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Abstract
Rationale and objective In humans, exposure to contexts pre-
viously associated with heroin use can provoke relapse. In
rats, exposure to heroin-paired contexts after extinction of
drug-reinforced responding in different contexts reinstates
heroin seeking. We previously demonstrated that the projec-
tions from ventral medial prefrontal cortex (vmPFC) to nucle-
us accumbens (NAc) shell play a role in this reinstatement.
The ventral subiculum (vSub) sends glutamate projections to
NAc shell and vmPFC. Here, we determined whether these
projections contribute to context-induced reinstatement.
Methods We trained rats to self-administer heroin (0.05–
0.1 mg/kg/infusion) for 3 h per day for 12 days; drug infusions
were paired with a discrete tone–light cue. Lever pressing in
the presence of the discrete cue was subsequently
extinguished in a different context. We then tested the rats
for reinstatement in the heroin- and extinction-associated con-
texts under extinction conditions. We combined Fos with the
retrograde tracer Fluoro-Gold (FG) to determine projection-
specific activation during the context-induced reinstatement
tests. We also used anatomical disconnection procedures to
determine whether the vSub→NAc shell and vSub→vmPFC
projections are functionally involved in this reinstatement.

Results Exposure to the heroin but not the extinction context
reinstated lever pressing. Context-induced reinstatement of
heroin seeking was associated with increased Fos expression
in vSub neurons, including those projecting to NAc shell and
vmPFC. Anatomical disconnection of the vSub→NAc shell
projection, but not the vSub→vmPFC projection, decreased
this reinstatement.
Conclusions Our data indicate that the vSub→NAc shell
glutamatergic projection, but not the vSub→vmPFC pro-
jection, contributes to context-induced reinstatement of
heroin seeking.
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Introduction

Exposure to environmental contexts associated with drug use
in humans often provokes drug craving and relapse during
abstinence (O’Brien et al. 1992; Wikler 1973). Several years
ago, we adapted the ABA renewal procedure (Bouton and
Bolles 1979) to study the role of drug-associated contexts in
drug seeking in rats (Crombag et al. 2008; Crombag and
Shaham 2002). We and others have reported that re-
exposing rats to drug-associated contexts after extinction
of lever pressing in different contexts reinstates seeking
for heroin (Bossert et al. 2004), cocaine (Fuchs et al.
2005), alcohol (Hamlin et al. 2007; Zironi et al. 2006),
nicotine (Diergaarde et al. 2008), and methamphetamine
(Rubio et al. 2015).

In previous studies, we found that blockade of dopamine
D1-receptors or inhibition of glutamate transmission with an
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mGluR2/3 agonist in nucleus accumbens (NAc) shell blocks
context-induced reinstatement of heroin seeking (Bossert et al.
2006, 2007). We also showed a role of vmPFC, which sends
glutamatergic projections to NAc shell (Sesack et al. 1989).
We found that context-induced reinstatement is associated
with increased expression of the activity marker Fos in
vmPFC and that local reversible inactivation with GABAA +
GABAB receptor agonists muscimol + baclofen (M + B) de-
creases this reinstatement. The M + B effect was mimicked by
selective inactivation of context-activated (Fos-positive)
vmPFC neurons with Daun02 (Bossert et al. 2011).

Based on these findings, and previous studies showing that
NAc shell activity is dependent on both glutamate and dopa-
mine D1 receptor-mediated neurotransmission (O’Donnell
2003), we next tested whether synergistic activation of D1
postsynaptic receptors and vmPFC→NAc shell glutamatergic
projections mediate context-induced reinstatement. We first
found that this reinstatement is associated with increased Fos
expression in vmPFC→NAc shell projection neurons, as
assessed by double-labeling of Fos with the retrograde tracer
Fluoro-Gold (FG) (Bossert et al. 2012). Fos + FG double-
labeling was observed in both the dense ipsilateral projection
and the sparse contralateral projection. We then used an asym-
metrical disconnection procedure (Gold 1966) and found that
reversible inactivation of the vmPFC in one hemisphere with
M +B combined with D1 receptor blockade in contralateral or
ipsilateral NAc shell decreases this reinstatement (Bossert
et al. 2012).

In the experiments involving vmPFC and its projec-
tion to NAc shell described above, heroin seeking in the
context-induced reinstatement tests was attenuated, but
not completely blocked (Bossert et al. 2011, 2012). In
contrast, bilateral blockade of dopamine D1-receptors or
inhibition of glutamate transmission in NAc shell fully
blocked context-induced reinstatement (Bossert et al.
2006, 2007). A potential reason for the differences in
efficacy of local NAc manipulations versus local
vmPFC or vmPFC→NAc shell manipulations is that
other glutamatergic projections to NAc shell (Voorn
et al. 2004) play a role in context-induced reinstatement
(Marchant et al. 2014). One potential candidate is the
ventral subiculum (vSub). The vSub sends dense gluta-
matergic projections to NAc shell (Brog et al. 1993;
Groenewegen et al. 1987), and these projections and
tyrosine hydroxylase-labeled dopaminergic terminals
converge on the same postsynaptic dendrites in NAc
shell (Sesack and Pickel 1990). Additionally, we recent-
ly found that M + B reversible inactivation of vSub
decreases context-induced reinstatement of heroin seek-
ing (Bossert and Stern 2014).

