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Abstract
Rationale Although nicotine exposure upregulates the
α4β2* subtype of nicotinic acetylcholine receptors
(nAChRs), the upregulation of nAChRs in non-human
primates voluntarily self-administering nicotine has nev-
er been demonstrated.
Objectives The objective of the study is to determine if short
access to nicotine in a non-human primate model of nicotine
self-administration is sufficient to induce nAChRs upregulation.
Methods We combined a nicotine self-administration para-
digm with in vivo measure of α4β2* nAChRs using
2-[18F]fluoro-A-85380 (2-FA) and positron emission tomog-
raphy (PET) in six squirrel monkeys. PET measurement was
performed before and after intravenous nicotine self-
administration (unit dose 10 μg/kg per injection). Monkeys
were trained to self-administer nicotine under a fixed-ratio
(FR) schedule of reinforcement. Intermittent access (1 h daily
per weekday) to nicotine was allowed for 4 weeks and levels
of α4β2* nAChRs were measured 4 days later.

Results This intermittent access was sufficient to induce up-
regulation of α4β2* receptors in the whole brain (31 % up-
regulation) and in specific brain areas (+36% in amygdala and
+62 % in putamen).
Conclusions These results indicate that intermittent nicotine
exposure is sufficient to produce change in nAChRs
expression.

Keywords Positron emission tomography . Nicotine
self-administration . In vivo binding . Non-human primates

Introduction

The α4β2* subtype of the nicotinic acetylcholine receptor
(nAChR) has been implicated in mediating the reinforcing
effects of nicotine (Maskos et al. 2005). Studies in transgenic
mice have revealed that β2 subunit deletion decreases
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sensitivity to nicotine’s reinforcing effects while overexpres-
sion of the α4 subunit increases sensitivity to nicotine rein-
forcement (Picciotto et al. 1998; Tapper et al. 2004). However,
the relationship between nAChRs expression and motivation
for nicotine intake is complex since lower levels of midbrain
nAChRs have been associated with a high motivation to self-
administer nicotine (Le Foll et al. 2009).

It is well known that nicotine exposure produces an upreg-
ulation of high-affinity nAChRs in the brain (see (Govind
et al. 2009) for a review). Based on postmortem brain tissue
studies, the density of nAChRs is greater in smokers com-
pared to non-smokers, whereas the density in non-smokers
is identical to that in ex-smokers (Benwell et al. 1988;
Breese et al. 1997; Perry et al. 1999). This upregulation has
been shown in non-human primates (as in (Staley et al. 2006)
with oral nicotine administration for example). Nicotine-
treated rodents also display enhanced nAChRs density com-
pared to control animals (Besson et al. 2007; Marks et al.
1983; Schwartz and Kellar 1983). Since there are no associat-
ed changes of mRNA coding for these receptors, post-
transcriptional mechanisms have been proposed to underlie
these changes (Govind et al. 2009). Further, the functional role
of this receptor upregulation is still unclear (Picciotto et al.
2008; Picciotto and Mineur 2014; Wonnacott 1990).

Although initial experiments to study nAChRs upregula-
tion were performed on rodent brain preparations using bind-
ing techniques (Flores et al. 1992, 1997), it is feasible to ex-
plore nAChRs expression in vivo using positron emission
tomography (PET). Different PET radiotracers have been de-
veloped for α4β2* nAChRs quantification (Horti et al. 2013).
Among those PET radiotracers, 2-[18F]fluoro-A-85380 (2-
FA) has been used in rodents (Vaupel et al. 2007), non-
human primates (Chefer et al. 2003; Le Foll et al. 2007a,
2009; Valette et al. 2003; 2005) and human subjects
(Mukhin et al. 2008), with an upregulation of nAChRs report-
ed in human smokers (Brody et al. 2013; Mukhin et al. 2008;
Wullner et al. 2008). Similar nAChR upregulation in the
brains of smokers has been observed using a single-photon
emission computed tomography and analog of 2FA,
5-[123I]iodo-A-85380 (Staley et al. 2006).

Due to the ability to tightly control environmental factors
and drug exposure history, PET imaging studies in non-human
primates have contributed extensively to our understanding of
psychostimulant drug addiction (Gould et al. 2014; Howell
and Wilcox 2002). However, much less is known about nico-
tine as compared to cocaine administration. This is likely due
to the fact that few research centers have the ability to assess
nAChRs in non-human primates with PET imaging along
with the ability to study the nicotine dependence process using
a drug self-administration paradigm (Le Foll et al. 2007b).
Combining these two approaches, an inverse relationship
has been found between the baseline midbrain expression of
α4β2* nAChRs and the motivation to self-administer

nicotine in squirrel monkeys (Le Foll et al. 2009). It is not
clear if intermittent access to nicotine, as currently used in a
well-developed non-human primate model of nicotine self-
administration (Le Foll et al. 2007b), is sufficient to upregu-
late nAChRs.

