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Abstract
Background Resistance to antidepressant drug treatment re-
mains a major health problem. Animal models of depression
are efficient in detecting effective treatments but have done
little to increase the reach of antidepressant drugs. This may be
because most animal models of depression target the reversal
of stress-induced behavioural change, whereas treatment-
resistant depression is typically associated with risk factors
that predispose to the precipitation of depressive episodes by
relatively low levels of stress. Therefore, the search for treat-
ments for resistant depression may require models that incor-
porate predisposing factors leading to heightened stress
responsiveness.
Method Using a diathesis-stress framework, we review devel-
opmental, genetic and genomic models against four criteria:
(i) increased sensitivity to stress precipitation of a depressive
behavioural phenotype, (ii) resistance to chronic treatment
with conventional antidepressants, (iii) a good response to
novel modes of antidepressant treatment (e.g. ketamine; deep
brain stimulation) that are reported to be effective in
treatment-resistant depression and (iv) a parallel to a known
clinical risk factor.
Results We identify 18 models that may have some potential.
All require further validation. Currently, the most promising
are the Wistar-Kyoto (WKY) and congenital learned helpless-
ness (cLH) rat strains, the high anxiety behaviour (HAB)

mouse strain and the CB1 receptor knockout and OCT2 null
mutant mouse strains.
Conclusion Further development is needed to validate models
of antidepressant resistance that are fit for purpose. The
criteria used in this review may provide a helpful framework
to guide research in this area.

Keywords Depression . Animalmodels . Antidepressant .
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Depression is one of the major causes of ill-health and eco-
nomic burden worldwide, and the need to develop effective
and efficient therapies has never been greater. However, after
half a century of intensive research since antidepressant drugs
were introduced into clinical practice, their efficacy remains
stubbornly low, at around 70 % (compared with a no-
treatment recovery rate of around 50 %); the onset of action
remains stubbornly slow, at around 4–6 weeks; and with very
few exceptions, drugs newly introduced into clinical practice
have been ‘me-too’ variants of existing drugs: there has been
almost no progress towards the identification of novel targets
to improve these clinical parameters (Belzung 2014).

The past two decades have seen remarkable progress in
understanding the nature of the abnormalities of information
processing that characterise depression, the changes in neural
activity that accompany those changes and the relationships
between the psychopathology and pathophysiology of depres-
sion (Willner et al. 2013; Belzung et al. 2015). As part of this
endeavour, research using animal models of depression has
proven invaluable in the development of an understanding
of the cellular and neuroanatomical changes underpinning
these psychophysiological relationships and in establishing
in detail the mechanism of action of antidepressant drugs
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(Willner et al. 2013). This only increases the sense of frustra-
tion arising from the failure of such research to discover novel
drugs to extend the reach of antidepressant therapy into the
populations of patients who show little or no benefit. Animal
models of depression have been of immense value in advanc-
ing an understanding of how antidepressants work and im-
proving their side effect profile, and their continuing impor-
tance in these contexts is indisputable. However, the purpose
of this paper is to explore a radical thesis: that in relation to the
problem of treatment-resistant depression specifically (i.e. the
situation in which antidepressants do not work), the animal
models of depression in current use are not fit for purpose and
a different approach is needed.

Animal models of depression

Animal models of psychiatric states may be defined as proce-
dures applied to laboratory animals that engender behavioural
changes which are intended to be homologous to aspects of
psychiatric disorders, and can therefore be used as experimen-
tal tools to further the understanding of human psychopathol-
ogy (Willner 2009). Animal models are developed for specific
investigational purposes. The primary aim of early research
was to elucidate psychological processes, but models are now
used largely to address neurobiological issues, including the
mechanisms of action of psychotherapeutic drugs; the neuro-
transmitter, neuroreceptor and intracellular changes underly-
ing psychiatric states; the neuroanatomical basis of psychiatric
states, and increasingly, questions about the role of specific
genes; and of course, the evaluation of the potential psycho-
therapeutic value of novel pharmacological and non-
pharmacological interventions.

According to this definition, animal models of psychopa-
thology involve two elements: an input (a procedure used to
elicit abnormal behaviour) and an output (a behavioural end-
point, often associated with biomarkers such as neuroendo-
crine changes, that is used to measure its effect). The inputs
to the model may involve environmental manipulations (e.g.
exposure to social or physical stressors, or training regimes),
and/or alteration of the internal environment (e.g. by brain
lesions or administration of psychotropic drugs), and/or iden-
tification of vulnerable individuals (by selective breeding or
genomic methods). The behavioural endpoint represents a
model of a process (or symptom) that is thought to be impor-
tant in the disorder. Even if researchers often have the explicit
intention to develop models of a pathology, the reality is that
these models are typically limited in scope: they simulate spe-
cific aspects, reflected in the behavioural endpoint, rather than
the entirety of the disorder. However, it may be found subse-
quently that further aspects of the disorder are also present.
For example—as detailed below—the chronic mild stress
(CMS) model of depression was developed around a specific

endpoint, a decreased intake of sweet fluids, reflecting an
impairment of rewarded behaviour, but was subsequently
shown to include a wide range of additional depression-
relevant behavioural and physiological abnormalities.

Behavioural models are used in psychopharmacology for
two distinct purposes: as simulations within which to study
aspects of psychiatric states and as screening tests for the
development of new treatments. Screening tests are subject
to logistical considerations: for example, the test should be
completed in the shortest possible time and ideally will re-
spond to acute drug treatment. However, in a model of a psy-
chiatric condition, these same features may be counter-indi-
cated. Antidepressant drugs are clinically ineffective if admin-
istered acutely and are largely inert if administered to non-
depressed people: therefore, a model of clinical antidepressant
action should involve chronic drug treatment, administered
within a context of abnormal behaviour rather than to ‘normal’
animals. Thus, a particular time course of antidepressant ac-
tion and a particular level of behavioural sophistication may
be desirable or undesirable features, depending upon the pur-
pose for which a procedure is being used. Some of the proce-
dures that are most frequently used in antidepressant research,
such as the forced swim test (FST: Porsolt et al. 1977) and the
tail suspension test (TST: Steru et al. 1985), involve acute drug
treatment to ‘normal’ animals and should be thought of as
screening tests for antidepressant-like activity rather than an-
imal models of depression. They may, however, be employed
as behavioural endpoints within animal models of depression,
to measure the effect of environmental or physiological ma-
nipulations: the FST in particularly is frequently used in this
manner.

The above definition of animal models of psychopathology
emphasises that they aim to be homologous, rather than anal-
ogous, to aspects of psychiatric disorders: that is, to simulate
essentially the same process across species rather than to im-
plement a process that simply looks the same. (For example, a
bird’s wings are homologous to a mammal’s limbs, but only
analogous to a fly’s wings.) It is this feature that provides their
translational value. But to be useful for translational purposes,
a model must be sufficiently valid, and an assessment of the
validity of a model provides an indication of the degree of
confidence that we can place in the hypotheses arising from
its use. This involves an evaluation of strengths and weak-
nesses and areas of uncertainty, rather than a yes/no judge-
ment. Several systems of evaluation have been proposed,
which have the common feature that models are assessed on
two or more independent dimensions. The most widely used
method employs the three dimensions of predictive, face and
construct validity: predictive validity means that performance
in the test predicts performance in the condition being
modelled (and vice versa); face validity means that there are
phenomenological similarities between the two; and construct
validity means that the model has a sound theoretical rationale
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(Willner 1984). Some reviewers have advocated the primacy
of one or other of these three dimensions (Geyer and Markou
2002; Weiss and Kilts 1998; Sarter and Bruno 2002); more
complex frameworks have also been proposed (Belzung and
Lemoine 2011). In relation to animal models of depression,
predictive validity refers primarily to specific and selective
responsiveness to (drug and non-drug) antidepressants; face
validity is assessed by comparison to DSM (now DSM-V)
symptom checklists, with particular reference to core symp-
toms of depression; and construct validity is based on an ar-
gument for similarity of psychological constructs, such as re-
sponsiveness to rewarding events, or if they are known, the
underlying neurobiological mechanisms (Willner 1984).

Most animal models of depression are based on the induc-
tion of a depressive-like phenotype by stress, which, of
course, plays a major clinical role in the onset of depression.
Among these, the CMSmodel is the most extensively validat-
ed. Despite early concerns about the reliability of the CMS
model, it is now very widely used: the initial report on this
model (Willner et al. 1987) and a review of the first 10 years of
CMS research (Willner 1997) have each been cited in excess
of a thousand times, and the model has been a major player in
the development of the current understanding of antidepres-
sant drug action (Willner et al. 2013). In the CMS model, rats
or mice are exposed chronically to a constant bombardment of
unpredictable micro-stressors, resulting in the development of
a plethora of behavioural changes, including decreased re-
sponse to rewards, a behavioural correlate of the clinical core
symptom of depression, anhedonia. Reward sensitivity is usu-
ally tracked by periodic (typically weekly) tests in which the
animal is given access to a highly preferred sweet solution, or
to a choice between a sweet solution and plain water.
Consumption of or preference for the sweet reward decreases
over weeks of exposure but can be restored to normal levels
by chronic treatment with antidepressant drugs. This effect
typically takes several weeks, paralleling the clinical situation.
In addition to a decreased response to sweet rewards, animals
subjected to CMS are generally anhedonic in other tests of
rewarded behaviour, such as place preference conditioning
or intracranial self-stimulation, and also show all of the other
symptoms of depression that it is possible tomodel in animals,
such as decreases in sexual, investigative and other motivated
behaviours, decreased self-care, weight loss, disrupted sleep
patterns and phase advance of the diurnal rhythm. Some stud-
ies have used decreased self-care (Surget et al. 2009, 2011) or
increased immobility in the FST as alternative, non-hedonic,
behavioural endpoints (Willner 2005). CMS also has exten-
sive physiological and neurochemical parallels with depres-
sion (Hill et al. 2012). Reversal of CMS effects has been seen
with representatives of all of the clinically used chemical fam-
ilies of antidepressant drug, but not with non-antidepressants
of various kinds. Overall, therefore, the model has a high
degree of construct, face and predictive validity (Willner

et al. 1987; Willner 1997, 2005). Occasionally, a pattern of
behavioural and neurochemical changes has been reported
that is opposite to what is usually observed. The basis for these
anomalous effects has not been established, but they lead to a
recommendation that behavioural validation of the model
should always precede or accompany physiological investiga-
tions (Willner 2005).

