we identified
n=544 never-smokers and n=272 ex-smokers, respectively,
matching n=136 current smokers. Due to a substantial loss of
power in detecting statistically relevant differences between
never- and ex-smokers, we identified n=468 never-smokers
matching n=468 ex-smokers in a second step. Table 1 pro-
vides detailed group characteristics of subsample 1 (never-
and ex-smokers matched to current smokers) and the overlap-
ping subsample 2 (never-smokers matched to ex-smokers;
57.5 % of subsample 2 subjects were also included in subsam-
ple 1 analyses).

Questionnaires and assessment of arousal

The assessment of tobacco use contained questions on ever-
and current smoking, age of onset, duration and cessation, and
the amount of intake of different tobacco products.
Socioeconomic status was calculated from self-reported edu-
cation, occupational status, and household income as de-
scribed elsewhere (Lampert et al. 2013). Average amount of
alcohol consumed daily during the past 12 months was calcu-
lated from self-reported amount and frequency of intake of
different alcoholic beverages. If the amount was not reported
but the associated frequency, or vice versa (2.2 %), the miss-
ing value was substituted by the median item response derived
from responses of all other subjects with a congruent value in
the associated item. Amount of caffeine consumed prior to
EEG assessment was calculated from the self-reported amount
of intake of different caffeinated beverages. Further, prior re-
search suggests smoking to impact arousal (Evatt and Kassel
2010) and arousal to impact evoked potentials (Colrain and
Campbell 2007). Therefore, arousal was assessed in advance
using the German version of the Karolinska Sleepiness Scale
(Åkerstedt and Gillberg 1990) and by applying a recently
developed EEG- and EOG-based computer algorithm, i.e.,
the Vigilance Algorithm Leipzig (VIGALL) 2.0 (Hegerl and
Hensch 2014, Sander et al. 2016), to preceding resting EEG
recordings. Detailed information about procedure and param-
eters of the latter assessment are described elsewhere (Huang
et al. 2015, Jawinski et al. 2015).

Physiological data collection and reduction

All procedures were carried out according to the Declaration
of Helsinki and approved by the Ethics Committee of the
University of Leipzig (263-2009-14122009). Subjects gave
written informed consent and received an expense allowance.
Subjects were seated in a chair in a sound-attenuated booth.
Instructions and paradigm stimuli were presented binaurally
via E-A-RTONE 3A Audiometric Insert Earphones (Aearo

Company, Indianapolis, IN, USA) using Presentation soft-
ware (Neurobehavioral Systems Inc., Albany, USA).
Subjects were asked to avoid body movements, to relax, and
to direct their gaze towards a self-chosen point in front of
them. No attention instruction was given. The 15-min eyes-
opened intensity dependence of auditory evoked potentials
(IAEP) paradigm consisted of 450 pseudo-randomized
1000 Hz sinus tones (30 ms duration, 10 ms rise and fall) of
five calibrated intensities (72, 78, 84, 90, 96 dB SPL). The
interstimulus interval varied between 1600 and 2100 ms.
Simultaneity of trigger and sound was verified according to
Neurobehavioral Systems’ guidelines. EEGs were recorded
against common average reference by 31 Ag/AgCl electrodes
from standardized scalp sites (extended 10–20 systems) with
an additional nose-tip electrode and AFz ground.
Electroencephalic activity was amplified using a QuickAmp
amplifier (Brain Products GmbH, Gilching, Germany) and
sampled at 1000 Hz with a low-pass filter at 280 Hz.
Impedances were kept below 10 kΩ. In addition, vertical
and horizontal electrooculogram (EOG) was recorded for
Gratton and Coles offline correction of eye movement
artifacts.