Therefore, in exp. 1–2 we used the same experimental pro-
cedures we used in our previous study (Bossert et al. 2012)
(Fos + FG double labeling and a disconnection procedure with

unilateral M + B in the glutamatergic cell body region and
unilateral D1 receptor blockade in the ipsilateral or contralat-
eral NAc shell) to test the hypothesis that synergistic activa-
tion of NAc shell D1 receptors and vSub→NAc shell gluta-
matergic projection also contributes to context-induced
reinstatement.

In exp. 3–4, we further studied the circuitry of context-
induced reinstatement by determining the role of the
vSub→vmPFC glutamatergic projection (Jay and Witter
1991; Thierry et al. 2000). We studied this projection because
anatomical (French and Totterdell 2002) and electrophysio-
logical (O’Donnell and Grace 1995) studies show that NAc
shell neurons receive convergent synaptic inputs from vmPFC
and vSub. Additionally, several NAc-dependent goal-directed
learned behaviors are controlled by projections from these
brain areas (Floresco et al. 1997; Grace et al. 2007). As in
exp. 1–2, we used FG + Fos to study projection-specific acti-
vation in vSub→vmPFC neurons and a disconnection proce-
dure to study the functional/causal role of this projection. Un-
like exp. 2 (disconnection of vSub→NAc shell) where we
tested projection-specific glutamate-dopamine interaction in
NAc shell (see above), in exp. 4, we used a traditional M +
B disconnection procedure to inactivate cell bodies in the two
brain areas of interest (McFarland and Kalivas 2001) to deter-
mine the role of the vSub→vmPFC glutamatergic projection
in context-induced reinstatement.

Materials and methods

Subjects

We used male Sprague–Dawley rats (Charles River, total
n=173), weighing 250–350 g prior to surgery. We main-
tained the rats under a reverse 12:12 h light/dark cycle
(lights off at 8:00 a.m.) with food and water freely
available. We housed two rats per cage prior to surgery
and then individually after surgery. We performed the
experiments in accordance with the National Institutes
of Health Guide for the Care and Use of Laboratory
Animals (8th edition), under the protocols approved by
the Animal Care and Use Committee. We excluded a
total of 41 rats due to failure of catheter patency (n=
4), misplaced cannula placements (n=4) or FG tracer
deposit (n=4), lost head cap (n=3), sickness (n=14),
or failure to meet an extinction criterion of a mean of
less than or equal to 30 responses per 3 h over 3 days
after 22 extinction sessions (n=12). Exclusion of 20 to
25 % of rats is typical in our extinction-reinstatement
experiments that involve intracranial and intravenous
surgeries and prolonged self-administration and extinc-
tion training.
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Iontophoresis of retrograde tracer and intravenous
surgery (exp. 1 and 3)

We based the FG injection procedure on previous work from
our laboratories (Bossert et al. 2012; Yamaguchi et al. 2011).
We anesthetized the rats with sodium pentobarbital and chlo-
ral hydrate (60 and 25 mg/kg, i.p.) and delivered FG (1 % in
cacodylate buffer, pH 7.5) (Schmued and Fallon 1986) ionto-
phoretically unilaterally into medial NAc shell (AP +1.7 mm,
ML ±2.3 mm [10° angle], DV −7.5 mm) or vmPFC (AP +
3.0 mm, ML ±1.5 mm [10° angle], DV −5.3 mm) through a
stereotaxically positioned glass micropipette. For NAc shell,
the inner tip diameter of the micropipette was 50 μm and we
applied 4 μA current in 5 s on/off pulses for 20 min. For
vmPFC, the inner tip diameter of the micropipette was
60–65 μm and we applied 5-μA current in 5-s on/off pulses
for 25 min.

The micropipette was left in place for an additional
5 min to prevent backflow of tracer up the injection
track and we alternated iontophoresis into the left or
right hemisphere. We then inserted silastic catheters into
the jugular vein as described previously (Lu et al. 2004)
by attaching the catheters to a modified 22-gauge can-
nula and mounted them to the rat’s skull with dental
cement. We injected the rats with buprenorphine
(0.1 mg/kg s.c.) to relieve pain and allowed them to
recover 6–8 days before heroin self-administration train-
ing. During the recovery and training phase, we flushed
the catheters every day with gentamicin (Butler Schein;
5 mg/ml) dissolved in sterile saline. In exp. 1 and 3, we
perfused the rats after anesthesia as described in the
BDouble labeling Fos-FG immunohistochemistry^
section below.

Intracranial and intravenous surgery (exp. 2 and 4)

We anesthetized the rats with sodium pentobarbital and
chloral hydrate (60 and 25 mg/kg, i.p.) or isoflurane
(5 % induction; 2–3 % maintenance) and implanted per-
manent guide cannulae (23-gauge, Plastics One,
Roanoke, VA) unilaterally 1 mm above NAc shell or
vmPFC and 1 mm above the vSub in the ipsilateral or
contralateral hemisphere. The stereotaxic coordinates
(Paxinos and Watson 2008) are based on our and others’
previous work (Bossert and Stern 2014; Bossert et al.
2012; Mendoza et al. 2015). The coordinates (nosebar
set at −3.3 mm) for the different brain areas were for
contralateral vmPFC: AP +3.0 mm, ML ±1.5 mm (10°
angle), and DV −4.3 mm; for ipsilateral vmPFC: AP +
3.0 mm, ML ±0.6 mm, and DV −4.1 mm; for contralat-
eral NAc shell: AP +1.6 mm, ML ±3.0 mm (20° angle),
and DV −6.5 mm; for ipsilateral NAc shell: AP +
1.6 mm, ML ±1.6 mm (20° angle), and DV −7.2 mm

(note that because of stereotaxic constraints, cannula for
ipsilateral NAc shell were inserted at a 20° angle from
the contralateral hemisphere through the midline
(Bossert et al. 2012; Ikemoto et al. 2005); and for vSub:
AP −6.0 mm, ML ±5.3 mm (4° angle), and DV
−7.5 mm.