In another frequently used procedure, the learned helpless-
ness (LH) model, animals (originally, dogs; more typically
rats or mice) are subjected to inescapable footshock and sub-
sequently display an impairment in learning to escape when
given the opportunity to do so (Maier and Seligman 1976).
The learning impairment following inescapable shock, which
is more evident the more difficult the learning task (for exam-
ple, a chain of two responses rather than a single response), is
interpreted as ‘helplessness’: the perception that escape is not
possible (albeit that this interpretation has been questioned:
Willner 1986). The procedure properly involves the use of a
yoked control design, in which inescapably shocked animals
receive the same shock regime as paired animals that are able
to escape; the latter group shows no impairment relative to
non-shocked animals. Many studies use a simpler (and less
interpretable) procedure based on administration of inescap-
able shock and comparison of the performance of shocked and
non-shocked animals. Animals subject to the learned helpless-
ness procedure show many symptomatic parallels to major
depression—so much so that it has been suggested that ro-
dents subjected to uncontrollable shock could meet DSM di-
agnostic criteria (Weiss et al. 1982)! However, the learned
helplessness paradigm is implemented in a variety of different
ways in different laboratories, and the version of the paradigm
giving rise to the broadest range of symptoms (Weiss et al.
1982) uses extremely high shock levels (4–6 ma) which are of
doubtful relevance to depression. Furthermore, the effects of
this regime largely dissipate within 2–3 days, and the effects
of antidepressant treatment have not been studied using this
procedure. Antidepressant effects have typically been studied
using shocks of a considerably lower intensity (1.0–1.5 ma)
which cause a far less pervasive pattern of behavioural impair-
ment. For example, this procedure has not been reported to
engender anhedonia; it does, however, cause some long-
lasting physiological changes (e.g. Philbert et al. 2011). As
with the CMS model, LH is reversed by a wide range of
antidepressant drugs, with relatively few false positives or
false negatives. There is some question as to whether LH is
better considered as a model of depression or of post-
traumatic stress disorder, which also responds to some degree
to antidepressant treatment (Foa et al. 1992). Nevertheless, as
with CMS, work using the LH model has made major contri-
butions to the understanding of the neural systems underpin-
ning antidepressant action (e.g. Maier and Watkins 2010).

An interesting hybrid model uses acute severe stress
(shock) to elicit behavioural deficits then switches to chronic
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mild stress to maintain them (Gambarana et al. 2001). This
model, however, has been little used. Various other precipi-
tants have been employed to elicit depression-relevant and
antidepressant-reversible behavioural endpoints, including re-
peated social defeat (Chaouloff 2013), withdrawal of rewards
(Huston et al. 2013) and withdrawal from chronic drug treat-
ment (D’Souza and Markou 2010). Again, these procedures,
while interesting and providing some neurobiological in-
sights, have not been extensively validated or utilised to study
mechanisms of antidepressant action.

Why animal models of depression may be of limited
value for the development of treatments to overcome
antidepressant resistance

Over the past two decades, research using the CMS and
LH models (and others), and parallel clinical research,
has established that stress precipitates depression primar-
ily by damaging the hippocampus, leading to changes in
the activity of a distributed neural system involving var-
ious midbrain and forebrain structures, with a particular
focus in the ventromedial prefrontal cortex (vm-PFC),
and that antidepressants work by repairing the damaged
hippocampus, thus restoring the normal balance of ac-
tivity within that circuitry (Willner et al. 2013). This
mechanism—reversal of the neurotoxic effects of
stress—represents a significant limitation to the scope
of antidepressant action, because it assumes that stress-
induced neurotoxicity is the problem that antidepressants
need to overcome. However, there are many factors that
are known to increase vulnerability to depression, mean-
ing that the role of stress as a precipitant is correspond-
ingly diminished: these include a clinical history of de-
pression and a variety of genetic, personality or devel-
opmental risk factors. Significantly, heightened vulnera-
bility to depression is associated with resistance to an-
tidepressant drug treatment (Willne et al. 2014). Thus,
although antidepressants provide an efficient means of
reversing the neurotoxic effects of stress, they are much
less effective in conditions where vulnerability to de-
pression is elevated, the role of stress in precipitating
depression is correspondingly lower, and as a result, the
major substrate for antidepressant action (stress-induced
neurotoxicity) is absent or minor.

In light of these findings, we have argued elsewhere that
progress towards drug therapies for treatment-resistant depres-
sion may require a paradigm shift away from stress-based
models of depression and towards models of vulnerability to
depression (Willner et al. 2013, 2014). Indeed, the ideal
models to investigate the potential reversal of risk factors
may be models in which conventional antidepressants are
ineffective.

Animal models of predisposition to depression

Risk factors (diatheses) for depression may present as ‘silent’
until activated by stress (e.g. a genetic risk factor that does not
directly elicit depressive symptoms, or a tendency towards
depressive thinking that is well controlled), as a sub-
syndromal depressive condition (recognised as depressive
personality disorder in DSM-III, which was retained for re-
search purposes in DSM-IV, but has now been dropped from
DSM-V), or as dysthymia (pervasive depressive disorder in
DSM-V), a low-grade chronic condition that is difficult to
distinguish symptomatically from a major depressive episode.
Consequently, animal models of a depressive diathesis could
appear either as essentially ‘normal’ animals that are more
sensitive to a precipitant used to induce ‘depressive’ behav-
iour, or could present ‘depressive’ features in the absence of
any specific experimental manipulation. In the latter case,
from a modelling perspective, there is little to distinguish
chronic low-grade depression from a major depressive epi-
sode other than severity and chronicity. In relation to predic-
tive validity, chronic low-grade depressions are less respon-
sive to drug treatment, but to the extent that they are treatable,
they respond to the same range of antidepressant drugs as
major depression. There is greater clinical use of dopaminer-
gic antidepressants such as amisulpride in dysthymia, and a
recent meta-analysis found that amisulpride was more effec-
tive than the SSRI fluoxetine (Kriston et al. 2014), but dopa-
minergic antidepressants are also effective in major depres-
sion, so this does not differentiate the two syndromes. In rela-
tion to face validity, some features, including anhedonia and
vegetative symptoms, are perhaps less prominent in pervasive
depressive disorder than in major depression, but the differen-
tial diagnosis is made entirely on the basis of duration of
illness. There are also no significant differences in the theo-
retical understanding of chronic low-grade depression and
major depression (construct validity). In a nutshell, there are
no distinctive validity criteria for animal models of chronic
low-grade depression as distinct from major depression
(Willner and Mitchell 2002).

A diathesis-stress perspective

The situation is different, however, when we consider the
problem of drug-resistant depression within a diathesis-stress
perspective. As outlined above, antidepressant resistance
arises, at least in part, from the occurrence of depression in
high-risk individuals (Willne et al. 2014). Therefore, an ap-
propriate model within which to investigate antidepressant-
resistant depression is one in which a valid model of depres-
sion is implemented in the context of a valid model of a risk
factor for depression. In this situation, two clear criteria should
be satisfied. First, depression-like behaviour should be elicited
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more readily in high-risk groups. As discussed above, this
criterion may to some extent be automatically satisfied in re-
lation to risk factors that by themselves elicit depressive-like
features, but the features in question should be valid end-
points, such as hedonic measures. Second, and critically, the
effectiveness of conventional antidepressants should be lower
in high-risk than in low-risk groups. This is actually a less
straightforward issue to investigate than might at first appear,
because it requires a comparable pre-treatment behavioural
baseline, which may be difficult to achieve if the high-risk
group are more stress sensitive than the low-risk group.