Offline processing was performed using Brain Vision
Analyzer 2.0 (Brain Products GmbH, Gilching, Germany).
Recordings were filtered (30 Hz low-pass, 0.1 Hz high-pass)
and re-referenced against the nose tip. Based on tone intensity
markers, EEGs were segmented into epochs of 600 ms length
including a pre-stimulus baseline interval of 200 ms. Epochs
with a voltage exceeding ±50 μV at Cz were excluded. At
least 30 artifact-free epochs in each tone intensity condition
were required for averaging. The median number of averaged
epochs was 81 (at 90 dB SPL) or 82 (at 72, 78, 84, 96 dB
SPL), respectively. Following automatic detection of baseline-
to-peak amplitudes for N1 (55–160 ms) and P2 (110–260 ms)
at Cz, N1-P2 peak-to-peak amplitudes were calculated.
Individual intensity dependence was calculated as linear slope
of N1-P2 amplitudes across all tone intensities and, addition-
ally, as median slope of N1-P2 amplitudes derived from all
possible pairs of amplitudes across the five tone intensity con-
ditions (Hensch et al. 2006, Hensch et al. 2008, Strobel et al.
2003). Subjects with amplitudes falling three interquartile
range units below the first or above the third quartile of the
ascending group distributions were defined as outliers (0.2 %)
and excluded.

Statistical analyses

All analyses were conducted using SPSS Statistics 20 (2012;
IBM corp.; Armonk, NewYork). Physiological data reliability
was determined by means of split-half method within our
large unmatched sample. To this end, N1-P2 amplitudes and
slope parameters were derived from odd and even trials, re-
spectively, and Spearman-Brown corrected rank correlations
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were calculated. Further, available data from a small supple-
mentary sample enabled estimation of test-retest reliabilities
(n=15; age range at T1 66–74 years; 9 males; test-retest in-
terval 1–3 years).

Group comparisons were conducted within both subsamples
comprising matched subjects. We performed repeated-measures
ANCOVAs with tone intensity as within- and smoking status as
between-subjects factor. Sex and age were entered as covariates.
Covariates were centered in advance (according to Van
Breukelen and Van Dijk 2007). Additionally, we conducted uni-
variate ANCOVAs with smoking status as independent and lin-
ear and median slopes, respectively, as dependent variable.
Again, sex and age served as covariates. Within subsample 1,
we performed contrast analyses. All analyseswere repeatedwith-
out covariates, and results are reported in case of decisively al-
tered effects. Greenhouse-Geisser corrected degrees of freedom
are reported where appropriate.

To determine potential dose-dependent relationships, we con-
ducted partial Spearman correlations linking the number of ciga-
rettes consumed per day and pack years, respectively, to N1-P2
amplitudes and slopes. Separate analyses were performed for
current and ex-smokers. Effects of sex, age, average amount of
alcohol consumed daily during the past 12 months, and the
amount of caffeine consumed prior to EEG were partialled out.
Analyseswere repeated partialling out effects of sex and age only.

Results

Physiological data reliability

Spearman-Brown-corrected rank correlations revealed high
odd-even reliabilities of N1-P2 amplitudes (0.88–0.98) and

moderate odd-even reliabilities of linear (0.77) and median
slope (0.75). Furthermore, we observed moderate to high
test-retest reliabilities for N1-P2 amplitudes (0.80–0.95) and
moderate to low test-retest reliabilities of linear (0.54) and
median slope (0.36) after an interval of 1 to 3 years.
Detailed results are shown in Table 2.

Group comparisons

Within subsample 1 (never- and ex-smokers matched to cur-
rent smokers), repeated-measures ANCOVAs revealed a sig-
nificant main effect of tone intensity (F2.4,2311.4 = 775.485,
p=2E-300, ηp

2=0.450), with higher tone intensities eliciting
larger N1-P2 amplitudes (see Fig. 1 for grand averages).
Further, we observed a significant main effect of sex (F1,

947 =119.095, p=3E-26, ηp
2 =0.112) and a sex× tone intensi-

ty interaction (F2.4,2311.4 =10.373, p=7E-6, ηp
2 =0.011), with

women showing higher N1-P2 amplitudes and steeper slopes.
Moreover, younger subjects exhibited higher N1-P2 ampli-
tudes and steeper slopes, underpinned by a significant main
effect of age (F1,947 = 5.014, p=0.025, ηp