In order to test this hypothesis, we trained squirrel monkeys
to self-administer nicotine under a fixed ratio schedule of re-
inforcement with 1-h daily sessions. Pre-exposure baseline
and post-exposure levels of nAChRs were measured using
the binding potential (BPND) of 2-[

18F]fluoro-A-85380 (2-
FA), a selective α4β2* nAChR PET ligand. BPND is propor-
tional to the density of receptors available for radioligand
binding (Bavail) in vivo. BPND= fND•Bavail/KD, where KD is
the dissociation constant and fND is a free fraction of
radioligand in nondisplaceable compartment (Innis et al.
2007).Nicotine upregulates nAChRs in both an intracellular
compartment and on cell surface (Kuryatov et al. 2005; Lester
et al. 2009; Lomazzo et al. 2011; Zambrano et al. 2012, 2015).

Therefore, it is reasonable to expect the presence of
nicotine-induced upregulation of nAChRs in practically
all brain regions expressing nicotinic receptors. Indeed,
it was shown that in comparison with non-smokers,
smokers have significant increases of nAChRs across
almost the ent i re brain (Mukhin et al . 2008) .
Therefore, our primary hypothesis was that post-
exposure levels of nAChRs in total monkey brain will
be higher as compared to pre-exposure baseline levels.
As an exploratory analysis and for the purpose of com-
parison with receptor upregulation in smokers, we also
have evaluated pre- and post-exposure levels of
nAChRs in a few regions of reasonable size in the
squirrel monkey brain and/or were previously assessed
for nAChR upregulation in smoker’s brain with 2FA
(Mukhin et al. 2008).

Material and methods

Subjects Six adult drug-naive male squirrel monkeys
(Saimiri sciureus), weighing 710 to 950 g, were housed
individually in a temperature- and humidity-controlled
room and were maintained on a 12-h light/dark cycle;
the lights were on from 6:45 AM to 6:45 PM.
Experiments were conducted during the light phase.
Monkeys were maintained in facilities fully accredited
by the American Association for the Accreditation of
Laboratory Animal Care (AAALAC), and all experimen-
tation was conducted in accordance with the guidelines
of the Institutional Care and Use Committee of the
Intramural Research Program, National Institute on
Drug Abuse, National Institutes of Health, and the
2003 Guide for Care and Use of Laboratory Animals
from the National Research Council.
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PET imaging studies

Radiochemistry: [18F]Fluoride was produced using an
RDS111 negative ion cyclotron, and 2-FA was synthesized
using a modified semiautomated method (Horti et al. 1998).
The final product was formulated as a sterile and pyrogen-free
isotonic solution. Radiochemical purity product was greater
than 98 %, and specific activity was in the range from 106 to
648 GBq/μmol (313±166 GBq/μmol, average±SD).

PET and MRI scanning procedures

Data were acquired on a Siemens Exact ECAT HR+
tomograph (63 slices, center to center spacing of 2.4 mm, with
an in-plane reconstructed resolution, full width at half maxi-
mum (FWHM), of 4.7 mm at the center of the field of view
and reconstructed axial spatial resolution of 4.2 mm in 3D
mode). Before each radioligand administration, transmission
scans were obtained with three rotating 68Ge-68Ga sources and
used to correct for photon attenuation by tissue and facemask.
PET images were reconstructed from the raw data with a stan-
dard filtered-back projection algorithm and a RAMP filter.

For the PET scans, monkeys were initially anesthetized
with 1.5-mg/kg alfadolone and alfaxolone acetate (Saffan®,
Arnolds Veterinary Products, Shropshire, UK), given intra-
muscularly. Anesthesia was then maintained by 1.5–2.5 %
isoflurane. An individually molded thermoplastic facemask
was secured to a custom-made monkey head-holder attached
to a backboard.

Acquisition of dynamic PET scans started with the injec-
tion of 2-FA as a bolus (39±11 MBq/kg injected intravenous-
ly in approximately 1 ml of saline over 20 s) and continued for
5 h.

AnatomicalMRI brain images were acquired on a 3.0 Tesla
Siemens Magnetom Allegra MRI unit (Siemens Medical
Solutions) using continuous intravenous infusion of 8–11-
mg/kg/h Saffan to maintain anesthesia.

Vital signs, including heart rate, ECG (during PETstudies),
respiration rate, ETCO2, and blood oxygen saturation (always
maintained above 95%), were continuously monitored during
the PET and MRI imaging sessions.