We might tentatively propose a third criterion for
models of antidepressant-resistant depression, that high-
risk and low-risk groups should respond equally well to
unconventional antidepressant treatments that act outside
the hippocampus. The rationale for this proposal is that it
is the action of antidepressants within the hippocampus
that is responsible for the greater effectiveness of antide-
pressants in low-risk groups, where the effects of stress-
induced neurotoxicity are more prominent. Thus treat-
ments that bypass the hippocampus and act directly within
other parts of the depression circuitry—in particular, the
prefrontal cortex (PFC)—may not be limited in their ac-
tion by a lesser involvement of stress in the precipitation
of a depressive episode. For example, deep brain stimula-
tion (DBS) of the vm-PFC has been reported to produce
long-lasting antidepressant effects in treatment-resistant
depressed patients (Mayberg 2009; Hamani et al. 2011;
McGrath et al. 2014). A rapid reversal of CMS-induced
anhedonia and other depression-related behaviours has al-
so been demonstrated in rats following DBS of the vm-
PFC (Hamani et al . 2012; Dournes et al . 2013;
Veerakumar et al. 2014). For obvious reasons, DBS has
not been used in antidepressant-responsive patients, but
there is a reasonable expectation that it would be effective
if implemented. Rapid improvements in antidepressant-
refractory patients are also reported following single in-
travenous infusions of the NMDA receptor antagonist ke-
tamine (Berman et al. 2000; Zarate et al. 2006;
Diazgranados et al. 2010). These effects appear to be me-
diated by direct actions within the PFC, as ketamine has
been shown to suppress activity in the rostral anterior
cingulate cortex (Salvadore et al. 2009), a strong predictor
of successful antidepressant treatment (Pizzagalli 2011),
and this effect occurs too rapidly to be mediated through
structural changes in the hippocampus. In the CMS mod-
el, a single injection of ketamine reversed not only the
anhedonic and other behavioural deficits, but also the at-
rophy of dendritic spines in the PFC and the associated
electrophysiological deficits (Li et al. 2010, 2011b;
Duman et al. 2012). Ketamine has psychotomimetic ef-
fects, so again, for obvious reasons, it has not been tested
in antidepressant-responsive patients.

Animal models of heightened vulnerability
and antidepressant resistance

We will now consider some animal models of predisposition
to depression in relation to specific risk factors that are known
to be associated with an increased proclivity to depression and
resistance to antidepressant treatment (Willne et al. 2014). In
each case, we consider the extent to which the model can be
said to meet the first two of the criteria we have outlined:
increased sensitivity to stress in a valid animal model of de-
pression and insensitivity of those effects to conventional an-
tidepressant treatment. The third criterion, a good response to
unconventional antidepressants that appear effective in
treatment-resistant depression, is barely discussed for the sim-
ple reason that with three exceptions (the Wistar-Kyoto
(WKY) and congenital learned helplessness (cLH) rat and
high anxiety behaviour (HAB) mouse strains), the effective-
ness of unconventional treatments for resistant depression has
not been examined in any of the other models under
consideration.

The models that we discuss all involve the application of
stress to animals with a biological background that can be
considered depression-related (Harro 2012); that is, they in-
clude both a putative risk factor and a proximal stressor. Not
reviewed here in detail are procedures advanced as models of
predisposition to depression—many of which, as discussed
above, display a depressive-like phenotype—for which tests
have not been conducted to confirm that they do actually
involve heightened vulnerability. (This exclusion would ap-
ply, for example, to a genetically manipulated mouse for
which the FST represents the extent of its behavioural evalu-
ation.) We also do not discuss procedures that result in an
antidepressant-like phenotype or that confer resilience to
stress, because these models do not provide a test-bed for
research on treatment-resistant depression.

History of depression

One of the most powerful risk factors for depression is a pre-
vious history of depressive episodes. Each episode of depres-
sion increases the probability of a further episode (American
Psychiatric Association 2000; Solomon et al. 2000), and with
each successive episode, the severity of stress needed to pre-
cipitate the episode decreases (Kendler et al. 2000; Dienes
et al. 2006; Stroud et al. 2008; Morris et al. 2010; Slavich
et al. 2011). Recurrent depressions are also more resistant to
pharmacotherapy than first-episode depressions (O’Reardon
et al. 2007; Souery et al. 2007; Kaymaz et al. 2008; Rush
et al. 2011). However, this reflects a specific failure of antide-
pressant drug treatment: the efficacy of cognitive therapy for
depression is maintained across repeated episodes (Leykin
et al. 2007), which presumably reflects the fact that psycho-
therapy engages the PFC directly and differently from
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antidepressant drugs (Kennedy et al. 2007; Mayberg 2009;
Clark and Beck 2010; Hamani et al. 2011).

We are aware of only a single study that has modelled a
history of depression by repeated stress induction. Isingrini
et al. (2010) subjected BALB/c mice to two 7-week periods
of CMS separated by a 6-week interval. Using a relatively
mild CMS procedure, a wider range of behavioural impair-
ments was seen after the second, relative to the first, period of
CMS exposure, indicating an increase in stress sensitivity. In
animals maintained on a normal diet, chronic treatment with
fluoxetine decreased all of the behavioural impairments.
However, in mice fed a high-fat diet (modelling the vascular
risk for depression: Camus et al. 2004), mice treated with
fluoxetine showed no behavioural impairment after the first
CMS period, but fluoxetine was without effect following the
second CMS exposure. Thus, the study demonstrated in-
creased stress sensitivity in previously stressed animals, and
antidepressant resistance was induced by an interaction be-
tween a high-fat diet and a history of repeated stress exposure.

Early life stress

Developmental factors, such as multiple loss events or child-
hood adversity (Souery et al. 1999), are also associated with
both vulnerability to depression and antidepressant treatment
resistance. The developmental factor that has been most stud-
ied is childhood maltreatment. A recent meta-analysis report-
ed that adults who had been abused as children had a greatly
elevated risk of developing recurrent or persistent depression,
as well as a substantial increase in rates of failure to respond to
pharmacotherapy (Nanni et al. 2012). As with a history of
depression, the elevated level of risk involves an increased
sensitivity to stress rather than an increased exposure to
stressors (Kendler et al. 2004; Harkness et al. 2006; Shapero
et al. 2014), and adults who were abused as children were
normally responsive to psychotherapeutic interventions, again
indicating a specific resistance to antidepressant drug treat-
ment (Nanni et al. 2012).

There are many and diverse animal models of early stress,
including several paradigms involving interference with
mother-pup interactions by periods of separation and varia-
tions in the quality of maternal care or the postnatal environ-
ment; there is also considerable variation in the comparison
group used (Pryce et al. 2005). None of these manipulations in
themselves produces a reliable depression-like phenotype in
mice or rats (Millstein and Holmes 2007; Schmidt et al. 2011);
in particular, there is little if any evidence that rats subjected to
these early manipulations are anhedonic (Pryce et al. 2005).
However, as discussed above, for present purposes, the major
issue is whether any of these procedures produce an increase
in stress precipitation of depression-relevant behaviours in
later life. Again, there is little evidence that early life stress
increases responsiveness to stress in adulthood; indeed,

resilience to adult stress is often reported (Schmidt et al.
2011). In one study, separation of Sprague-Dawley rat pups
from their mothers, for 15 min daily between postnatal days 2
and 14, led to an increase in anhedonia and other depression-
relevant behaviours, hypothalamic-pituitary-adrenal (HPA)
activity and gene expression in vm-PFC, following repeated
restraint stress, but the response to antidepressant treatment
was not studied (Uchida et al. 2010). However, in another
study, early deprivation was reported to increase the acquisi-
tion of LH by adult rats of the Fischer strain (but not byWistar
rats), but the effect was reversed by chronic fluoxetine treat-
ment, suggesting that this will not lead to a model for antide-
pressant resistance (Rüedi-Bettschen et al. 2004). A third
study reported that naturalistically occurring poor maternal
care led to an increased anhedonic response to CMS in out-
bred Wistar rats; the response to antidepressant treatment was
not examined (Henningsen et al. 2012). However, there is
evidence that greater adult emotionality between mouse
strains may to some extent reflect differences in early maternal
care (Calatayud and Belzung 2001), and this is not associated
with resistance to antidepressant treatments (Ibarguen-Vargas
et al. 2009). Overall, these data do not give confidence that
work with combined early-life and late stress models will
significantly improve the research environment for the devel-
opment of treatments for antidepressant-resistant depression.

An important limitation of rodent studies of early-life stress
is that the early post-natal period in rodents corresponds to the
pre-natal period of brain development in humans, which casts
doubt on the validity of early manipulations as models of
childhood adversity. A closer parallel is provided by a model
in which stress is applied to ‘juvenile’ rats in the post-weaning
to pre-pubertal stage. Juvenile exposure to stressors, such as
predator scent or a 3-day varied stress regime (forced swim,
elevated platform and restraint), leads to increased emotional
reactivity in adulthood, with around a third of subjects show-
ing LH and other depression-related abnormalities, while the
other two thirds exhibited anxiety-related behaviour (Tsoory
and Richter-Levin 2006; Tsoory et al. 2007; Horovitz et al.
2012). Antidepressants have not been tested in this model.

Genetic factors

Depression has a strong familial component. For example,
whereas womenwith a low genetic risk for depression showed
the typical pattern of high stress exposure before a first epi-
sode of depression and a gradual decrease in the extent of
stress exposure before subsequent episodes, in women with
a family history of depression and a depressed co-twin, the
first episode of depression was precipitated by very low levels
of stress, and this did not change across episodes (Kendler
et al. 2001a). These familial effects could reflect a shared
environment, but are typically assumed to reflect genetic in-
fluences, and as discussed below, several genes have been
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identified that are associated with both predisposition to de-
pression and resistance to antidepressant treatment.

Many transgenic mice have been designed to assess the
effects of antidepressant drugs. Some of them are completely
unrelated to depression. For example, the P-gp knockout
mouse (abcb1a mouse, Uhr et al. 2000, 2003; Uhr and
Grauer 2003; Karlsson et al. 2013) is a model targeting drug
penetration across the blood-brain barrier, such that in the
knockout mice, effects of drugs were prevented if they were
Pg-p substrates, but not otherwise—so unlike other SSRIs, the
effects of fluoxetine were unaffected. Due to the fact that Pg-P
is a multidrug resistance protein completely unspecific to de-
pression, no data have been published regarding the stress
sensitivity of this model, so it is not possible to assess its
validity in relation to our first criterion. However, this does
parallel clinical data showing an association between a poly-
morphism of the ABCB1 gene and antidepressant response
(Uhr et al. 2008).