Following cannula implantation, we inserted silastic
catheters into the jugular vein as described above or
attached them to a modified 22-gauge cannula cemented
to polypropylene mesh (Small Parts) and fixed the mesh
to the mid-scapular region. We gave buprenorphine
(0.1 mg/kg, s.c.) or ketoprofen (2.5 mg/kg, s.c., Butler
Schein) after surgery and the following day (ketoprofen)
to relieve pain and decrease inflammation and allowed
rats to recover for 6–8 days before heroin self-
administration training. During the recovery and training
phases, we flushed the catheters every day with genta-
micin (Butler Schein, 5 mg/ml) and sterile saline. At the
end of exp. 2 and 4, we anesthetized the rats, removed
their brains, and stored the brains in 10 % formalin
b e f o r e s e c t i o n i n g . U s i n g a c r y o s t a t ( L e i c a
Microsystems), we sectioned brains in the coronal plane
(50 μm), mounted them on gelatin-coated slides, stained
them with cresyl violet, and verified cannula placement
under a light microscope.

Intracranial injections

We dissolved SCH 23390 hydrochloride (Tocris) and
muscimol + baclofen (M + B; Tocris) in sterile saline and
injected the drugs 5–10min before the test sessions. The doses
of SCH 23390 (concentration, 0.6 μg/0.5 μl/side) and M + B
(0.03 nmol+0.3 nmol/0.5 μl/side) are based on our previous
studies (Bossert and Stern 2014; Bossert et al. 2009, 2011,
2012). We connected the syringe pump (Harvard Apparatus)
to 10-μl Hamilton syringes and attached the Hamilton syrin-
ges to the 30-gauge injectors via polyethylene-50 tubing. We
injected vehicle (saline) or SCH 23390 or M + B over 1 min
(injectors extended 1 mm below the tips of the guide cannu-
lae) and left the injectors in place for an additional minute to
allow diffusion.

Double labeling Fos-FG immunohistochemistry

We based our Fos, FG, and Fos-FG immunohistochemistry
procedures on previous reports (Bossert et al. 2012; Miller
and Marshall 2005). Ninety minutes after exposure to context
A or context B, we deeply anesthetized the rats with isoflurane
(∼80 s) and perfused them transcardially with 100 ml of 0.1 M
sodium phosphate (PBS) followed by 400 ml of 4 % parafor-
maldehyde in 0.1 M PBS, pH 7.4. We removed and postfixed
the brains in 4 % paraformaldehyde for 2 h before transferring
them to 30 % sucrose in 0.1 M PBS, pH 7.4, for 48 h at 4 °C.
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We subsequently froze the brains in powdered dry ice and
stored them at −80 °C until sectioning. We cut coronal sec-
tions (20 μm) containing vmPFC, NAc shell, and vSub (ap-
proximately +2.7 to +3.5, +1.2 to +2.2, and −5.4 to −6.4 mm
from Bregma, respectively) using a cryostat, collected the tis-
sue in cryoprotectant (20 % glycerol and 2 % DMSO in 0.1 M
PBS, pH 7.4), and stored them at −80 °C until further process-
ing. We rinsed free-floating sections (three times for 10 min
each) in PBS, incubated them for 1 h in 3 % normal goat
serum (NGS) in PBS with 0.25 % Triton X-100 (PBS-TX),
and incubated them overnight at 4 °C with rabbit anti-c-Fos
primary antibody (c-Fos sc-52, Lot F2330, Santa Cruz Bio-
technology, diluted 1:4000 or phospho-c-Fos [Ser32] D82C12
diluted 1:8000) in 3 % NGS in PBS-TX.

We then rinsed the sections in PBS and incubated them for
2 h with biotinylated anti-rabbit IgG secondary antibody (BA-
1000, Vector Laboratories) diluted 1:600 in 1 % NGS in
0.25 % PBS-TX. We rinsed the sections again in PBS and
incubated them in avidin–biotin–peroxidase complex (ABC;
ABC Elite kit, PK-6100, Vector Laboratories) in 0.5 % PBS-
TX for 1 h. We then rinsed the sections in PBS and developed
them in Vector SG (blue/gray product; Vector SG peroxidase
substrate kit, Vector Laboratories) and terminated the reaction
by rinsing the tissue in PBS. We then rinsed the sections sev-
eral times, incubated them in 0.3 % H2O2 for 30 min, and then
rinsed them before incubation for 1 h in 0.3 % PBS-TX con-
taining 4 % bovine serum albumin (BSA) and avidin D (avi-
din–biotin blocking kit; Vector Laboratories). We then incu-
bated the sections overnight at 4 °C with rabbit anti-FG pri-
mary antibody (AB153; anti-Fluorescent Gold, Millipore) di-
luted 1:15,000 in 4 % BSA, 0.3 % PBS-TX, and biotin. We
then rinsed the sections in PBS and incubated for 1 h with
biotinylated anti-rabbit IgG secondary antibody (BA-1000,
Vector Laboratories) diluted 1:200 in 4 % BSA in 0.3 %
PBS-TX.