2 = 0.005) and an
age× tone intensity interaction (F2.4,2129.1 = 31.246, p=1E-
16, ηp

2=0.032).
Further, analyses revealed a significant main effect of

smoking status, with never-smokers displaying highest N1-
P2 amplitudes followed by ex- and current smokers (F2,

947 =4.679, p=0.010, ηp
2=0.010). Contrast analyses showed

a significant difference between never- and current smokers
(p=0.012) and never- and ex-smokers (p=0.019) in N1-P2
amplitudes, whereas ex- and current smokers did not signifi-
cantly differ (p=0.534). Moreover, analyses provided evi-
dence for a smoking status× tone intensity interaction (F4.9,
2311.4 = 5.913, p=2E-5, ηp

2 = 0.012), suggesting differential

Table 2 N1-P2 amplitude and slope reliabilities and the respective partial Spearman correlations with the amount of cigarettes consumed

Current smokers Ex-smokers

Odd-even reliability Test-retest reliability Cigarettes/day Pack years Cigarettes/day Pack years

n 1739 15 137 506

N1-P2

72 dB SPL 0.875 (<0.001)** 0.943 (<0.001)** −0.195 (0.024)* −0.216 (0.012)* −0.039 (0.389) 0.036 (0.424)

78 dB SPL 0.906 (<0.001)** 0.904 (<0.001)** −0.196 (0.024)* −0.209 (0.016)* −0.047 (0.290) 0.031 (0.487)

84 dB SPL 0.924 (<0.001)** 0.843 (<0.001)** −0.236 (0.006)* −0.240 (0.005)* −0.045 (0.319) 0.038 (0.399)

90 dB SPL 0.924 (<0.001)** 0.804 (<0.001)** −0.202 (0.020)* −0.213 (0.014)* −0.073 (0.101) 0.008 (0.863)

96 dB SPL 0.940 (<0.001)** 0.907 (<0.001)** −0.125 (0.151) −0.145 (0.096) −0.086 (0.054) 0.006 (0.894)

Mean 0.982 (<0.001)** 0.950 (<0.001)** −0.209 (0.016)* −0.222 (0.010)* −0.064 (0.155) 0.035 (0.438)

Linear slope 0.769 (<0.001)** 0.536 (0.040)* 0.002 (0.986) 0.010 (0.905) −0.094 (0.035)* 0.017 (0.711)

Median slope 0.753 (<0.001)** 0.357 (0.191) −0.041 (0.643) −0.035 (0.686) −0.099 (0.026)* −0.007 (0.872)

Data are shown as the Spearman rank correlation (p value). Odd-even reliabilities are Spearman-Brown corrected. Effects of sex, age, average amount of
alcohol consumed daily during the past 12 months, and amount of caffeine consumed prior to EEG were partialled out for correlations between cigarette
consumption (cigarettes/day, pack years) and N1-P2 amplitudes and slopes, respectively

*p< 0.050; **p< 0.005
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intensity dependencies among current, ex-, and never-
smokers. Figure 2a indicates the steepest increase of N1-P2
amplitudes among never-smokers, with ex-smokers showing
an intermediate phenotype and current smokers showing the
shallowest increase.

Statistical differences in intensity dependencies were fur-
ther analyzed using slope parameters. In this respect,

univariate ANCOVAs revealed significant covariate effects
on linear slope (sex F1,947 = 15.852, p= 7E-5, ηp