As monoaminergic drugs are classically used in the treat-
ment of depression, the contribution of the monoaminergic
system to their effects has been extensively investigated. For
example, PCPA, which blocks serotonin synthesis, suppressed
the effects of subchronic treatment with fluoxetine and imip-
ramine, but not those of noradrenergic compounds such as
reboxetine or desipramine (O’Leary et al. 2007). In TPH2
(−/−) mice, the enzyme that enables serotonin synthesis in
the brain is absent. While the knockout mice did not respond
to SSRIs, their sensitivity to stress in the CMS and LHmodels
was unchanged (Angoa-Pérez et al. 2014), so this model does
not meet our first criterion.

In humans, the most studied of the monoaminergic genes is
a functional polymorphism in the promoter region of the se-
rotonin transporter gene, 5-HTTLPR, which has been reported
to moderate the effects of stressful life events on depression.
In the absence of stress, all genetic subtypes have the same
low risk of depression, but as the frequency of stressful events
increases, the risk of depression is greatly elevated in individ-
uals homozygous for the short allele of the 5-HTTLPR gene
relative to individuals homozygous for the long allele, with
heterozygotes showing an intermediate level of risk (Caspi
et al. 2003, 2010; Uher and McGuffin 2008; Karg et al.
2011). The parallel finding is that individuals homozygous
for the short allele of the 5-HTTLPR gene are less responsive
to antidepressant treatment than individuals homozygous for
the long allele, with heterozygotes showing an intermediate
response (Serretti et al. 2007; Zobel and Maier 2010; Licinio
and Wong 2011).

Similar results have been found in primates, as the short
allele of the 5-HTTLPR gene increased the neuroendocrine
response to separation stress in infant macaques (Barr et al.
2004), increased sensitivity to social stress in adult rhesus
monkeys (Jarrell et al. 2008), and was also associated with a
decreased hormonal response to acute administration of the

SSRI citalopram (Michopoulos et al. 2011). These results sug-
gest that polymorphisms of the 5-HTTLPR gene may have
similar effects on stress sensitivity and antidepressant respon-
siveness in humans and non-human primates. Similarly, in
mice, the serotonin transporter knockout mouse may fulfil at
least the two first validity criteria as a model of antidepressant
resistance. Thesemutant mice display both heightened vulner-
ability to stress (Hariri and Holmes 2006; Muller et al. 2011)
and an absence of effects of acute SSRIs (Holmes, et al. 2002).
To our knowledge, the behavioural effects of chronic SSRIs
have not been assessed after genetic deletion of the serotonin
transporter. However, the effects of chronic duloxetine, a
mixed 5-HT-NA uptake inhibitor, on brain-derived neuro-
trophic factor (BDNF) levels in the hippocampus and the
frontal cortex were maintained in this model (Calabrese
et al. 2010), suggesting that antidepressant resistance may be
specific to SSRIs.

Others studies have investigated the effects of ablation of
different 5-HT receptors. Mice bearing mutations of both 5-
HT1A and 5-HT1B receptors show increased emotionality, but
they still respond to chronic SSRIs (Guilloux et al. 2011).
However, the effects of SSRIs but not of imipramine were
abolished in 5-HT1A knockout mice (Santarelli et al. 2003).
Interestingly, the mutants displayed increased anxiety
(Ramboz et al. 1998; Heisler et al. 1998; Parks et al. 1998;
Zhuang et al. 1999) and decreased depressive-like behaviour
(Ramboz et al. 1998; Heisler et al. 1998; Parks et al. 1998),
alongside increased physiological responses to acute and
chronic stress (Patti et al. 2002; Carnevali et al. 2014). If we
consider that the critical factor is stress sensitivity, rather than
behaviour in depressive behaviour bioassays, this mutant
fulfils the first two criteria as a model of antidepressant resis-
tance, albeit that resistance would be restricted to SSRIs. This
parallels clinical findings showing an association of a poly-
morphism of the 5-HT1A receptor with antidepressant resis-
tance (Kato and Serretti 2010). In 5-HT1B knockout mice, the
effects of acute but not of chronic SSRIs were prevented
(Trillat et al. 1998; Mayorga et al. 2001) so this would not
be considered a model of antidepressant resistance. However,
a recent study reported that these mice displayed increased
stress-induced autonomic and locomotor responses and no
response to chronic fluvoxamine, suggesting that this model
may merit further study (Vinkers et al. 2011). Genetic mutants
studied in relation to other serotoninergic-receptor genes in-
clude mice with a deletion of the 5-HT2B receptor, which
showed resistance to chronic fluoxetine and paroxetine (Diaz
et al. 2012) but were not tested for stress sensitivity, and mice
with a deletion of the 5-HT2C gene, which showed potentia-
tion of the effects of acute fluoxetine in a bioassay (Cremers
et al. 2004) but were not studied further to our knowledge.
Studies on the 5-HT4 receptor null mutant showed that abla-
tion of this receptor attenuated the response to stress-induced
hypophagia (Compan et al. 2004), while repeated
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administration of citalopram produced a total inhibition of 5-
HT firing in the knockouts, and only a partial inhibition in
wild-type mice (Conductier et al. 2006): both results suggest
that this might rather be a model of decreased antidepressant
resistance. A final target related to serotoninergic neurotrans-
mission is p11 (which recruits 5-HT1B receptors to the cell
membrane) and its target SMARCA3. Ablation of p11
abolished the effects of chronic imipramine in the open field
and induced increased thigmotaxis (suggesting heightened
anxiety behaviour) (Svenningsson et al. 2006), while ablation
of SMARCA3 suppressed the effect of chronic escitalopram
on stress-induced anhedonia (Oh et al. 2013). However, abla-
tion of SMARCA3 did not modify sucrose consumption after
chronic stress (or the effects of acute escitalopram in the tail
suspension test) (Oh et al. 2013). Overall, while there may be
some interesting leads, none of the 5-HT receptor mutant
mouse models stand out as clearly relevant to treatment-
resistant depression.

The effects of targeted modifications of the noradrenergic
system have also been investigated. For example, ablation of
the gene encoding dopamine beta-hydroxylase (DBH), which
converts dopamine into noradrenaline and adrenaline,
prevented the antidepressant-like effects of noradrenergic
drugs, such as desipramine or reboxetine, but it also abolished
the action of drugs acting on other monoaminergic targets
such as pargyline, bupropion and the SSRIs fluoxetine, sertra-
line and paroxetine, though strangely the effects of citalopram
remained unchanged (Cryan et al. 2001, 2004). Further, the
ablation of DBH increases sensitivity to restraint stress
(Kvetnanský et al. 2008), albeit that depression-relevant be-
haviours have not been tested. Therefore, this mutant may
satisfy two criteria as a model of antidepressant drug resis-
tance. However, the antidepressant studies involved acute
drug treatment in the FST: further studies using chronic drug
treatment and a more valid behavioural model are needed.

Another interesting monoamine-related genetic model is
the OCT2 (Organic Cation Transporter 2) null mutant mouse.
OCT2 is involved in the clearance of noradrenaline and sero-
tonin so the mutant mice display decreased levels of serotonin
and noradrenaline, associated with increased anxiety and im-
mobility in the FST (Bacq et al. 2012). Interestingly, the ef-
fects of acute selective noradrenaline or serotonin transporter
blockers were increased in bioassays, but the effects of chron-
ic venlafaxine in the chronic corticosterone model were de-
creased (Bacq et al. 2012). Subsequently, these mice were
shown to exhibit an increased sensitivity to behavioural ef-
fects of CMS (Couroussé et al. 2014). Therefore, this model
does appear to fulfil two criteria as a genetic model of antide-
pressant resistance (increased stress sensitivity and no re-
sponse to chronic antidepressant treatment).

Other neurotransmitter-related mutants that have been in-
vestigated in relation to stress include mutants of the gluta-
matergic system. Effects reported include increased sensitivity

to chronic stress or defeat stress for vGLUT1+/− mice
(Garcia-Garcia et al. 2009; Venzala et al. 2012) and greater
LH for mice with a GSK3 mutation inhibiting GSK3 phos-
phorylation (Polter et al. 2010). However, the effects of chron-
ic antidepressants have not been assessed in these models. The
endocannabinoid (eCB) system is a neuromodulatory system
in which post-synaptic cannabinoids suppress presynaptic
transmitter release from GABAergic and glutamatergic axon
terminals via CB1 receptors. Clinical data have shown that
both predisposition to depression and resistance to antidepres-
sant treatment are linked to polymorphisms of genes coding
for the CB1 receptor (Domschke et al. 2008; Juhasz et al.
2009). Endocannabinoids are metabolised by fatty acid amide
hydroxylase (FAAH), and mice with deletion of the FAAH
gene show resistance to chronic stress (Hill et al. 2013).
Conversely, increased CMS-induced anhedonia has been ob-
served in CB1 receptor knockout mice (Martin et al. 2002;
Valverde and Torrens 2012). Further, sensitivity to subchronic
(three injections) administration of desipramine or paroxetine
was slightly altered in these mice (Steiner et al. 2008), sug-
gesting the possibility of antidepressant resistance.