We rinsed the sections again in PBS and incubated them in
ABC (ABC Standard kit, PK-4000, Vector Laboratories) in
PBS for 1 h.We then rinsed the sections in PBS and developed
them in 3,3′-diaminobenzidine, rinsed them in PBS, mounted
them onto chrome alum/gelatin-coated slides, and air dried
them. We dehydrated the slides through a graded series of
alcohol concentrations (30, 60, 90, 95, 100, 100 % ethanol),
cleared with Citrasolv (Fisher Scientific), and cover slipped
themwith Permount (Fisher Scientific). Because both primary
antibodies against c-Fos and FG were raised in rabbit, there is
the possibility of cross-reactivity between the secondary anti-
body used to label FG and the bound c-Fos primary antiserum.
However, our laboratory, as well as others, have previously
shown evidence that this is not the case (Bossert et al. 2012;
Miller and Marshall 2005).

We digitally captured brightfield images of immunoreac-
tive (IR) cells in ventral subiculum using an EXi Aqua or Riga
2000 camera (QImaging) attached to a Zeiss Axio Imager M2

or A1. The goal was to compare the number of Fos-IR, FG-IR,
and double-labeled cells in vSub in both the ipsilateral and
contralateral hemispheres to the FG deposit. We identified
FG-IR cells by a brown product in the cytoplasm, Fos-IR cells
by a dark blue reaction product in the nuclei, and double-
labeled cells by a dark blue nucleus surrounded by brown
cytoplasm. For each rat, we quantified cells in two hemi-
spheres of 2–3 sections (2–3 ipsilateral counts and 2–3 con-
tralateral counts). We computed the mean of these counts to
give a mean number of each immunoreactive cell type per
area. We analyzed the images using IVision (4.5.0, Biovision
Technologies) software at 10×. Image capture was performed
by JMB and quantification of cells was performed blindly by
SA and RS. We also captured images of Fos-IR in NAc shell
and vmPFC in the hemisphere contralateral to FG injection
(note that Fos was difficult to quantify in the FG-injected
hemisphere). For each rat, we quantified four contralateral
sections of each brain region and averaged the counts. We
performed imaging and quantification as described above.

Apparatus

We trained and tested the rats in standardMed Associates self-
administration chambers. Each chamber has two levers locat-
ed 8-8.5 cm above the grid floor on opposing walls. Lever
presses on the active retractable lever activated the infusion
pump, whereas lever presses on the inactive non-retractable
lever had no programmed consequences. The two contexts
differed from each other in terms of their auditory, visual,
tactile, and circadian [i.e., morning (session onset at 8:00
a.m.) vs afternoon (session onset at 1–2:00 p.m.) sessions]
cues using procedures identical to those described in our pre-
vious studies (Bossert et al. 2004, 2012). The contexts are
referred to as A and B, where A is the heroin self-
administration (training) and reinstatement (testing) context,
and B is the extinction context. We counterbalanced the phys-
ical environments and circadian cues of contexts A and B.

Procedures

The experiments consisted of three phases: heroin self-
administration training (12 days), extinction training (16–
27 days), and tests for context-induced reinstatement of heroin
seeking (1 or 2 days). The experimental sequence was context A
(training)—context B (extinction)—contexts A and B (testing).

Heroin self-administration training and extinction

We trained rats to self-administer heroin for 3 h/day for
12 days. We dissolved heroin (diacetylmorphine HCl; NIDA)
in sterile saline. Heroin was infused at a volume of 65 μl over
2.3 s at a dose of 0.1 mg/kg/infusion (first six sessions) and
0.05 mg/kg/infusion (last six sessions). During training, the
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rats earned heroin infusions paired with a compound tone–
light cue for 2.3 s under a fixed-ratio-1 (FR1) 2.3-s timeout
reinforcement schedule. During the extinction phase (context B),
responses on the previously active lever led to presentation
of the tone–light cue; however, heroin was not delivered. We
conducted the tests for context-induced reinstatement under
extinction conditions (lever presses led to the presentation of
the tone–light cue but not heroin) and began testing after a
minimum of 16 daily extinction sessions when the rats met
our extinction criterion of a mean of fewer than 30 presses
on the previously active lever over the last three extinction
sessions. We presented the discrete cue during the extinction
phase because our experimental procedure is modeled after
the original renewal procedure of Bouton and Bolles (1979).
In this procedure, renewal is defined as a recovery of the
conditioned response to the discrete cue in the original con-
ditioning context (where the cue was previously paired with
the primary reinforcer) after extinction of the response to the
cue in a different context.

Exp. 1: activation of vSub→NAc shell projections
during context-induced reinstatement

We used a total of 17 rats that were injected with FG into NAc
shell. We divided the rats into two groups (n=8–9). The con-
trol group (A-B-B) underwent heroin self-administration
training (3 h/day) in context A and extinction training (3 h/
day) and reinstatement testing (90 min) in context B. The
renewal (context-induced reinstatement) group (A-B-A)
underwent heroin self-administration training in context A,
extinction training in context B, and reinstatement testing in
context A. The reinstatement test was 90 min, because of the
known time course of Fos induction after exposure to drug or
non-drug stimuli (Curran andMorgan 1995). We matched rats
in the control and renewal groups for their heroin intake and
number of active lever presses during training and extinction.
At the end of the test session, we deeply anesthetized the rats,
perfused them with PBS and 4 % paraformaldehyde, and re-
moved their brains for subsequent immunohistochemistry.