PET data analysis

Regions of interest (ROIs) for the whole brain, cerebellum,
thalamus, pons, amygdala, putamen, and temporal cortex
were defined on the individual T1 MRI images co-registered
to PET images, with reference to a stereotaxic atlas (Gergen
and MacLean 1962). ROIs for muscle were placed at the back
of the neck in the area of the semispinalis cervicis, splenius
capitis, and obliquus capitis muscles. BPND values were cal-
culated using a simplified reference tissue model (PMOD v.
3.17) with muscles as a reference region. BPND values were

corrected for differences between brain tissue VND andmuscle
VT using equation (6) from (Le Foll et al. 2007a).

BPND ¼ BPmsl þ 1

α
−1

Previously, using an averaged 2-FAvolumes of distribution
(VD), VDT value in muscle (3.02±0.24; n=15) and an aver-
aged VDND value for thalamus, cortex, and midbrain obtained
from blocking studies with nicotine pumps in squirrel mon-
keys (4.06±0.21, n=4), we obtained the α value (the ratio of
VDND over muscle VDT) of 1.34 (Le Foll et al. 2007a).

First, BPND values for the whole brain were compared be-
fore and after self-administration using paired t test.
Subsequently, cerebellum, thalamus, pons, amygdala, puta-
men, and temporal cortex regions were compared before and
after self-administration using paired t test. Results were
corrected for multiple comparisons using Holm-Bonferroni
method.

Intravenous nicotine self-administration Several days after
the first PET scan, acquisition sessions were initiated during
which the monkeys were allowed to self-administer nicotine
intravenously under a fixed-ratio schedule of reinforcement.
The ratio requirement was gradually increased up to the final
ratio requirement (FR-10). Session duration was 1 h, and SA
sessions were conducted during weekdays. Once self-
administration was stable, the monkeys got access to 4 weeks
of nicotine self-administration with a unit dose of 10 μg/kg
per injection. The unit dose of 10 μg/kg nicotine per injection
was selected, as this dose had previously been reported to
maintain self-administration at high rates under both fixed
and progressive ratio schedule of reinforcement in squirrel
monkeys under those conditions (Le Foll et al. 2007b). Ten
micrograms/kilograms per injection was also the unit dose that
maintained the highest level of responding under FR10 sched-
ule of reinforcement (Le Foll et al. 2007b). The following
week after 4 days, the post-exposure PET sessions were per-
formed. The 4-day interval between nicotine access and PET
was chosen as previous studies indicates that binding of im-
aging tracers could be affected in early withdrawal (Staley
et al. 2006). Previous studies with human subjects and 2-FA
indicated that 4 days is sufficient to decrease plasma nicotine
to levels at which it will not compete with the PET radioligand
for binding sites (Mukhin et al. 2008), and some pilot data (Le
Foll et al., unpublished personal observations) supported the
use of the 4-day withdrawal phase in squirrel monkeys.

Results

Behaviorally, the nicotine self-administration behavior
remained stable over the 4-week exposure period. There was
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a significantly higher number of FR completed on the active
vs the inactive lever (see Fig. 1, P<0.00001), and there was
no fluctuation of the number of active lever presses over the
4 weeks of testing (NS).

The typical distribution of 2FA BPND in the squirrel mon-
key brain before and after nicotine self-administration of nic-
otine is shown in Fig. 2. ROI data analysis indicated a 31 %
increase of 2-FA BPND in the whole brain compared to base-
line, P=0.005 (Fig. 3a). After correcting for multiple testing,
there was a significant increase of BNND in the amygdala
(+36 %, P = 0.006) and putamen (+62 %, P = 0.002).
Increased binding in the cerebellum, thalamus, pons, and tem-
poral cortex did not survive multiple comparison corrections.

We performed correlations between the number of nicotine
infusions (average infusions during the 4 weeks and average
infusions during the last 2 days of the 4 weeks) and the per-
centage of α4β2* nAChRs upregulation. Unexpectedly, no
significant correlations were found (data not shown).
However, due to the small sample size, we may have been
underpowered to detect such relationship between upregula-
tion and nicotine exposure.

Discussion

Here, we report that stable 4 weeks of nicotine self-
administration (10 ug/kg/injection) in squirrel monkeys is suf-
ficient to produce upregulation of α4β2* nAChRs. That nic-
otine is an effective reinforcer in squirrel monkeys has been
previously shown (Goodwin et al. 2015; Le Foll et al. 2007b).
Indeed, the first report of nicotine’s reinforcing properties was
generated in squirrel monkeys trained to respond under a
second-order schedule of reinforcement (Goldberg et al.
1981). This seminal report had a tremendous influence in the
field and led subsequently to the Surgeon General report in-
dicating that nicotine was addictive (Department of Health

and Human Services 1988). The conditions under which nic-
otine functions as an effective reinforcer of drug use have been
clearly identified and are used to study nicotine addiction pro-
cesses (Justinova et al. 2015a; Le Foll et al. 2007b, 2009;
Mascia et al. 2011). The present findings are in agreement
with those previous reports. Although the monkeys in our
study had a slightly different exposure to nicotine (due to their
differential number of voluntarily self-administer infusions of
nicotine), we felt that it was more valid to use a contingent
method of administration as compared to a non-contingent
method of nicotine administration (Jacobs et al. 2003).