As antidepressant resistance in humans is associated with
dysregulation of the HPA axis, (Belzung and Billette De
Villemeur 2010), other studies have investigated modifica-
tions of genes encoding components of the stress axis.
Various mutants of glucocorticoid receptors (GR) have been
described, including models of loss of GR and models of
increased GR. The models of loss include GR+/−mice, which
exhibit a partial loss of GR in the whole body; GRNesCre mice,
which have GR loss restricted to the entire brain, neurons and
glial cells during adulthood; FBGRKO mice which display
GR loss in forebrain neurons during adulthood; GRCaMKCre

mice, which exhibit GR loss in neurons in brain and cells in
the pituitary during development (at P6); Sim1Cre-GRe3D
mice, which exhibit GR loss primarily in PVN neurons during
adulthood; and GRPOMCCre mice, which show GR loss in the
anterior pituitary cells throughout life. GR+/− mice display
increased stress responsivity in the LH model (Ridder et al.
2005). Stress coping behaviour is increased in GRNesCre and
GRPOMCCre mice while the opposite is found in FBGRKO
mice (depending upon the genetic background), while no ef-
fect is detected in GRCaMKCre and Sim1Cre-GRe3D mice.
Further, the GRNesCre and Sim1Cre-GRe3D mice show in-
creased corticosterone levels after stress (Laryea et al. 2015).
Additional models include loss of GR in dorsal raphe neurons
(DRNGRKO), associated with increased stress coping behav-
iour (Vincent and Jacobson 2014), or loss of GR in DA neu-
rons, which induces some resilience when GR have been
inactivated in DA-innervated postsynaptic neurons, but not
when they have been inactivated on presynaptic DA neurons
(Barik et al. 2013). To our knowledge, out of all of the mutants
so far mentioned, the effects of antidepressant treatments have
only been investigated in the FBGRKO mice, revealing
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normal responses to acute or chronic antidepressants (Boyle
et al. 2005; Vincent et al. 2013). Additionally, viral-induced
knockdown of GR in the prefrontal cortex had no effect on
corticosterone or behaviour in the FST but increased sensitiv-
ity to chronic imipramine (Hussain and Jacobson 2015).
Mutants with increased GR function include mice overex-
pressing GR throughout the brain (so-called YGR mice be-
cause overexpression is achieved by a yeast artificial chromo-
some). Interestingly, they exhibit a hormonal and the behav-
ioural resistance to immobilisation stress and are also more
resistant to the development of LH (Ridder et al. 2005). To
our knowledge, antidepressant sensitivity has not been tested
in these mice.

The opposite profile was found in transgenic mice with GR
overexpression in forebrain (GRov), which showed increased
environmental reactivity and vulnerability to stress-induced
cognitive deficits (Hebda-Bauer et al. 2010). GRov mice also
showed evidence of impaired negative feedback inhibition of
the HPA axis (Wei et al. 2007). However, as these mice are
supersensitive to antidepressants (Wei et al. 2004), they can-
not be considered a model of antidepressant resistance.
Finally, mice overexpressing mineralocorticoid receptors
(MR) in the forebrain exhibited decreased anxiety behaviour
and corticosterone release in response to restraint stress
(Rozeboom et al. 2007). So far, therefore, there is no evidence
that direct manipulations of GR or MR produces a model of
antidepressant resistance, though for most models the relevant
experiments have not yet been conducted. A related target is
the FK506 binding protein 51 (FKBP51), which is a regulator
of the GR via its action on the chaperone Hsp90. Knockouts
for FKBP51 have been generated that do display resistance
both to the behavioural and physiological effects of chronic
paroxetine while if anything being less sensitive to stress
(Gassen et al. 2014).

In people, several studies have shown that genetic poly-
morphisms in the CRFR1 gene modulate the influence of ex-
posure to childhood abuse on adult depression (Bradley et al.
2008; Ressler et al. 2010; Polanczyk et al. 2009; Kranzler
et al. 2011; Grabe et al. 2010). In mice, two haplotypes of
the CRFR1 gene have been described that are associated with
single nucleotide polymorphisms on regulatory regions of the
gene identical to the ones found in humans (Labermaier et al.
2014). The risk haplotype (TT homozygotes) is associated
with higher sensitivity to chronic stress in adolescence, when
compared to mice from the CC genotype (Labermaier et al.
2014), and this pattern is reversed by CRFR1 antagonists.
However, the effects of more classical antidepressants have
not yet been assessed in this mutant. Other CRH-related mu-
tants include conventional CRF-overexpressing mice
(Stenzel-Poore et al. 1994; van Gaalen et al. 2002), mice with
CRH overexpression in neurons (Dirks et al. 2001; Groenink
et al. 2002), CRFR1 knockout mice (Smith et al. 1998; Timpl
et al. 1998), mice with transient perinatal forebrain CRF

overexpression (Kolber et al. 2010), mice with conditional
forebrain-restricted inactivation of CRFR1 (Muller et al.
2003), mice with CRH overexpression in the pituitary and
mice with deficient CRF2 receptors (Bale et al. 2000, 2002).
With the exception of the mice overexpressing CRF in the
pituitary (Dedic et al. 2012), all other mutants exhibit in-
creased anxiety like-behaviour but were not assessed for stress
vulnerability. Interestingly, mice deficient in CRFR2 receptors
are hypersensitive to stress exposure and display increased
stress-induced corticosterone levels and increased anxiety-
like behaviour (Bale et al. 2000, 2002). Unfortunately, to our
knowledge, none of the CRF mutants has been tested in rela-
tion to antidepressant resistance. Finally, due to the synergistic
effects of vasopressin with CRF in the control of the HPA axis,
the phenotype of the V1b knockout has also been investigated.
In these mice, release of ACTH and corticosterone following
acute stress was attenuated (see Koshimizu et al. 2012), as
were corticosterone levels after acute fluoxetine or desipra-
mine (Stewart et al. 2008). Further, V1b knockout mice show
decreased ACTH after chronic restraint (Lolait et al. 2007),
which suggests increased stress sensitivity. However, to our
knowledge, the effects of chronic antidepressants have not
been assessed in this model. In conclusion, none of the
HPA-related mutants (GR/MR/CRH/vasopressin) fulfils both
the criteria of increased stress sensitivity and that of resistance
to chronic antidepressants.

Other players in antidepressant resistance are transcription
factors and their targets, for example, the transcription factor
deltafosB and its targets GluA2 (an AMPA receptor subunit)
and CaMKII. Overexpression of DeltaFos within the nucleus
accumbens (achieved either using bitransgenic mice or by
viral injection) promotes resilience to chronic social defeat,
whereas increased expression of deltaJun in the same area
has the opposite effects (Nestler 2015). Viral-mediated over-
expression of GluA2 in the same structure also induced resil-
ience to social defeat (Nestler 2015). The effects of chronic
fluoxetine were abolished in mice with a viral-induced over-
expression of deltafosB or CaMKII within the accumbens
(Nestler 2015). However, in this model, antidepressant resis-
tance is not associated with increased stress sensitivity.

Considering that BDNF mediates the chronic effects of
monoaminergic antidepressants (D’Sa and Duman 2002),
polymorphisms modifying the expression of BDNF could al-
ter the therapeutic action of antidepressants. In human studies,
two meta-analyses (Kato and Serretti 2010; Zou et al. 2010)
reported a better response to antidepressants in Met allele car-
riers, while conversely, the val/val genotype was linked to
resistance to chronic treatment with escitalopram (El-Hage
et al. 2015). These findings have been translated to rodents,
but with findings opposite to those predicted: BDNF (met/
met) mice exhibit increased anxiety behaviour and a decreased
response to long-term fluoxetine (3 weeks) (Chen et al. 2006).
However, sensitivity to chronic stress has not been assessed in
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these mice. Interestingly, BDNF+/− mice exhibited normal
effects of acute antidepressants (Saarelainen et al. 2003) and
a normal response to CMS, but the effects of chronic imipra-
mine in CMS mice were dampened (Ibarguen-Vargas et al.
2009), suggesting antidepressant resistance. These mice per-
formed normally in various depression-related tests, other
than an increase in LH that was attributable to a decrease in
pain sensitivity (MacQueen et al. 2001). BDNF is known to
function differently in different brain areas, and deletion of
BDNF restricted to the dentate gyrus was found to attenuate
the effects of subchronic injections of desipramine or
citalopram in the FST (Adachi et al. 2008), but again, the
effects of chronic stress were not assessed. Finally, some stud-
ies have explored the involvement of the target of BDNF, the
TrkB receptor. First it was shown that TrkB ablation sup-
pressed the effects of acute imipramine and fluoxetine in the
FST (Saarelainen et al. 2003), and ablation of TrkB in hippo-
campal neural stem cells (but not in mature neurons of the
dentate gyrus) suppressed the antidepressant-like effects of
chronic (21 days) fluoxetine or imipramine. Unfortunately,
the effects of chronic stress were again not assessed. Overall,
these data suggest that there might be some potential for
region-specific BDNF-related mutants, but research is at a
very early stage.