Exp. 2: effect of disconnection of the vSub→NAc shell
projection on context-induced reinstatement

We used 43 rats divided into four groups: group 1: ipsilateral
vehicle NAc shell—vehicle vSub (n=11); group 2: contralat-
eral vehicle NAc shell—vehicle vSub (n=8); group 3: ipsilat-
eral SCH 23390 NAc shell—M + B vSub (n=14); group 4:
contralateral SCH 23390 NAc shell—M + B vSub (n=10).
The test sessions were 90 min and we tested each rat twice
with their assigned dose (vehicle or drug): once before expo-
sure to context A (heroin context) and once before exposure to
context B (extinction context). We separated the tests by 48 h
and kept the rats in the animal housing room between tests.

We matched rats in the vehicle and drug groups for heroin
intake and number of active lever presses during training
and extinction and counterbalanced the order of testing in
contexts A and B, and the implantation of cannula into either
the left or right hemisphere in vSub and ipsilateral or contra-
lateral NAc shell. After testing, we deeply anesthetized the
rats and removed their brains for subsequent cannula place-
ment verification.

Exp. 3: activation of vSub→vmPFC projections
during context-induced reinstatement

We used a total of 23 rats that were injected with FG
into vmPFC. We divided the rats into two groups (n=
11–12). The control group (A-B-B) underwent heroin
self-administration training (3 h/day) in context A and
extinction training (3 h/day) and reinstatement testing
(90 min) in context B. The renewal (context-induced
reinstatement) group (A-B-A) underwent heroin self-
administration training in context A, extinction training
in context B, and reinstatement testing in context A. We
matched rats in the control and renewal groups for their
heroin intake and number of active lever presses during
training and extinction. At the end of the 90-min test
session, we deeply anesthetized the rats, perfused them
with PBS and 4 % paraformaldehyde, and removed their
brains for subsequent immunohistochemistry.

Exp. 4: effect of disconnection of the vSub→vmPFC
projection on context-induced reinstatement

We used 49 rats divided into five groups: group 1: ip-
silateral vehicle vmPFC—vehicle vSub (n=7); group 2:
contralateral vehicle vmPFC—vehicle vSub (n=7);
group 3: ipsilateral M + B vmPFC—M + B vSub (n=
11); group 4: contralateral M + B vmPFC—M + B vSub
(n=12). Based on the results of exp. 2, we also included
a fifth group of rats injected with vehicle into vmPFC
and M + B into vSub (group 5, n=12) to rule out that
the inhibitory effects of the disconnection manipulations
on context-induced reinstatement observed in exp. 2 are
due to unilateral inactivation of vSub. The training, test-
ing, and cannulae verification were the same as de-
scribed above for exp. 2.

Statistical analyses

We analyzed the data with ANOVAs or ANCOVAs or inde-
pendent t tests (Fos-IR, FG-IR, and Fos-FG-IR; two-tailed)
using the statistical program SPSS (GLM procedure). We
followed significant main effects and interaction effects
(p<0.05) with post hoc tests (Fisher PLSD). Because our mul-
tifactorial ANOVAs and ANCOVAs yielded multiple main
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and interaction effects, we only report significant effects that
are critical for data interpretation. Additionally, for clarity, we
indicate results of post-hoc analyses by asterisks in the figures
but they are not described in the BResults^ section. Finally, in
exp. 2 and exp. 4, there were no significant differences be-
tween the rats injected with vehicle into the ipsilateral or con-
tralateral hemispheres (groups 1–2). Therefore, we combined
the data from these groups for each experiment to create a
larger n vehicle group.

Results

Training and extinction (exp. 1–4)

Figure 1a (left panel) shows mean±SEM number of heroin
infusions and presses on the active and inactive levers for all
rats (exp. 1–4). The rats demonstrated reliable heroin self-ad-
ministration, as indicated by increased number of infusions
and active lever presses in response to halving the dose of
heroin from 0.1 to 0.05 mg/kg/infusion on training day 7
(p<0.01). Figure 1b (right panel) shows the mean±SEMnum-
ber of lever presses on the previously active lever and the
inactive lever during the extinction phase. As expected, re-
sponse rates decreased over time during the extinction phase,
as evidenced by a main effect of extinction session (p<0.01).

Role of vSub→NAc shell projection
in context-induced reinstatement

Exp. 1: effect of context-induced reinstatement
on activation of the vSub→NAc shell projection

Exposure to the heroin context (ABA renewal group) reinstated
active lever responding after extinction. The statistical analysis
showed a significant interaction between group (renewal, con-
trol) and lever (active, inactive) (F(1,15)=91.8, p<0.01, Fig. 2a).
Presses on the inactive lever were very low during testing
(mean ± SEM = 3 ± 1 averaged between groups, with no sig-
nificant difference between groups, data not shown). Unilateral
FG injections into NAc shell resulted in reliable FG labeling in
the ipsilateral vSub but almost no labeling in the contralateral
vSub; these results are consistent with previous reports
(Groenewegen et al. 1987; Sesack and Pickel 1990). Therefore,
we only report the results for unilateral FG-IR and Fos + FG-IR
quantification.

There was no difference between the control and renewal
groups for the number of FG-labeled neurons in ipsilateral
vSub (p>0.05, Fig. 2b). Context-induced reinstatement of
heroin seeking was associated with similar induction of Fos-
IR nuclei in ipsilateral and contralateral vSub; therefore, we
averaged the values from the two hemispheres for a total Fos-

IR count. Fos-IR in vSubwas higher in the renewal group than
in the control group (t(15)=6.0, p<0.01, Fig. 2c). Fos
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expression in NAc shell was also higher in the renewal group
than in the control group: mean±SEM of Fos-IR counts per
mm2 was 14.1±2.1 and 2.4±0.6, respectively (t(15)=5.2,
p<0.05). Fos + FG double-labeled cells in vSub of the renew-
al group was higher than in the control group (t(15)=3.9,
p<0.01, Fig. 2d). These findings indicate that context-
induced reinstatement was associated with activation of the
vSub→NAc shell projection.