2 = 0.016;
age F1,947=51.757, p=1E-12, ηp

2 =0.052) and median slope
(sex F1,947 = 17.524, p = 3E-5, ηp

2 = 0.018; age F1,

947 =47.784, p=9E-12, ηp
2=0.048), with women and youn-

ger subjects exhibiting steeper slopes. In line with repeated-
measures analyses, we observed a significant effect of
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smoking status on linear (F2,947 =9.234, p=1E-4, ηp
2=0.019)

and median slope (F2,947=8.606, p=2E-4, ηp
2=0.018), with

never-smokers exhibiting the steepest slopes followed by ex-
and never-smokers in approximately equally sized successive
intervals. Contrast analyses revealed a significant difference
between never- and current smokers (linear slope p=4E-5;
median slope p=9E-5) and never- and ex-smokers (linear
slope p=0.027; median slope p=0.021), whereas the differ-
ence between ex- and current smokers only partly surpassed
the threshold of significance (linear slope p=0.027; median
slope p=0.051). Repeating analyses without covariates did
not decisively alter association results, except for contrasts
between never- and ex-smokers, suggesting no differential
intensity dependencies (linear slope p=0.091; median slope
p=0.071).

Differences between never- and ex-smokers were elu-
cidated with enhanced power in subsample 2 (never-
smokers matched to ex-smokers). Repeated-measures
analyses revealed a significant main effect of smoking
status (F1,932 = 11.693, p = 0.001, ηp

2 = 0.012), with
never-smokers exhibiting higher N1-P2 amplitudes (see
Fig. 2b). Moreover, never-smokers showed a steeper in-
crease of N1-P2 amplitudes across tone intensities,
underpinned by a significant smoking status × tone inten-
sity interaction (F2.5,2347.7 = 6.669, p= 4E-4, ηp

2 = 0.007).
Additional supportive evidence for differential intensity
dependencies was provided by univariate ANCOVAs,
showing significantly steeper slopes for never-smokers
(linear slope F1,932 = 9.531, p= 0.002, ηp

2 = 0.010; median
slope F1,932 = 9.850, p= 0.002, ηp

2 = 0.010).

Dose-dependent relationships

Results of correlation analyses are presented in Table 2. In
current smokers, the partial Spearman correlations provided
evidence for cigarettes consumed per day and pack years to be
associated with reduced N1-P2 amplitudes at 72, 78, 84, and
90 dB SPL and when averaging N1-P2 amplitudes across all
tone intensities (all p≤ 0.024). In ex-smokers, we found a
trend correlation between cigarettes consumed per day and
reduced amplitudes at 96 dB SPL (p=0.054). Although cur-
rently consumed cigarettes per day or pack years did not ap-
pear to be associated with slope parameters (all p≥0.587),
analyses showed a significant link between formerly con-
sumed cigarettes per day and reduced slopes (all p≤0.035).
Association results did not decisively change by partialling
out effects of sex and age only.

Discussion

The aim of the present study was to further elucidate the ef-
fects of chronic smoking on brain function by comparing

systematically matched groups of current, ex-, and never-
smokers in amplitude and intensity dependence of the audito-
ry evoked N1-P2 component. Analyses revealed higher N1-
P2 amplitudes and intensity dependencies in never-smokers
compared to ex- and current smokers. Ex-smokers showed
intermediate intensity dependencies concerning linear slope
analyses. Notably, we observed pack years and cigarettes con-
sumed per day, respectively, to be inversely correlated with
N1-P2 amplitudes in current smokers with some indications in
ex-smokers. Inconsistent evidence was found for a potential
link between dose and N1-P2 intensity dependencies.

Keeping abreast of the methodological progress in group
matching, we took into account several major confounders
obscuring comparisons of naturally occurring, non-
randomized groups of smokers and non-smokers.
Differences in alcohol and caffeine consumption, socioeco-
nomic status, or even sex and age have previously often been
neglected or inadequately dealt with, e.g., by entering con-
founding variables as covariates in ANCOVAs with intent to
control for evident between-group imbalances (Miller and
Chapman 2001). In contrast, we identified statistical siblings,
who differed in smoking status but were similar in the
abovementioned characteristics. Beyond this, we systemati-
cally ensured comparability of current and ex-smokers
concerning age of onset and cigarettes consumed per day.
Groups were also comparable regarding arousal prior to as-
sessment and hearing threshold level. Consequently, a number
of major confounders can be ruled out to bias observed
associations.