Two final genetic models are not directly related to synaptic
transmission or transduction. Aquaporins (AQPs) are water
channel proteins involved in regulating water homeostasis,
AQP4b being the predominant form in the brain where it is
expressed in adult neural stem cells as well as in astrocytes. In
the AQP4 knockout mouse, the antidepressant and anxiolytic
effects of chronic fluoxetine were prevented, as were the
fluoxetine-induced enhancement of adult hippocampal
neurogenesis and the hippocampal CREB phosphorylation.
However, mutants and wild-type mice were similar in their
behavioural responses to CMS (Kong et al. 2009). Finally,
mice with a genetic deletion of macrophage migration inhib-
itory factor (MIF), a pro-inflammatory cytokine expressed in
the brain, particularly in hippocampal stem cells and prolifer-
ating cells, show increased immobility in the FST and de-
creased adult hippocampal neurogenesis, as well as resistance
to the ability of chronic (14 days) fluoxetine to increase hip-
pocampal neurogenesis (Conboy et al. 2011). Although the
sensitivity of these mice to chronic stress has not been
assessed and resistance to the behavioural effects of chronic
antidepressants have not been tested, the observed phenotype
suggests that this model could potentially fulfil our criteria for
antidepressant resistance.

Personality factors

Much of the influence of both genetics and early traumatic
events on depressive symptomatology is mediated through
the personality factor of neuroticism (Kendler and Gardner

2011), which is one of the strongest risk factors for depression
(Enns and Cox 1997; Christensen and Kessing 2006; Kendler
and Myers 2010). Early-onset depression, in particular (first
episode before the age of 30), is characterised by a higher level
of neuroticism and a higher prevalence of comorbid personal-
ity disorders (Bukh et al. 2011). Neuroticism is also well
established as a factor associated with resistance to antidepres-
sant treatment (Souery et al. 1999; Bock et al. 2010).

There have been numerous attempts to model the person-
ality risk for depression by selective breeding of animals with
depressive characteristics, high levels of emotionality or dys-
functions of the stress axis. Roman low avoidance (RLA) and
fawn hooded (FH) are two ‘classic’ high-emotionality rat
strains. The RLA rat strain was selectively bred for poor
avoidance in the shuttle box paradigm, while their high-
avoidance (RHA) counterparts were selectively bred for their
good performance in that task. RLA rats show behaviour char-
acteristic of heightened emotionality in several tests, including
increased immobility in the FST (Steimer and Driscoll 2003).
However, RLA and RHA rats react similarly to social defeat
(Meerlo et al. 1997), and in the FST RLA rats show a greater
response to acute or chronic antidepressant treatment (Piras
et al. 2014). FH rats exhibit hyperactivity of the HPA axis, a
characteristic of depressive illness, increased ethanol intake
and preference and increased immobility in the FST
(Rezvani et al. 2002), though this has not always been ob-
served (e.g. Lahmame et al. 1996). Again, these abnormalities
are corrected by antidepressant treatment (Rezvani et al.
2002). These findings suggest that the RLA and FH strains
are likely to prove of limited relevance to treatment-resistant
depression.

One of the most studied ‘depressive’ rat strains is the
Flinders sensitive line (FSL), which was originally bred for
cholinergic supersensitivity, and subsequently shown to dis-
play a range of physiological and behavioural features char-
acteristic of depression, including dysregulation of serotoner-
gic neurotransmission, increased rapid eye movement (REM)
sleep and elevated immobility in the FST (Overstreet and
Wegener 2013). Significantly, the FSL rat does not show ab-
normal responses to rewards under baseline conditions
(Pucilowski et al. 1993; Matthews et al. 1996) but does show
increased anhedonia when subjected to CMS (Pucilowski
et al. 1993). However, in comparison to the Flinders resistant
line (FRL) control strain, the FSL rat is much more responsive
to antidepressant reduction of immobility in the FST
(Overstreet and Wegener 2013). While antidepressant studies
have not been conducted in FSL rats subjected to CMS, these
results suggest that the FSL rat also does not show promise in
relation to treatment-resistant depression.

More promising are Wistar-Kyoto rats, which were origi-
nally bred as a normotensive control strain for the spontane-
ously hypertensive (SHR) rat strain, but were later found to
display physiological and behavioural features suggestive of
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heightened emotionality, including increased immobility in
the FST (Nam et al. 2014) and, of greater relevance, enhanced
physiological responses to repeated stress (Morilak et al.
2005) and an increased propensity to develop LH (Belujon
and Grace 2014). Strain differences in antidepressant re-
sponses have not been studied in relation to LH, but WKY
rats have been shown repeatedly to be less responsive to anti-
depressants in the FST, with some studies reporting a specific
sub-sensitivity to serotonergic antidepressants (López-
Rubalcava and Lucki 2000) and others reporting a more gen-
eral effect (Lahmame et al. 1997). WKY rats are also sub-
sensitive to suppression of REM sleep by both noradrenergic
and serotonergic antidepressants, despite showing a higher
baseline of REM sleep (Ivarsson et al. 2005). Interestingly,
LH was reversed by ketamine in WKY rats (Belujon and
Grace 2014). There was no comparison with the control
strains in this study; however, WKY rats were more respon-
sive than outbred Wistar rats to ketamine reversal of immobil-
ity in the FST (Tizabi et al. 2012). These findings suggest that
WKY rats go some way to satisfying all three of our criteria
for a model of antidepressant treatment resistance.

Another interesting procedure is the congenital learned
helplessness (cLH) strain. cLH rats, and their counterpart con-
genital non-LH controls, were bred by selecting for individ-
uals that developed the most and least severe LH when tested
with mild levels of shock that induce LH in only some of the
subjects. After many generations, cLH animals were produced
that fail to escape even without prior stress exposure
(Vollmayr and Henn 2001). They are also anhedonic in several
different behavioural tests (Vollmayr et al. 2004; Sanchis-
Segura et al. 2005; Shumake et al. 2005; Shabel et al. 2014).
Importantly, unlike LH, which is readily reversed by antide-
pressant treatment, cLH animals are said to be resistant to
antidepressant reversal of their helpless behaviour (Sartorius
et al. 2007; F. Henn, personal communication; B. Vollmayr,
personal communication). However, an antidepressant effect
in cLH rats was found with a high dose of the MAO-B inhib-
itor deprenyl, which preferentially protects DA rather than NA
or 5-HT. Deprenyl has also been reported to be effective in
treatment-resistant depression (Sunderland et al. 1994);
uniquely, the effect in cLH rats required experience of repeat-
ed test trials, suggesting some form of learning process that
has not been described for any other antidepressant (Schulz
et al. 2010). Neuroimaging studies of cLH rats have shown
metabolic and functional connectivity changes very similar to
those observed in major depression (Shumake et al. 2000;
Shumake and Gonzalez-Lima 2003; Gass et al. 2014). In par-
ticular, cLH rats show increased metabolism in the subgenual
region of the cingulate cortex and in the lateral habenula,
which are regions in which antidepressant effects of DBS have
been reported in depressed patients (Sartorius et al. 2010;
Hamani et al. 2011). Correspondingly, DBS or pharmacolog-
ical inhibition of the lateral habenula has been found to restore

normal escape behaviour in cLH rats (Li et al. 2011a; Winter
et al. 2011). Thus, the cLH rat may also meet all three criteria
for a model of antidepressant treatment resistance.
Phenomenologically, the cLH rat could be considered as a
model of the depressive personality, which is associated with
both vulnerability to depression (Kwon et al. 2000; Ono et al.
2002) and resistance to antidepressant treatment (Hirschfeld
et al. 1998; Souery et al. 2007; Takahashi et al. 2013).

Mice selectively bred for high anxiety behaviour (HAB
mice) display reduced hippocampal neurogenesis and in-
creased immobility in the FST. They are usually compared
to mice displaying normal anxiety behaviour (NAB mice). A
first study reported that chronic fluoxetine was able to allevi-
ate the depressive-like features in HAB mice but had no ef-
fects on the anxiety behaviours and on hippocampal
neurogenesis (Sah et al. 2012), while a second study from
the same group reported that HAB mice responded normally
to chronic noradrenergic drugs such as reboxetine or desipra-
mine but were resistant to the effects of chronic SSRIs includ-
ing fluoxetine, paroxetine and citalopram (Schmuckermair
et al. 2013). However, HAB mice did respond to repeated
DBS of the nucleus accumbens (Schmuckermair et al.
2013). In these selected lines, the effects of environmental
enrichment have been assessed in HAB and the effects of
CMS in NAB, with the objective of rescuing the differences,
but CMS has not been assessed in HAB mice; also the main
depression-relevant behavioural measures were the FST and
TST. Nevertheless, there is a hint that HABmicemight also be
able to meet all three criteria for a model of treatment-resistant
depression. A HAB rat has also been described, which, com-
pared with its low anxiety behaviour (LAB) counterpart, and
like the HAB mouse, also shows increased immobility in the
FST. However, unlike the HAB mouse, this effect in rats,
along with associated neurochemical changes, was reversed
by chronic paroxetine treatment (Keck et al. 2003, 2005).

Another set of mouse models is based on HPA reactivity. A
bidirectional breeding strategy selecting mice according to
differences in corticosterone secretion after stress produced
the high (HR), intermediate (IR) and low (LR) reactivity
mouse lines (Touma et al. 2008). HR mice display a hyperac-
tive coping style (decreased floating in the FST), while LR
mice show the opposite pattern (Touma et al. 2008, 2009;
Knapman et al. 2010; Mattos et al. 2013). These opposite
patterns are sometimes presented as models of the melanchol-
ic subtype of depression (HR mice) and of atypical depression
(LR mice). Interestingly, chronic fluoxetine was able to re-
verse the phenotype of HR mice, which is consistent with
the efficacy of antidepressants in melancholic depression,
but it aggravated the depressive-like phenotype of the LR
mice, which is consistent with the observation that atypical
depression responds poorly to antidepressants (Surget et al.
2012). However, the LR mouse, while showing enhanced im-
mobility in the FST and being resistant to fluoxetine, is sub-
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sensitive to stress (as its name indicates). This inconsistency
merits further investigation.