Exp. 2: effect of disconnection of the vSub→NAc shell
projection on context-induced reinstatement

Unilateral M + B injections into vSub and contralateral or
ipsilateral SCH 23390 injections into NAc shell decreased
context-induced reinstatement of heroin seeking (Fig. 3a).
We analyzed the data by repeated measures ANCOVA (inac-
tive lever presses as a covariate) using the between-subjects
factors of group (vehicle [groups 1–2], ipsilateral SCH 23390
+ M + B [group 3], contralateral SCH 23390 + M + B [group
4]) and the within-subjects factor of test context [heroin (A) or
extinction (B)]. The analyses showed significant effects of

group (F(2,38)=8.5, p<0.01), test context (F(1,38) =15.1,
p<0.01), and group x test context (F(2,38)=5.0, p<0.05). Finally,
presses on the inactive lever were very low during testing in the
different groups (mean ± SEM = 6 ± 1 averaged across groups,
with no significant difference between groups, data not shown).

Role of vSub→vmPFC projection
in context-induced reinstatement

Exp. 3: effect of context-induced reinstatement
on activation of the vSub→vmPFC projection

Exposure to the heroin context (ABA renewal group) reinstat-
ed active lever responding after extinction. The statistical anal-
ysis showed a significant interaction between group (renewal,
control) and lever (active, inactive) (F(1,21)=52.9, p<0.01,
Fig. 4a). Presses on the inactive lever were very low during
testing (mean ± SEM = 2 ± 0 averaged between groups, with
no significant difference between groups, data not shown).
Unilateral FG injections into vmPFC resulted in reliable FG
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induced reinstatement. a Reinstatement test: total number of active lever
presses in rats tested in the extinction (control A-B-B) or the heroin
(renewal A-B-A) context. b FG-IR cells: number of FG-IR cells per
mm2 in ipsilateral vSub of rats tested in the extinction or heroin context.
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contralateral hemispheres were averaged) in vSub of rats tested in the
extinction or heroin context. d Fos + FG double-labeled cells: percentage
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context or heroin context. e Representative photomicrographs of FG in-
jection into NAc, FG labeling, and Fos + FG cells in ipsilateral vSub.
*Different from the extinction context, p<0.05, n=8–9 per group
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labeling in the ipsilateral vSub but almost no labeling in the
contralateral vSub; these results are consistent with a previous
report (Hoover and Vertes 2007). Therefore, we only report
the results for unilateral FG-IR and Fos + FG-IR quantifica-
tion. Three rats (2 from the control group and 1 from the
renewal group) had low FG counts (<25 cells/mm2) and were
omitted from the FG and Fos + FG analyses.

There was no difference between the control and renewal
groups for the number of FG-labeled neurons in ipsilateral
vSub (p>0.05, Fig. 4b). Context-induced reinstatement of
heroin seeking was associated with similar induction of Fos-
IR nuclei in ipsilateral and contralateral vSub; therefore, we
averaged the values from the two hemispheres for a total Fos-
IR count. Fos-IR in vSubwas higher in the renewal group than
in the control group test (t(21)=3.7, p<0.01, Fig. 4c). Fos ex-
pression in vmPFC was also higher in the renewal group than
in the control group: mean±SEM of Fos-IR counts per mm2

was mean±SEM was 37.7±6.6 and 15.3±4.2, respectively
(t(21)=2.8, p<0.05). Fos + FG double-labeled cells in vSub
of the renewal group was higher than in the control group

(t(18)=3.5, p<0.01, Fig. 4d). These findings indicate that
context-induced reinstatement was associated with activation
of the vSub→vmPFC projection.

Exp. 4: effect of disconnection of the vSub→vmPFC
projection on context-induced reinstatement

Unilateral M + B injection into vSub and contralateral or ip-
silateral vehicle or M + B injection into vmPFC had no effect
on context-induced reinstatement of heroin seeking (Fig. 5a).
We analyzed the data by repeated measures ANCOVA (inac-
tive lever presses as a covariate) using the between-subjects
factors of group (vehicle [groups 1–2], ipsilateral M + B
[group 3], contralateral M + B [group 4], unilateral vSub
M + B [group 5]) and the within-subjects factor of test context
[heroin (A) or extinction (B)]. The analysis showed a signifi-
cant effect of test context (F(1,43)=22.0, p<0.01) but no other
significant main or interaction effects [note: while previous
studies have demonstrated a role of vmPFC in expression or
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shell (Paxinos and Watson 2008) and representative photomicrographs
of cannula placements are shown. Because implantation of cannula into
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are depicted in both hemispheres (light gray circles = vehicle, black
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consolidation of extinction learning (Peters et al. 2008; Quirk
et al. 2000), we did not observe increased extinction
responding in context B in rats injected with M + B into the
vmPFC]. For clarity purposes, we do not show the data of the
unilateral vSub M + B group (group 5), but active lever
presses during testing in contexts A and B were similar to
those of the other groups: mean±SEM per 90 min of 38.8±
5.8 and 16.9±4.3, respectively. Presses on the inactive lever
were very low during testing in the different groups (mean ±
SEM = 5 ± 1 averaged across groups, with no significant
difference between groups, data not shown).