The innovative aspect of this research consists of combin-
ing the PET imaging with the extended nicotine SA paradigm.
The distribution and density of α4β2* nicotinic receptors
assessed by 2-FA BPND before and after self-administration
is consistent with previously published data in an acute nico-
tine access model (Le Foll et al. 2007a, 2009). Notably, we
found that the highest density of a α4β2* receptors is ob-
served in the thalamus, whereas other brain areas displayed
lower BPND. The lowest binding was observed in the cerebel-
lum. This result is in agreement with previous PET studies
performed in humans (Kimes et al. 2003; Mukhin et al.
2008). Although the overall pattern of expression of
nAChRs was not dramatically changed following the self-
administration sessions, we observed a significant elevation
of BPND in the whole brain as well as in the amygdala and
putamen. The brain area with the lowest upregulation was the
thalamus, and this result is consistent with the absence of
higher densities determined with 2-FA reported in the thala-
mus in smokers vs non-smokers (Mukhin et al. 2008). In other
brain areas, the upregulation was measured from 22 to 62 %,

Fig. 1 Responding on the active lever and inactive lever under the fixed-
ratio 10 schedule of reinforcement maintained by 10-μg/kg/injection dose
of nicotine. Average lever presses (± SEM) are shown over consecutive
week days for 4 weeks. Data obtained in six non-human primates

BPND

3

0

MRI Pre SA Post SA

Fig. 2 BPND images of squirrel monkeys brain acquired with 2FA before
(Pre SA) and after (Post SA) nicotine self-administration. The images
illustrate the representative results from a single animal. Similar results
were obtained in five additional animals. The first column represents the
structural T1 brain MRI images
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which is about two times smaller than that observed using
PET and 2FA in human smokers (Mukhin et al. 2008). It is
possible that the smaller upregulation observed in some areas
may be related to underestimation of radioactivity concentra-
tion in squirrel monkey brain structures as a result of greater
partial volume effect compared with humans.

Concerning the analysis of the PET data, in this study, we
were not able to use CB as a reference region for receptor
quantifications. Though previously we were able to demon-
strate that untreated squirrel monkeys have very low levels of
nAChRs in CB and that this region can be used for calculation
of brain BPND at this condition (Le Foll et al. 2007a), it seems
that such an approach is not suitable for brain nAChR quan-
tification after treatment with nicotine. As shown in Fig. 3,
nicotine self-administration results in the upregulation of
nAChRs in CB, which would result in the underestimation
of brain region BPND values after treatment and therefore
leads to the underestimation of nicotine-induced receptor up-
regulation. To overcome this obstacle in the present study we
have employed our previously developed and evaluated meth-
od utilizing neck muscle as a reference region (Le Foll et al.
2007a).

This study has several limitations. The first one is the small
sample size. Second, we have only included male squirrel
monkeys and sex may be a factor influencing 2-FA binding,
so we cannot determine that similar results would have been
obtained in female subjects. Another limitation is that changes
in BPND can be produced not only by the changes in receptor
density but also could be produced by changes in receptor
affinity and/or receptor occupancy by acetylcholine, which
we did not explore here. Finally, we did not measure plasma
nicotine or the concentration of nicotine in the brain at the time
of post-exposure scan. Therefore, we cannot exclude the pres-
ence of residual nicotine in the brain which may have inter-
fered with the binding of 2-FA (Staley et al. 2006). It is also
possible that during the 4-day interval between the cessation
of nicotine exposure and the PET scan, the receptor

upregulation may have decreased, but we could not perform
the scan earlier due to the possible presence of nicotine within
the brain. Another clear limitation is the fact that those find-
ings do not allow any conclusions to be drown about the
functional role of this upregulation. However, a recent study
evaluating the response to nicotine patches in human smokers
indicates that the smokers with less upregulation of available
α4β2* nAChRs are more likely to quit after treatment, as
compared to smokers with more upregulation (Brody et al.
2014). This suggests that this receptor’s upregulation may be
of importance in the smoking cessation process. Nonetheless,
the additional studies are required to determine if this upreg-
ulation could represent a therapeutic target.

Conclusion

Although these results should be duplicated with a larger
group of animals, this report is the first to explore upregulation
of nAChRs in non-human primates trained to self-administer
nicotine. It appears that the model of short access to nicotine
as used to screen for medication discovery (see Justinova et al.
2015a, b; Mascia et al. 2011) is capable of inducing the same
upregulation as described in the brains of human smokers.
This research suggests that this upregulation may be associat-
ed with the early development of nicotine addiction and its
functional role should be explored further.
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