A different strategy is to select sub-groups from a general
population. When using chronic social defeat to differentiate
stress-susceptible and stress-resistant rats, a greater anhedonic
response (stress-induced reward threshold elevation) is asso-
ciated with poor antidepressant-like effects of fluoxetine or
desipramine (Der-Avakian et al. 2014), which suggests that
the susceptible population can be considered as a model in
which increased stress sensitivity is associated with antide-
pressant resistance. But applying the same strategy to mice,
those selected for higher social avoidance after chronic social
defeat showed good behavioural and neurochemical re-
sponses to chronic fluoxetine (Cao et al. 2010): so this strategy
cannot be used to model antidepressant resistance in mice.
However, in another mouse model, mice were selected on
the basis of dexamethasone suppression after 2 weeks of
CMS (low suppression (LS) indicating a higher stress re-
sponse). These two sub-populations did not differ
behaviourally after 9 weeks of stress but did exhibit differ-
ences in the response to chronic fluoxetine, the LS mice
displaying partial antidepressant resistance (Khemissi et al.
2014).

Female sex

Depression is 1.5–3 times more common among women com-
pared with men. However, although men and women tend to
experience, and be affected by, different types of stressful life
events, there is no overall difference in either frequency of
exposure to stressful life events or sensitivity to their patho-
genic effect (Kendler et al. 2001b). Moreover, the increased
vulnerability among women is not accompanied by resistance
to antidepressant treatment. Indeed, women have been report-
ed to respond significantly better than men to SSRIs, though
not to tricyclic antidepressants, possibly as a result of interac-
tions between gonadal hormones and the 5-HT system (Khan
et al. 2005). Furthermore, non-depressed women do not ex-
press a variety of physiological changes that are typically as-
sociated with other risk factors for depression (Willne et al.
2014).

Attention is frequently drawn to the anomaly of depression
being more prevalent in women, whereas females are rarely
tested in animal models of depression. However, in the
learned helplessness and CMS models, female rats are actual-
ly less likely than males to develop depressive behaviours
(Dalla et al. 2010; Franceschelli et al. 2014). Therefore, fe-
male sex is not associated with increased stress responsiveness
in either people or rodents. So while it remains a matter of
some importance to understand the basis for the sex difference
in the incidence of depression (cf. Hyde et al. 2008; Siddaway
et al. 2015), an increase in the use of females in animal models

would be unlikely to lead to marked progress towards a solu-
tion to the problem of treatment-resistant depression.

Evaluation of the models

Table 1 summarises the models that, from the literature
reviewed, may be of value for the study of treatment-
resistant depression. For each model listed, the table summa-
rises the position in relation to the three criteria discussed
(increased stress responsiveness; decreased response to chron-
ically administered conventional antidepressants; good re-
sponse to novel antidepressant modalities) and the fourth, im-
plicit, criterion of whether the model corresponds to a known
clinical risk factor. To maintain readability, the table does not
include references to support the statements made: all of the
information in the table is taken from the earlier text. We have
included in Table 1 studies for which there is partial informa-
tion about how they meet the criteria we have considered,
including some models for which this is as yet no information
about antidepressant responsiveness. (Empty cells in the table
indicate that those questions have not yet been asked.) We
have not included many models discussed in the text that
failed to display antidepressant resistance when tested.

The three models that stand out as most likely to prove
informative are the WKY and cLH rat strains and the HAB
mouse, which relate to neurotic (WKY, HAB) or depressive
(cLH) personality features. In addition to increased stress
responsivity and resistance to classic antidepressants, these
three models have also been shown to respond to the novel
antidepressant modalities that are claimed to be effective in
treatment-resistant depression, ketamine (WKY) and DBS
(cLH and HAB). Nevertheless, in all three cases, the evidence
is patchy. For WKY, we currently lack evidence of resistance
to chronic antidepressant treatment, and the evidence of anti-
depressant resistance in cLH is unpublished. HAB data are
based on behaviour in the FST, which is also the case for the
ketamine response in WKY. And DBS was applied to lateral
habenula (cLH) or nucleus accumbens (HAB), but while clin-
ical antidepressant effects have been reported for DBS of both
of these structures, DBS of the anterior cingulate cortex, the
major focus of clinical interest, has not yet been reported in
these animal models.

The second section of the table includes four models related
to specific human risk factors that show some evidence of
heightened stress sensitivity and antidepressant resistance, but
again, with significant limitations. Mice were more sensitive to
a second bout of CMS and were antidepressant resistant, but this
was only seen in animals fed a high-fat diet, which suggests that
the relevance of this model may be limited to vascular depres-
sion. 5-HT transporter and 5-HT1A knockout mice are resistant
to SSRIs (perhaps unsurprisingly) but appear to respond normal-
ly to non-serotonergic antidepressants; additionally, the 5-HT1A
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knockout does not display a depressive-like behavioural pheno-
type. Perhaps the most promising of this group is the CB1
knockout mouse, but currently, the evidence of antidepressant
resistance only extends as far as 3 days of treatment.

The third section of the table lists three mutant mouse
strains where the weight of behavioural evidence is compa-
rable to those listed above, but there is no evidence from
human studies for a role of the genes targeted, and again, the
evidence is limited. 5-HT1B and DBH knockout mice show
increased stress responsiveness, but in both cases,
depression-relevant behavioural endpoints have not been
tested. For DBH knockout mice, antidepressant resistance
has been demonstrated for many antidepressants, including
some (but not all) SSRIs, but only for acute administration;
chronic drug administration has been used with 5-HT1A

knockouts, but the results are inconsistent across studies.
The most promising model in this group is the OCT2 null
mutant mouse, which shows a range of heightened stress
responses, including responses to CMS, and despite showing
increased responses to acute antidepressant treatment, was
found to be insensitive to chronic administration of the 5-
HT/NA uptake inhibitor venlafaxine. Further evidence is
needed of the effects of chronic treatment with a wider range
of antidepressants to validate this model.

The final group of models listed in the table can be said
to merit further study, insofar as there is in each case some
intriguing evidence that falls well short of a convincing
picture. Juvenile (unlike neonatal) stress causes height-
ened emotional responsiveness in adult rats, which in
around a third of subjects is expressed as a depression-
like phenotype. Similar depression-relevant responses to
stress are seen in vGlut+/− and GSK3 mutant mice.
However, in none of these models has the response to
antidepressants been examined. Outbred mice carrying
the TT haplotype of the CRHR1 gene also showed an
increased neuroendocrine response to chronic stress,
which was normalised by treatment with a CRF1 antago-
nist. There is also a paucity of behavioural data for 5-HT2B

and p11 knockout mice. For these two strains, neither their
stress sensitivity nor their drug responsiveness in
depression-related tests has been assessed, but they are
both reported to be sub-sensitive to anxiolytic effects of
chronic antidepressant treatment: further work in more di-
rectly depression-related behavioural models is needed.
The MIF knockout mouse has been reported to show both
an increased stress response—but only in the FST—and
antidepressant sub-sensitivity—but only for a neurochem-
ical effect. Finally, rats selected as low dexamethasone
suppressors showed some evidence of decreased sensitiv-
ity to fluoxetine, but their greater HPA activity was not
accompanied by heightened sensitivity to the behavioural
effects of CMS. The one model in this group for which
drug resistance in a depression-related test has been

reported is the FKBP1 knockout mouse, which was less
resistant to acute amitriptyline and to acute or chronic
paroxetine in the FST and on various neurochemical mea-
sures, but does not show an increased response to stress.

Evaluation of the criteria

Resistance to antidepressant treatment

It goes without saying that resistance to antidepressant treat-
ment is an essential criterion for a model of treatment-resistant
depression. However, some aspects of this criterion should be
mentioned. First, it is also essential that resistance is demon-
strated for chronic, not only acute, antidepressant treatment.
This is not yet the case for several of the models listed in
Table 1, including the Wistar-Kyoto rat which heads the list.
Second, it may be possible to predict treatment resistance on
the basis of the other criteria that we have considered, as
indicated by the presence towards the bottom of Table 1 of
several models in which antidepressants have not yet been
tested. Third, because antidepressants are effective in both
depression and anxiety, if the focus of interest is on
treatment-resistant depression, then the model should involve
depression-relevant rather than anxiety-relevant behavioural
endpoints. As shown towards the foot of Table 1, this is not
universally the case. Fourth, we note that for some of the
models listed (e.g. the HAB mouse and some of the knockout
mouse strains), treatment resistance extends only to serotoner-
gic antidepressants. This highlights the importance of testing a
wide range of antidepressants before concluding that treat-
ment resistance has been demonstrated: for some of the
models listed in Table 1, the range is narrow and further evi-
dence is needed.

Fifth, and perhaps most important, the demonstration that a
model is insensitive to chronic antidepressant treatment, while
necessary, may not be sufficient to infer with confidence that
the model will be a useful experimental tool. The working
assumption behind efforts to develop novel treatments is that
antidepressant effects are achieved at a site downstream from
the site of action of conventional treatments. Specifically,
there is extensive evidence that while many antidepressants
act primarily within the hippocampus, their antidepressant ef-
fects result from consequent actions in the prefrontal cortex
(Willner et al. 2013, 2014). The general proposition, that the
brain contains alternative sites of antidepressant action distinct
from those at which conventional antidepressants act, is sup-
ported by the efficacy of novel treatment modalities such as
DBS. At the present stage of scientific development, a model
that proved resistant to both conventional and novel antide-
pressants would not be helpful. For most of the models listed
in Table 1, the extent of treatment resistance is unknown.