Discussion

We studied the role of vSub→NAc shell and vSub→vmPFC
glutamatergic projections in context-induced reinstatement of
heroin seeking. We found that this reinstatement is associated
with increased Fos in vSub neurons that project to either NAc
shell or vmPFC, indicating that both projections are activated
during the context-induced reinstatement test. However,

anatomical disconnection of the vSub→NAc shell projection,
but not the vSub→vmPFC projection, decreased this rein-
statement. These results suggest that the vSub→NAc shell
projection, but not the vSub→vmPFC projection, contributes
to context-induced reinstatement. Therefore, while re-
exposure to the heroin context activates both vSub projec-
tions, only the vSub→NAc shell projection is necessary for
context-induced reinstatement. Our disconnection manipula-
tion of the vSub→NAc shell projection comprised of local
inactivation of vSub cell bodies with GABA receptor agonists
and dopamine D1-family receptor blockade in NAc shell.
Thus, we propose that an interaction between the vSub→
NAc shell glutamatergic projection and local dopamine D1
postsynaptic receptors in NAc shell contributes to context-
induced reinstatement of heroin seeking.

It is unlikely that the effect of the vSub→NAc shell con-
tralateral or ipsilateral manipulations on context-induced rein-
statement is due to diffusion into nearby brain areas, because
we previously found that SCH 23390 injections into NAc core
or M + B injections into dorsal CA1 have no effect on this
reinstatement (Bossert et al. 2007; Bossert and Stern 2014).
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number of total Fos-IR nuclei per mm2 (ipsilateral and contralateral hemi-
spheres were averaged) in vSub of rats tested in the extinction or heroin
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cells in the ipsilateral vSub of rats tested in the extinction context or
heroin context. e Representative photomicrographs of FG injection into
vmPFC, respectively, FG labeling, and Fos + FG cells in ipsilateral vSub.
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n=10 per group for b and d)

Psychopharmacology (2016) 233:1991–2004 1999



It is also unlikely that motor deficits or other non-specific
behavioral effects of the drugs decreased context-induced re-
instatement, because we previously found that bilateral injec-
tions of M + B into vSub or SCH 23390 into NAc shell have
no effect on high-rate food-reinforced responding (Bossert
et al. 2007; Bossert and Stern 2014; Marchant and
Kaganovsky 2015).

The main interpretation issue in our study is how to explain
the similar effects of the ipsilateral and contralateral manipu-
lations of the vSub→NAc shell projection on context-induced
reinstatement. The classic interpretation of asymmetrical dis-
connection findings is that a causal role of a given brain path-
way in a behavior is inferred from the observation that a
learned behavior is disrupted by the contralateral but not ipsi-
lateral manipulation (Gaffan et al. 1993; Setlow et al. 2002).
This interpretation is based on the assumption that learned
behaviors can be maintained by an intact ipsilateral projection
and that brain projections are primarily ipsilateral (Gaffan

et al. 1993; Setlow et al. 2002). However, the findings from
several studies on the similar effects of ipsilateral and contra-
lateral inactivation manipulations of cortical projections to
NAc and amygdala on reinstatement of drug seeking
(Bossert et al. 2012; Fuchs et al. 2007; Peters et al. 2008)
led us to consider alternative interpretations (Bossert et al.
2012; Crombag et al. 2008).

Perhaps the most straightforward possibility is that when
the function of a given projection is critical for controlling a
complex learned behavior, an intact ipsilateral projection is
not sufficient to maintain the behavior (Crombag et al.
2008). In this regard, our present and previous data (Bossert
et al. 2012) suggest that context-induced reinstatement may be
particularly susceptible to ipsilateral disconnections. The de-
velopment of optogenetic (Ma et al. 2014; Yizhar et al. 2011)
and DREADD (Boender et al. 2014; Marchant et al. 2015;
Nair et al. 2013) methods for projection-specific inhibition
will allow us and other investigators to directly test this idea
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by comparing the effects of single-hemisphere projection in-
hibition versus dual-hemisphere projection inhibition on rein-
statement of drug seeking. Another potential interpretation of
our data is that unilateral inactivation of vSub in one hemi-
sphere interferes with the normal function of vSub in the other
hemisphere through commissural fibers (Kanamori 2015).
However, this possibility is unlikely because in exp. 4 (see
BResults^), we found that unilateral inactivation of vSub had
no effect on context-induced reinstatement. Furthermore, we
previously found that unilateral injections of SCH 23390 into
NAc shell also had no effect on context-induced reinstatement
of heroin seeking (Bossert et al. 2012).

Another interpretation of the similar effect of ipsilat-
eral and contralateral drug injections on context-induced
reinstatement is that this behavior relies on activation of
both ipsilateral and contralateral vSub→NAc shell pro-
jections. However, this possibility is unlikely because
unilateral FG injections into NAc shell resulted in al-
most no labeling in the contralateral vSub, a finding
consistent with previous reports (Groenewegen et al.
1987; Sesack and Pickel 1990).