Regarding group comparisons, our findings partly contra-
dict the results of Gallinat et al. (2005), who reported statisti-
cally equal intensity dependencies in never- and ex-smokers.
Here, we demonstrated reduced amplitudes and intensity de-
pendencies in ex-smokers who quit smoking, on average,
about 25 years ago. This disagreement might be traced back
to the higher power of the present study. Furthermore, our ex-
smokers had their smoking cessation about 10 years later in
life, indicating a prolonged use of tobacco, which in turn
might have led to cerebral alterations more clearly differenti-
ating from those of never-smokers. Interestingly, Karama et al.
(2015) analyzed structural MRI data from a sample of ex-
smokers with an average number of 30 pack years and re-
vealed an estimated complete recovery from smoking-related
cortical thinning 25 years after smoking cessation. Although
our ex-smokers consumed not even half of this amount of
cigarettes, alterations of the N1-P2 component were still evi-
dent. In sum, while our findings on differential N1-P2 ampli-
tudes and intensity dependencies in never- vs. current smokers
correspond to previous findings, novel evidence arises from
comparisons of never- and ex-smokers, suggesting differences
in brain function measurable even decades after cessation.

Present correlation analyses not only provide further sup-
port for an association of chronic smoking and reduced N1-P2
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amplitudes but also suggest amplitudes to be dose-dependent.
By analogy, based on a total number of 4,150 subjects, a
recent systematic review suggests reduced P3 amplitudes in
chronic smokers with possibly underlying dose dependencies
(Hedges and Bennett 2014). Intuitively, an amplitude reduc-
tion of cortical potentials is well in agreement with atrophic
cortices and impaired cognitive function reported in elderly
smokers (Karama et al. 2015, Mons et al. 2013). In this re-
spect, Edgar et al. (2012) observed positive correlations be-
tween cortical thickness, cognitive function, and strength of
M1, i.e., the magnetic equivalent to N1. In line with these
prior findings, correlations between amount of cigarettes con-
sumed and N1-P2 amplitudes appear to add one further piece
to the puzzle of broad and potentially interlinked brain alter-
ations in chronic smokers.

Although correlation analyses revealed convincing results
regarding potentially dose-dependent amplitudes, we obtained
inconsistent evidence for a link between dose and intensity
dependencies: Intensity dependencies were inversely linked
to cigarettes consumed per day in former smokers without
any indications in current smokers. Moreover, this association
was not supported concerning pack years. Assuming the ob-
served correlation in ex-smokers for cigarettes consumed per
day to be true in current smokers with rho=−0.1, the lack of
evidence among current smokers presumably relies on the
analysis’ power scarcely exceeding 20 %. Beyond this, cur-
rent smokers were allowed to smoke ad libitum and acute
smoking effects may counteract or even cancel out effects of
chronic smoking. In fact, some previous studies reported acute
smoking to enhance N1-P2 amplitudes (Pritchard et al. 2004),
and these opposing effects might have especially obscured
amplitude correlations at 96 dB among our current smokers.
Since amplitudes at 96 dB particularly determine calculated
intensity dependencies (with rho≥0.71) relative to amplitudes
at lower tone intensities (0.16≤ rho≤0.59), the lack of corre-
lation between dose and intensity dependence in current
smokers might be a consequence of acute smoking effects.
However, subjects were abstinent for at least 60 to 90 min
prior to the IAEP paradigm. Therefore, rather sub-acute
smoking effects or even emerging effects of withdrawal might
have obscured associations. Due to its inconsistency, the link
between cigarettes consumed per day and intensity depen-
dence should be interpreted with caution.