3486 Psychopharmacology (2015) 232:3473–3495



Finally, we should also mention that different clinical
criteria have been proposed to define antidepressant treatment
resistance (Table 2). These definitions have the common fea-
ture that patients are not considered treatment resistant until
they have failed to respond to adequate therapy with at least
two or more sequential treatments. According to these defini-
tions, no animal model can be considered as an animal model
of antidepressant treatment resistance because sequential ap-
plication of different treatments has never been used as a strat-
egy to counteract depression-related behaviours in animals.

Response to novel antidepressants

The recent clinical and preclinical studies of antidepressant and
antidepressant-like responses to ketamine and DBS provide
proof of principle that antidepressant resistance can be over-
come. However, as shown in Table 1, the preclinical evidence
is limited to only three models (the WKYand cLH rat) and the
HAB mouse. And in two of these models (WKY and HAB),
the FST was used as the behavioural endpoint, which is prob-
lematic because the FST has limitations, not least, a limited
pharmacological specificity. Furthermore, as far as we are
aware, DBS has not yet been applied in these particular models
to the anterior cingulate cortex, the area most frequently
targeted in clinical and preclinical studies. (DBS of the cingu-
late cortex did, however, reverse a behavioural effect of CMS
in a sub-group of mice identified empirically as resistant to
chronic fluoxetine (Dournes et al. 2013)). Clearly, more work
is needed to establish the effectiveness of DBS of the anterior
cingulate cortex in models of treatment resistance, to extend
studies with ketamine and DBS to more relevant behavioural

endpoints, and to examine the effects of these novel treatment
modalities in a wider range of models, particularly those listed
in the second section of Table 1. We note also that the
optogenetic method can be used to generate depressive-like
behaviours and to investigate the mechanisms underlying re-
mission. Repeated stimulation of glutamatergic neurons from
the anterior cingulate cortex is sufficient to elicit depressive-
like behaviours (Barthas et al. 2015), while photoactivation of
the vmPFC (Covington et al. 2010), of the projections from
vmPFC to the DRN (Challis et al. 2014) or of the projections
from VTA to mPFC (Friedman et al. 2014) all restore depres-
sive behaviours elicited by social defeat. This procedure may
be helpful in refining the targets for DBS.

In addition to ketamine and DBS, transcranial magnetic
stimulation (TMS) applied to the left dl-PFC is another treat-
ment that is known to be effective in treatment-resistant de-
pression, either as monotherapy or as an add-on to ineffective
antidepressant treatment (Solvason et al. 2014; Liu et al. 2014).
However, while TMS is also effective in reversing behavioural
and neurochemical abnormalities in animal models of depres-
sion (e.g. Keck et al. 2001; Feng et al. 2012; Kim et al. 2014;
Wang et al. 2014), to our knowledge, TMS has not yet been
tested in any of the models listed in Table 1 that are of interest
in relation to treatment-resistant depression.

Increased stress responsivity

Our proposal to include increased stress responsivity as
a useful criterion for models of antidepressant resistance
is perhaps the most controversial of the four criteria we
have proposed. This proposal derives from the evidence

Table 2 Clinical definitions of treatment-resistant depression

Definition Reference(s)

1 Failure of two sequential treatments with antidepressants Nierenberg and Amsterdam (1990),
Rush et al. (2003)

2 Stage 1: resistance to 1 adequate treatment
Stage 2: failure of two adequate treatments from two different pharmacological classes
Stage 3: resistance to two different classes and to one tricyclic
Stage 4: resistance to two different classes and to tricyclics and to MAOIs
Stage 5: as stage 4, plus resistant to ECT

5 level classification: Thase and Rush
(1997)

3 Level 1: resistance to one treatment
Level 2: resistance to two treatments from different classes
Level 3: resistance to 5 treatments

3-level scale: Souery et al. (1999)

4 Non response to each adequate trial with an antidepressant generates a point on a resistance scale.
If after a strategy to optimise the dose/duration/combination no response is still observed, the
overall score increases by 5 points for each trial. Failure to obtain remission after ECT increases
the overall score by a further 3 points.

The Massachusetts General Hospital
classification: Petersen et al. (2005)

5 Level 1: resistance to citalopram
Level 2: still resistant following a switch to buproprion, sertraline, venlafaxine or cognitive therapy,

or augmentation with an add-on (buproprion, buspirone or cognitive therapy)
Level 3: still resistant following a switch to mirtrazapine or nortriptyline, or augmentation with

another drug (lithium, triiodothyronine, sertraline or venlafaxine)
Level 4: resistant to tranylcypromine or mirtazepine combined with venlafaxine

The STAR*D trial: Trivedi et al. (2006),
Rush et al. (2006)

Psychopharmacology (2015) 232:3473–3495 3487



that conventional antidepressants act primarily by re-
versing stress-induced neurotoxicity and are less effec-
tive in remediating components of depression that re-
flect long-standing predispositions that are present be-
fore the onset of current or recent stress (Willner et al.
2013, 2014). We have summarised here the evidence
that such predispositions, associated with resistance to
antidepressant treatment, can be identified clinically in
relation to history of depression, early life stress, genet-
ic factors and personality factors, and that in relation to
each of these diatheses, animal models can also be iden-
tified in which increased stress sensitivity is associated
with a decreased response to antidepressant treatment.

Obviously, increased responsiveness to stress could have
many meanings. For some of the models listed in Table 1 as
meeting this criterion (e.g. the WKYor cLH rat and the CB1
KO and OCT2 null mutant mouse), the procedure within
which animals display hypersensitive to stress is one that
is considered, on conventional criteria, to have good validity
as a model of depression (CMS or LH). Other models have
used a weaker behavioural endpoint, the FST (e.g. HAB
mouse), or physiological endpoints (e.g. CRH1 TT haplo-
type mouse), and in one model (the 5-HT1 KO mouse),
physiological and behavioural responses to stress are dis-
crepant. Clearly, the more valid the depression model, the
greater the confidence that an exaggerated response in the
model will provide a useful model for studying antidepres-
sant resistance. The use of CMS, LH or other models with
some validity for depression (e.g. repeated defeat) is there-
fore to be encouraged.

While the clinical relationship between a predisposition
to depression and antidepressant resistance provides a pro-
ductive basis for finding a similar relationship between
stress hypersensitivity and antidepressant resistance in an-
imal models, it is apparent that there are also models of
antidepressant resistance that do not involve hypersensitiv-
ity to stress (e.g. the FKBP1 KO mouse and the low
dexamethasone suppression rat). The utility of these
models remains to be determined (as, indeed, is the case
for the majority of the models reviewed). There are also
some known causes of antidepressant resistance that we
have described as ‘theoretically trivial’ (Willner et al.
2013), including, for example, pharmacokinetic factors
such as polymorphisms of liver cytochrome 450 enzymes
or failure to penetrate the blood-brain barrier (El-Hage
et al. 2013), which, if modelled in animals, would likely
not be associated with increased stress sensitivity. And as
we have pointed out, the greater propensity to depression
in women relative to men is not associated with antide-
pressant resistance. This means that there are exceptions to
the relationship between hypersensitivity to stress and an-
tidepressant resistance in both directions. Therefore, in-
creased stress sensitivity should be considered a potentially

useful criterion when assessing animal models of drug
resistance, but one that is far from absolute.

Human counterpart

There is substantial variability in the extent to which the pre-
disposing factors known to be associated with antidepressant
resistance have been modelled. Only a single study (Isingrini
et al. 2010), with limited results, has attempted to model the
effect of a history of depression. Perhaps more surprisingly,
studies of early stress have generally failed to observe either
hypersensitivity to adult stress or antidepressant resistance.
This may reflect the different course of development of ro-
dents and humans, since juvenile stress does produce a
depressive-like phenotype in a proportion of adult rats, though
antidepressants have not yet been tested in this model. By
contrast, several of the genetic factors found to be associated
with an increased risk of depression and antidepressant resis-
tance are paralleled by similar effects in genetically modified
mice (Table 1). There are also many genomic models listed in
Table 1 for which there is no known human counterpart, and
their relevance remains to be established. However, we are not
aware of the converse situation, of genetic factors associated
with increased clinical risk for depression and antidepressant
resistance for which the corresponding genomic manipulation
fails to model the risks. This is not the case for genetic models:
we have discussed a number of ‘emotional’ or ‘depressive’
strains that fail to show reliable evidence of antidepressant
resistance (e.g. the RLA, FH or FSL rat strains). However,
three strains, the WKY and cLH rats and the HAB mouse,
do show some evidence of heightened responses to stress
associated with antidepressant resistance but a good response
to ketamine and/or DBS. These are the front-runners in the
present analysis. However, it will be apparent that the parallels
between the behaviour of these strains and ‘neurotic’ or ‘de-
pressive’ personality traits are very imprecise.

Conclusions

In conclusion, we have identified 18 models that may
have some potential in relation to antidepressant resis-
tance. All require further validation, and in most cases,
this need is extensive. Currently, the most promising
models are the CMS or LH procedures applied to the
WKY and cLH rat strains, the HAB mouse strain and
the CB1 knockout and OCT2 null mutant genetically
modified mouse strains. Further development is needed
to validate models of antidepressant resistance that are
fit for purpose. The criteria used in this review may pro-
vide a helpful framework to guide research in this area.
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