A potential interpretation of our data is that the similar
effect of contralateral and ipsilateral manipulations is due to
the disruption of communication between vSub and NAc shell
through an additional brain area via both ipsilateral and con-
tralateral projections. One possible vSub projection we tested
in this study is to the vmPFC, which sends dense ipsilateral
and sparse contralateral projections to NAc shell (Sesack et al.
1989; Vertes 2004). Indeed, asmentioned in the BIntroduction,
^ we previously reported that disconnection of vmPFC→
NAc shell projection decreases context-induced reinstatement
of heroin seeking (Bossert et al. 2012). However, in exp. 4, we
found that disconnection of the vSub→vmPFC projection has
no effect on this reinstatement. Thus, it is unlikely that ac-
tivity in vmPFC during the context-induced reinstatement
test accounts for the similar effects of the ipsilateral and
contraleral manipulations of the vSub→NAc shell
projections.

Another brain area that can potentially play a role in the
similar effects of the ipsilateral and contralateral vSub→NAc
shell on context-induced reinstatement is the basolateral
amygdala (BLA). The BLA plays an important role in
context-induced reinstatement of cocaine and alcohol seeking
(Chaudhri et al. 2013; Fuchs et al. 2005; Lasseter et al. 2011;
McNally 2014). The BLA projects to NAc shell (Wright et al.
1996) and vSub (French et al. 2003). Additionally, anatomical
(French and Totterdell 2003) and electrophysiological (Finch
1996; Mulder et al. 1998) evidence demonstrates convergence
between vSub and BLA projections on individual NAc medi-
um spiny neurons. However, the degree to which BLA activ-
ity can account for our data is unknown, because evidence for
a role of BLA→NAc shell in context-induced reinstatement is
mixed. Chaudhri et al. (2013) reported that reversible

inactivation of this projection decreases context-induced rein-
statement of alcohol seeking. In contrast, Millan and McNally
(2011) reported that inactivation of this projection increases
reinstatement of alcoholic beer seeking.

We speculate that ventral tegmental area (VTA) activity
mediates the similar effects of the ipsilateral and contralateral
vSub→NAc shell manipulations on context-induced rein-
statement. The VTA sends dopaminergic (Fallon and Moore
1978; Ikemoto 2007) and glutamatergic (Yamaguchi et al.
2011; Zhang et al. 2015) projections to NAc shell, while
NAc shell sends GABAergic projections to VTA (Haber
et al. 2000; Oades and Halliday 1987). vSub stimulation-
induced activation of NAc projection neurons inhibits tonical-
ly active GABAergic neurons in ventral pallidum, resulting in
an increase in VTA dopamine cell firing (Floresco et al. 2003).
Although most VTA→NAc projections are ipsilateral, some
(∼8 %) of these projection neurons innervate the contralateral
side (Swanson 1982); there is also evidence for sparse contra-
lateral projections in the reciprocal NAc→VTA projection
(Nauta et al. 1978; Watabe-Uchida et al. 2012). In a previous
study, we found that inactivation of a small minority of
context-activated (Fos-positive) vmPFC neurons by Daun02
decreased context-induced reinstatement to the same degree
as inactivation of most vmPFC neurons by M + B (Bossert
et al. 2011). Furthermore, we found that exposure to the heroin
context activates both ipsilateral and contralateral vmPFC pro-
jections to NAc shell (Bossert et al. 2012). Taken together,
these results suggest that putative context-encoding Bneuronal
ensembles^ (Cruz et al. 2013) comprise of neurons that pro-
ject both ipsilaterally and contralaterally.

The VTA also sends dopaminergic projections to
vSub (Gasbarri et al. 1994). In an early study, we found
that inhibition of glutamate transmission in VTA de-
creases context-induced reinstatement of heroin seeking
(Bossert et al. 2004). Additionally, electrical or chemical
stimulation of vSub increases VTA cell firing and do-
pamine release in NAc (Blaha et al. 1997; Legault et al.
2000; Taepavarapruk et al. 2014); the latter effect is
blocked by inhibition of glutamate transmission in
VTA (Floresco et al. 2001; Legault et al. 2000;
Taepavarapruk et al. 2008). Furthermore, electrical stim-
ulation of vSub reinstates cocaine and amphetamine
seeking, and this effect on reinstatement is respectively
blocked by inhibition of VTA glutamate transmission or
blockade of NAc dopamine receptors (Taepavarapruk
et al. 2014; Taepavarapruk and Phillips 2003; Vorel
et al. 2001). Based on the above anatomical, physiolog-
ical, and pharmacological findings, we propose that our
ipsilateral manipulation of the vSub→NAc shell projec-
tion disrupted communication between vSub and NAc
shell in both hemispheres by decreasing VTA dopamine
cell firing and subsequent NAc shell dopamine release
in VTA→NAc shell projections.
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Concluding remarks

We combined a variation of an established asymmetrical dis-
connection procedure with retrograde tracing and Fos immu-
nohistochemistry to demonstrate that activation of the
vSub→NAc shell projection contributes to context-induced
reinstatement of heroin seeking. We interpreted these data to
suggest that an interaction between the vSub→NAc shell glu-
tamatergic projection and local dopamine D1 postsynaptic
receptors in NAc shell contributes to context-induced rein-
statement. We also proposed two ideas that might account
for the similar effects of the contralateral and ipsilateral ma-
nipulations of vSub→NAc shell projection on context-
induced reinstatement. The first is that an intact ipsilateral
vSub→NAc shell projection is critical for context-induced
reinstatement. The second is that ipsilateral inhibition of the
vSub→NAc shell projection interferes with activity in the
contralateral hemispheric projection via the reciprocal connec-
tions between NAc shell and VTA. Future studies using
projection-specific optogenetic and DREADD methods that
overcome the interpretational issues associated with pharma-
cological and lesion disconnection techniques can directly test
these ideas.
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