In light of studies investigating the N1-P2 intensity depen-
dence as a marker of central serotonergic signaling (Hegerl et
al. 2001, Hegerl and Juckel 1993, Juckel et al. 1997), our
results suggest central serotonin activity to be highest in cur-
rent smokers, intermediate in ex-smokers, and lowest in nev-
er-smokers. This finding is well in agreement with reported
effects of smoking on serotonergic signaling (Benwell et al.
1990, Hernandez-Lopez et al. 2013, Malone et al. 2003, Seth
et al. 2002). Consequently, smoking should be taken into ac-
count in clinical studies comparing N1-P2 intensity

dependencies among psychiatric patients and healthy controls
(e.g., Park et al. 2015, Wyss et al. 2013), with psychiatric
patients exhibiting considerably higher prevalence rates of
smoking (Smith et al. 2014). In the same vein, smoking as a
confounder should be considered when investigating person-
ality traits such as sensation seeking or hypomanic personal-
ity, which have similarly been associated with both N1-P2
intensity dependence and smoking (Hensch et al. 2007,
Oreland et al. 2002).

Up to this point, it remains unclear whether effects of
chronic smoking on the N1-P2 component arise from alter-
ations in N1, P2, or both components. In view of grand aver-
ages (see Fig. 1), both components might be involved.
Supplementary Tables S2 and S3 summarize reliabilities and
effects of smoking status and dose on separate baseline-to-
peak components. Effects appeared more consistent for the
N1 relative to the P2 component. In general, presented data
suggest lower reliabilities and effect consistencies of separate
relative to peak-to-peak amplitudes. On this basis, we suppose
that the N1-P2 component is the better-suited marker for de-
tecting effects of chronic smoking. Differential component
sensitivities towards smoking effects might be addressed by
future studies.

Although we observed smoking status to impact the N1-P2
component with low type I error rates, effect sizes appeared
generally small. In particular, variance explained by smoking
status ranged between 0.7 and 1.9 %, while the overlap of
variance in pack years and variance in N1-P2 amplitude ap-
proximated 5.8 % in current smokers. Several reasons may
account for rather small effect sizes. First, with an average
number of ten cigarettes consumed per day, current and ex-
smokers were no excessive smokers. Second, the selection of
healthy elderly smokers might have induced some bias to-
wards those surviving smokers with the slightest smoking-
related morbidities. Third, smoking history data were self-
reported and recall errors likely caused some noise especially
in ex-smokers, half of which had their smoking cessation
more than 25 years ago. Fourth, non-invasive assessments of
cortical potentials are generally overlaid with some noise, be-
cause recorded voltages depend on individual skull and scalp
thickness (Chauveau et al. 2004). Taken together, potentially
underestimated effect sizes should be considered in view of
the abovementioned sample characteristics and due to some
degree of inaccuracy in both self-report and physiological
measures. Notably, observed effect sizes of smoking status
on the N1-P2 component are still comparable to previous re-
ports (e.g., ηp

2 = 0.040; calculated from F2,172 = 3.556;
Gallinat et al. 2005).

One additional considerable limitation of the present study
is the cross-sectional study design, which does not enable
causal inferences. For instance, previous investigations found
a reduction in P3 at age 17 to predict the occurrence of sub-
stance use disorders at age 20 (Iacono et al. 2002). To clarify
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the causal nature of the present results, either longitudinal or
preferably randomized controlled trials (e.g., within the frame-
work of smoking cessation therapies) are needed.

Conclusion

We extend current evidence on brain function in chronic
smokers by demonstrating smoking-related reductions in am-
plitude and intensity dependence of the cortical auditory
evoked N1-P2 component. According to the IAEP serotonin
hypothesis, our results suggest serotonin activity to be highest
in current smokers, intermediate in ex-smokers, and lowest in
never-smokers. For the first time, the present study provides
evidence for a potentially dose-dependent reduction in N1-P2
amplitudes. Moreover, we observed reduced amplitudes and
intensity dependencies in ex-smokers relative to never-
smokers even 25 years, on average, after cessation. While
we can rule out several smoking-related confounders to bias
observed associations, causal inferences remain to be
established by future longitudinal studies.

Supplementary mater ia ls are avai lable a t the
Psychopharmacology (Berl.) website.
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